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Abstract

AIM: We propose the use of in silico mathematical models to provide insights that optimize therapeutic interventions designed

to eradicate respiratory infection during a pandemic. A modelling and simulation framework is provided using SARS-CoV-2

as an example, considering applications of both treatment and prophylaxis. METHODS: A target cell-limited model was used

to quantify the viral infection dynamics of SARS-CoV-2 in a pooled population of 105 infected patients. Parameter estimates

from the resulting model were used to simulate and compare the impact of various interventions against meaningful viral load

endpoints. RESULTS: Robust parameter estimates were obtained for the basic reproduction number, viral release rate and

infected-cell mortality from the infection model. These estimates were informed by the largest dataset currently available for

SARS-CoV-2 viral time course. The utility of this model was demonstrated using simulations, which hypothetically introduced

inhibitory or stimulatory drug mechanisms at various target sites within the viral life-cycle. We show that early intervention is

crucial to achieving therapeutic benefit when monotherapy is administered. In contrast, combination regimens of two or three

drugs may provide improved outcomes if treatment is initiated late. The latter is relevant to SARS-CoV-2, where the period

between infection and symptom onset is relatively long. CONCLUSIONS: The use of in silico models can provide viral load

predictions that can rationalize therapeutic strategies against an emerging viral pathogen.

What is already known about this subject

• To date, quantification of SARS-CoV-2 viral kinetics have utilized clinical data from very small numbers
of patients;

• Viral kinetic models have been shown to be useful in other viral diseases.

What THIS STUDY ADDS

• This study uses the largest available viral load dataset to provide robust estimates that inform key
parameters of SARS-CoV-2 infection;

• Model estimates provide information on the dose potency required for inhibition or stimulation of
target sites within the viral life-cycle;

• Our approach is applicable to current and future pandemics.

•
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Introduction

As the COVID-19 pandemic entered the world in late 2019 and early 2020, little information was available
regarding potential therapeutic strategies to address this emerging pathogen. Several key questions emerged
that focused on pre-existing antivirals, with consideration of the optimal dose, time to initiate treatment or
prophylaxis, and the possibility of selecting combination regimens 1-5. While some of these questions have
been partially answered, most remain open, as we approach one year after initiation of the global pandemic.

The use of in silico modelling and simulation has proven its merits as a key tool in developing novel therapies
that are more effective than existing therapeutics 6-8. These models are particularly useful to inform decision
making in areas where clinical trials are unavailable or not feasible, and has been applicable to the COVID-19
global pandemic. The use of mathematical models which characterize viral dynamics can provide critical
insights early in a pandemic, to address some of the key questions outlined above. These understandings
are useful to guide treatment sites within the virus life-cycle. Establishing and applying robust viral kinetic
(VK) models is therefore a critically important foundation to support strategies for optimising therapeutic
interventions. These models can additionally serve to extrapolate unknown components of the VK curve
(e.g. time of infection to symptom onset), or for linking infectiousness to transmissibility in epidemiological
analyses 9.

SARS-CoV-2 establishes an infection by binding to angiotensin-converting enzyme 2 (ACE2) receptors on
surface epithelial cells in the upper respiratory tract 10. While this process is similar to that for other
respiratory viral infections, the incubation time of SARS-CoV-2 approximates 6 to 13 days 11,12, and is
longer than influenza (> 48 hours) 13. As a consequence, symptom onset and corresponding diagnosis is
longer [range 5–24 days] 14 following SARS-CoV-2 infection, and may occur just prior to or at the time of
maximal virus. Furthermore, the duration of viral shedding is 2–3-fold longer for SARS-CoV-2 (21 – 30
days) 15, compared to influenza16,17 or Respiratory Syncytial Virus (RSV)18.

Target cell-limited models that characterize the in-host infection dynamics of influenza 16,17 and RSV19,20

are well established, and have been applied to SARS-CoV-2. Integrating the pharmacokinetics (PK) and
pharmacodynamics (PD) of re-purposed drugs into the virus life-cycle using in silico modelling may therefore
better rationalize appropriate treatment strategies 1,2,21. In this manuscript, we sought to use a nonlinear
mixed effects modelling approach to develop a target cell-limited model for SARS-CoV-2 using pooled data
from published studies. A large dataset of viral load time course was generated from more than 100 subjects,
to construct a robust foundation that describes the infection dynamics of SARS-CoV-2.

