An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well

Kuan-Hsiang Wang¹

¹National University of Kaohsiung

August 24, 2020

Abstract

In this paper, we study an eigenvalue problem for Schrödinger-Poisson system with indefinite nonlinearity and potential well as follows: $-\Delta u + \mu V(x)u + K(x)\Phi u = \lambda f(x)u + g(x)|u|^{p-2}u$ in R³, $-\Delta \Phi = K(x)u^2$ in R³, where 4[?]p<6, the parameters μ , $\lambda > 0$, V[?] $C(R^3)$ is a potential well, and the functions f [?] $L^{3/2}(R^3)$ and g [?] $L^{[?]}(R^3)$ are allowed to be sign-changing. It is well known that such a system with the potential being positive constant has two positive solutions when $\lim_{|x|-[?]}g(x)=g_{[?]}<0$, K=0 in the set {x [?] R³ : g(x)=0} and $\lambda > \lambda_1(f)$ with near $\lambda_1(f)$, where $\lambda_1(f)$ is the first eigenvalue of $-\Delta +$ id in H¹(R³) (see e.g. Huang et al., J. Differential Equations 255, 2463 (2013)). The main purpose is to obtain the existence and multiplicity of positive solutions without the above assumptions for g and K. The results are obtained via variational method and steep potential. Furthermore, we also consider the concentration of solutions as μ -[?].

Hosted file

MMAS-An eigenvalue problem for SP system.pdf available at https://authorea.com/users/353151/ articles/477204-an-eigenvalue-problem-for-nonlinear-schr%C3%B6dinger-poisson-systemwith-steep-potential-well