We aimed to utilize this model to perform Monte Carlo simulations that visualize viral pre-exposure pro-
phylaxis, post-exposure prophylaxis and treatment profiles for a range of dosing scenarios. Specifically, we
wanted to focus on i) the selection of single agent or combination therapy; ii) identifying the dose potency;
and iii) the timing of dose initiation required to achieve success. We use this approach to suggest a general-
ized framework that may guide optimized prophylactic or treatment strategies for SARS-CoV-2 and future
pandemics.

Materials and Methods

Viral Kinetic Data

Nasopharyngeal, nasal-throat swab, or oropharyngeal viral load data sampled from the upper respiratory
tract were digitized from 13 published studies (N = 105 infected symptomatic patients)13,22-34. Viral load
measurements reported as cycle threshold (Ct) values were converted to log10 copies/mL, using the standard
curve provided by Zou et al 32. The lower limit of quantitation (LLOQ) was defined as indicated within each
study. A summary of the data is provided in Table 1 , and include stratification of the number of subjects
(N = 36 total; 34% of pooled dataset) that received some form of treatment. Inter-study comparison of
the observed viral load area under the curve (AUC) between untreated and treatment arms identified no
significant difference between the two groups (Table 1 ). We therefore assumed that the VK in treatment
subjects were comparable to untreated, and did not include antiviral inhibition during model estimation. A
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display of the VK profiles for all data and stratified by study are shown inFigure 1 .

Target Cell-limited Model

The time course of SARS-CoV-2 in infected patients was developed using an established target cell-limited
model that represents the pathophysiology of a typical viral life-cycle 16,17. This model comprises three
cell populations, which include susceptible target epithelial cells (T ) in the upper respiratory tract, non-
productive infected cells (I1 ) and infected cells (I2 ) that actively produce free virus (V ). The ordinary
differential equations describing this system were described by Equation 1:

dT

dt
= − βTV

dI1
dt = βTV − kI1 (1)

dI2
dt = kI1 − δI2

dV
dt = ρI2 − cV − βTV

Where β is the second order rate constant for susceptible target cell infection by free virus (V ); k is the
transition rate from non-productive cells to those actively producing virus; δ is the infected cell mortality
rate; ρ is the free virus production (release) rate, and c is the corresponding elimination rate constant. A
schematic of the target cell-limited model is provided inFigure 2 . In this model, the basic reproduction
number (R0 ) represents the average number of secondary infections generated from each primary infected
cell, and is given by Equation 2:

R0 = ρβT0

δ(c+βT0)
(2)

Several assumptions were made to avoid parameter non-identifiability, because only viral load measurement
was available for model development. Based on known physiology, the number of target epithelial cells in
the upper respiratory tract was assumed to be 4 × 108cells homogeneously distributed in a 30 mL volume
16. Of these, approximately 1% are susceptible and express the ACE2 receptor and other proteases required
for SARS-CoV-2 entry35. The initial concentration of target epithelial cells (T0 ) was therefore assumed to
be 1.33 × 105 cells/mL. V0 was initialized at 10 copies/mL, with c assumed to be fast based on known acute
infection 36, and was fixed to 10 d-1. The transition rate, k, was fixed to 3 d-1, and reflects initiation of virus
production at 8 hours after infection 37. In this model, the time of infection was assumed to be five days
relative to the onset of clinical symptoms 38. This assumption was required to initialize infection, which is
not known in patients naturally infected by the virus. Estimated fixed effects includedR0 , ρ and δ . Since
R0 was estimated, the infectivity rate β was derived by re-arranging the expression provided in Equation 2.

Viral load versus time data were analysed using nonlinear mixed effects modelling (NONMEM® version
7.3.0; ICON Development Solutions, USA). The data were fitted using stochastic approximation expec-
tation maximization (SAEM), and then by Importance sampling (IMP). Viral load was fitted using an
untransformed scale, followed by logarithmic transformation to compare predictions with observed data.
The between-subject variability (BSV) was modelled using an exponential variance model. Viral load obser-
vations reported as below the limit of quantitation (BLQ) were analysed using an established (M3) method
for handling censored data39.

Antiviral Treatment Simulations

Target cell infectivity (β ) and free virion release (ρ ) mechanisms were inhibited by an intervention, while
infected cell elimination (δ ) and virus clearance (c ) were stimulated. As such, care was taken to simulate
equivalent levels of intervention across these different intervention types using Equation 3:

log10(Smax + 1) = −log10(1 − Imax) (3)

3
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Where Smax and Imax are the fold-increase and fractional-decrease in parameter value, respectively. Using
this relationship, an example 9-fold stimulation of δ and c (Smax ) would provide equivalent inhibition of β
and ρ (Imax = 90%).

A total of eight intervention cases were simulated from model-derived parameters (Table 2 ). A base case
no-intervention (referred to as “None”) was included as reference. Four monotherapy interventions were
simulated with equivalent effect size (93.7% inhibition or 14.8-fold stimulation). These response metrics
were based on monotherapy effect sizes that would yield an R0 approximating 1, which is the threshold for
an infection to be established. Thus, a 93.7% inhibition or 14.8-fold stimulation of a given parameter would
correspond to a 6/5 log10 change to result in a R0 < 1(estimated in the target cell-limited model). Addition-
ally, three combination interventions were simulated with equivalent effect size as that in the monotherapy
setting, assuming additivity, divided equally across multiple viral life-cycle pathways. For example, a 6/5
log10 change in one parameter were additively assumed to equate 2/5 log10 changes each if three parameters
were simultaneously targeted. These combinations represent modest effect 60.2% and 74.9% inhibition and
1.51-fold and 2.98-fold stimulation), and were intended to demonstrate the possible benefit of combinations
each with moderate response.

For each dosing scenario, interventions on days 0, 3, 5, and 10 after infection were simulated to study
the effects of pre-exposure prophylaxis, post-exposure prophylaxis, symptom onset and post-symptom onset
timing of interventions, respectively. A total of 1000 subjects were simulated at each of the eight interventions
with BSV incorporated.

Simulated viral load and target epithelial cell pool data were summarised for each virtual subject. Four
summary endpoints were considered including Detectable Viral Test (> 100 copies/mL, which is a common
lower-limit of detection for SARS-CoV-2 swabs), Modified R0 (recalculated for each virtual subject, and
is generally reduced after intervention),Duration of Viral Shedding , and Target Cell Pool Remaining .
The detectable viral test and duration of viral shedding are a proxy for infection establishment, such that
suppression of viral load produces subjects that may not be symptomatic or infectious. From VK modelling
theory, reducing R0 to a value below 1 is necessary to quench the exponential growth of viral load within a
virtual subject. This metric provides a measure of the infection period, which would end in subjects with
R0> 1 once the epithelial target pool is substantially exhausted. In contrast, R0 < 1 suggests that the
infection will end prior to that point. Lastly, the proportion of target epithelial cell pool remaining gives
an indication of lung involvement, since disease outcome possibly correlates with the degree of airway lining
infection.

Results

Infection Severity in the Viral Load Data

The pooled SARS-CoV-2 analysis dataset included subjects at varying degrees of infection severity (mild,
mild-to-moderate, moderate, severe, and uncomplicated). In two studies 28,33, infection severity was not
reported for individual subjects, and were therefore categorized as unknown. Viral load exposures (AUC,
peak, and time at maximum virus) were computed and summarized by degree of infection (Supplemental
Table 1 ). To account for assay-specific differences, exposure metrics were additionally calculated after
normalizing viral load observations to the defined LLOQ in each study. In the current analysis dataset, no
apparent differences in LOQ-normalized viral load exposures were observed across the various degrees of
infection severity (Supplemental Figure 1 ). Generally, the viral load profiles were comparable between
studies and across patient populations.

SARS-CoV-2 Kinetic Model

The VK of SARS-CoV-2 in untreated subjects was described using a target cell-limited model (Equation 1).
To reduce non-identifiability, three parameters (R0 , ρ , and δ ) were estimated, with the remaining (T0 ,V0

, k and c ) fixed to physiologically plausible values.

The estimated basic reproductive number (R0 ,), release rate of virus (ρ ) and infected cell mortality (δ)

4
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were 14.3, 49.9 copies/mL.d-1 and 1.20 d-1, respectively (Table 3 ). Terms describing the BSV could only be
estimated on δ, possibly because of the lack of data to inform the model in the viral growth phase (from time
of infection to symptom onset, assumed as 5 days in the model). No discernible differences in the BSV δ and
degree of infection severity were identified (Supplemental Figure 2 ), and the influence of covariates were
therefore not explored. Residual random error represents, in part, the considerable variability associated
with nasopharyngeal sampling and potentially unavoidable inaccuracies arising from data digitization. The
analysis utilizes pooled data across multiple studies, which measure viral load using different assays and
detection limits. However, stratification of the residual error into studies with broadly comparable LLOQ
did not improve standard model diagnostics or performance (data not shown). The simplest model (defined
by the parameters reported in Table 3) was therefore selected as final. Reasonable predictive performance
of this final model was shown by Visual Predictive Check (Figure 3 ).

Simulated Intervention Outcomes

A total of eight intervention scenarios were simulated (N = 1000 subjects per scenario) to demonstrate the
effect of single dose and combination therapies that target each component of the viral life-cycle. These
included a base case no-intervention reference (“(None)”), which simulated the SARS-CoV-2 time course
using the parameter estimates from the developed target cell-limited model. Since the infectivity rate β is a
potential drug target, modulation of this parameter was incorporated, by re-arranging the model estimated
R0 (Equation 2).

At base case where R0 is 14.2, the duration of viral shedding approximates 10 days (Figure 4 ), subjects
were predicted to have detectable viral load (Figure 5 ), and no epithelial target pool remained (Figure
6 ). These data were compared to outcomes when interventions were administered at 0 days (pre-exposure
prophylaxis), 3 days (post-exposure prophylaxes), 5 days (at symptom onset), and 10 days (post-symptom
onset). Given anR0 of 14.2, the effect sizes presented inTable 2 would result in modified reproductive
number less than one (R0 = 14.2 × (1 - 0.937) = 0.895), which suggests that the infection can be halted
with monotherapy, if applied at the time of infection. Descriptive summaries of projected endpoints for all
interventions simulated are provided in Table 4 , together with median viral load curves against base case
(Figures 4 – 6 ).

Pre-exposure prophylaxis (day 0) targeting virion release (ρ ) and infected cell elimination (δ ) yielded no
subjects with a detectable viral test, zero days of viral shedding, and complete preservation of the target
epithelial cell pool. By design, these interventions modify R0 to < 1. Interventions focusing on target cell
infection (β ) and virion elimination (c ) yield modified R0 that were slightly above 1, as c and β appear as a
sum in the denominator of R0 (Equation 2). As such, these forms of interventions are predicted to produce
a slowly-progressing, limited infection.

Post-exposure prophylaxes (day 3) and interventions at symptom onset (day 5) have similar trends, with
interventions on target cell infectivity (β ) yielding the longest duration of viral shedding. In contrast,
interventions that stimulate infected cell elimination (δ ) were predicted to halve the duration of viral
shedding. Other interventions provided intermediate results. Interestingly, combinations featuring virion
release (ρ ) and infected cell elimination (δ ) offered similar benefit to monotherapy, but required a more
modest effect size. Treatment at Day 10 after symptom onset provided very little therapeutic benefit, and
had VK profiles that were similar to no intervention.

Discussion

The current analysis utilized published viral load data in symptomatic patients confirmed with SARS-CoV-2
infection. Data were digitized and pooled from 13 publications containing a total of 105 subjects, with a
mixture of disease severity including mild, moderate, and severe infection. To our knowledge, this is the
largest available SARS-CoV-2 viral load dataset which provides a robust estimation of VK parameters
and patient heterogeneity. Previous analyses have utilized much smaller datasets to provide an initial
quantification of SARS-CoV-2 in patients.1,2,21,40. The model estimated basic reproductive number (R0

= 14.2), which is similar to somewhat less than estimates for influenza16. This value was reasonably well
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estimated and provides key information to suggest that relatively strong drug potencies are required to quench
SARS-CoV-2 infection. Furthermore, this analysis provides an improved understanding of the population
variability in peak viral load and duration of shedding, both of which inform the optimal times for treatment
initiation.

Overall, the viral load profiles for SARS-CoV-2 demonstrated some differences from other respiratory viruses.
For influenza and RSV, the time between infection and clinical symptom onset is short (1 and 3 days,
respectively), with peak viral load occurring at 2 and 6 days, respectively 16-18. Symptom appearance and
corresponding diagnosis is considerably longer (range 5–24 days)14 for SARS-CoV-2, and may occur close
to the time of maximal virus. This is a troublesome finding, as it practically suggests that diagnosis of
COVID-19 based on symptomatology occurs late in the viral life cycle, reducing the opportunity for early
intervention with antiviral agents. Simulations from our model suggest that peak viral titre results at 3
to 5 days post-infection. Furthermore, while the simulated median duration of viral shedding (10 days) is
slightly longer than influenza or RSV (8 days), this endpoint is 2–3-fold longer in some subjects with SARS-
Cov-2 infection 41. As additional viral load data emerge across larger and more diverse patient populations,
investigators should continue to identify differences in VK profiles, which may potentially predict disease
course or severity.

Analysis of the VK profiles using an established target cell-limited model provided estimates that may
provide insights into the pathophysiology of SARS-CoV-2 infection. The basic reproductive number (R0 )
and virion release rates (ρ ) were relatively high, with estimates approximating 14 and 50 copies/mL.d-1,
respectively. For other coronaviruses, the burst size (ρ ) range has been shown to range from 10 to 700
virions that can produce secondary infections 42,43. While the data indicate substantial variability in the
SARS-CoV-2 profiles, BSV could only be estimated on the infected cell mortality rate (δ ). This challenge
potentially occurred due to the lack of data to inform estimation from the time of infection to symptom onset
(assumed as 5 days). Despite this limitation, reasonable estimates and predictive performance were obtained.
Further improvements may occur as subsequent data describing the SARS-CoV-2 incubation period become
available.

One key result of the simulations is that earlier intervention is critical for effective treatment of SARS-CoV-2.
This is not a surprise, and consistent with both VK models and clinical trials for other respiratory viruses,
including influenza 16,44,45. As time to therapy initiation increases, the ability for an antiviral to produce a
clinically relevant impact on viral load, and presumably, disease course, decreases. Pre-exposure prophylaxis
(day 0) may be utilized in a high risk population, or in a contact tracing scenario. Post-exposure prophylaxis
(day 3 after infection, prior to symptom onset) is possible in the setting of a known infection, or in cases
where widespread rapid testing is available, or as part of a contact tracing process. These two intervention
modes appear to provide better success with drugs of marginal potency, which are likely when repurposing
existing drugs and/or with non-optimized new and emerging treatments. Some interventions on or after
symptom onset appear to reduce the duration of viral shedding (perhaps reducing forward transmission),
but have minimal effect on the target cell pool population.

The impact of time to initiate treatment is dependent on the viral load profile of individual patients. Due to
the underlying heterogeneity in VK, a portion of patients may still benefit from treatment initiated later in the
disease course. Reduced therapeutic efficacy may occur in other subjects, even if treatment occurs relatively
early. Another key finding is that combination therapies with drugs that have moderate antiviral activity
may offer the potential to match the efficacy of more potent monotherapies. In the context of repurposing,
where the antiviral activity of a candidate drug may be underwhelming, two or three combinations may offer
a path forward. That said, simulations from the current model suggest a rank-ordering of ideal interventions:
δ> ρ , c > β .

The model provides some insights into potential mechanisms of action of antiviral drugs, and how the various
mechanisms might influence viral load. Inhibition of infectivity (β ), such as a cell entry inhibitor, is predicted
to have modest impact on viral load once infection is established (R0 > 1). If beta is inhibited by 93.7% at
3 days post infection, the modified mean R0 is reduced, but is still above the threshold to establish a new
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infection. Comparatively, the infection is quenched (R0 < 1) if the same degree of enhancement of effect on
clearance of infected cells (δ ) at 3 days post-infection.

There are several key limitations to this current analysis. The data were digitized from multiple studies,
for which viral load measurement was performed in different labs, with varying LLOQ and sensitivity or
specificity. Therefore, differences in sample collection, processing, and assay may have contributed additional
variability and uncertainty to the analysis dataset. However, inter-study comparison of viral load profiles
were generally comparable, suggesting that pooling of the data was not unreasonable. Most of the VK
data were measured after clinical symptom onset, with negligible data available to inform estimation of the
period between infection and this occurrence. Simulations from the model, however, provide the advantage
of visualizing this aspect of the VK curve, thereby providing an understanding on the kinetics of viral
replication. Additional sources of viral load data, particularly from well-controlled clinical trials, are expected
in the future, and similar analyses using such datasets is encouraged.

Conclusions

In the current manuscript, we use a modelling and simulation approach to characterize the time course of
SARS-CoV-2, with applications including guiding effective prophylactic and treatment interventions. Similar
in silico frameworks can be used prospectively, to better handle current and future pandemics. Based on
model simulation, we propose the following generalized guidelines for respiratory infection:

1. A robust estimate of the basic reproductive number may provide useful insights around the drug
potency required for effectiveness;

2. If the time between infection and symptom onset is short (< 3–5 days, such as for influenza), there is
a greater opportunity to intervene early in the course of the viral life-cycle. Delayed clinical symptom
onset post-infection, as appears to be with coronavirus, reduces the likelihood of early intervention,
and hence requires more potent therapies to provide a clinically meaningful impact.

3. Interventions which enhance the immune response, or increase clearance of infected cells, if available,
appear to be the more attractive drug targets. Drugs such as entry inhibitors are less likely to have a
role in managing an established infection.
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Table 1 Summary of viral load studies used to estimate SARS-CoV-2 viral kinetics
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Study N subjects N subjects N subjects Observations LOQ BLQ (%) P-value g

Total Untreated Treated (drugs)
Cheng et al. 22 5 3 2 (LPV/r) 42a Ct = 40 0.00 0.584
Han et al. 23 9 9 0 49b,e log10 = 4.10 18.4 –
Kawasuji et al. 33 18 0 18f 56c log = -0.4 42.9 –
Kim et al. 24 9 2 7 (LPV/r) 70a Ct = 38 22.9 0.207
Kim et al. 26 3 2 1 (LPV/r) 20a Ct = 35 40.0 –
Kim et al. 25 1 1 0 14b log10 = 3.43 21.4 –
Lescure et al. 27 4 2 2 (RDV) 38b log10 = 2.00 31.6 0.236
Lui et al. 28 11 11 0 40d log10 = 2.84 0.00 –
Thevarajan et al. 29 1 1 0 6a Ct = 45 66.7 –
Wolfel et al. 30 9 9 0 153b log10 = 2.00 63.4 –
Yoon et al. 34 1 0 1 (LPV/r) 5b log10 = 3.00 0.00 –
Young et al. 31 18 13 5 (LPV/r) 230 a Ct = 38 20.4 0.455
Zou et al. 32 16 16 0 65 a Ct = 40 24.6 –
All studies 105 69 36 788 – 29.9 0.211

a, b, c, d Cycle threshold (Ct), log10copies/mL, log copies/μL, and copies/mL units, respectively.

e Only paediatric study in analysis population.

f Authors report a combination of antivirals and antibiotics.

g Non-significance in observed viral load area under the curve between untreated and treatment subjects.

Abbreviations: BLQ, below the limit of quantitation; Ct, cycle threshold; LPV/r, lopinavir/ritonavir; RDV,
remdesevir.

Table 2 Simulated study designs used to stimulate or inhibit target sites in the SARS-CoV-2
life-cycle

Intervention β (Target Cell Infection) ρ (Virion Release) δ (Infected Cell Elimination) c (Virion Elimination)

(None) 0 [0% Inhibition] 0 [0% Inhibition] 0 [0-fold Stimulation] 0 [0-fold Stimulation]
β=6/5 a 6/5 [93.7% Inhibition] 0 [0% Inhibition] 0 [0-fold Stimulation] 0 [0-fold Stimulation]
ρ=6/5 0 [0% Inhibition] 6/5 [93.7% Inhibition] 0 [0-fold Stimulation] 0 [0-fold Stimulation]
δ=6/5 0 [0% Inhibition] 0 [0% Inhibition] 6/5 [14.8-fold Stimulation] 0 [0-fold Stimulation]
c=6/5 0 [0% Inhibition] 0 [0% Inhibition] 0 [0-fold Stimulation] 6/5 [14.8-fold Stimulation]
ρ=2/5 δ=2/5 c=2/5b 0 [0% Inhibition] 2/5 [60.2% Inhibition] 2/5 [1.51-fold Stimulation] 2/5 [1.51-fold Stimulation]
β=2/5 ρ=2/5 δ=2/5 2/5 [60.2% Inhibition] 2/5 [60.2% Inhibition] 2/5 [1.51-fold Stimulation] 0 [0-fold Stimulation]
ρ=3/5 δ=3/5 0 [0% Inhibition] 3/5 [74.9% Inhibition] 3/5 [2.98-fold Stimulation] 0 [0-fold Stimulation]

a A 6/5 log10 change corresponds to a 93.7% inhibition or 14.8-fold stimulation of that parameter, obtained
using the estimated R0 from the model.

b Additivity is applied to combination therapies providing the same effect size to monotherapy if treatment
was to occur at the time of infection.

Table 3 Parameter estimates from the target cell-limited model

Parameter (unit) Description Population Mean (%RSE) η shrinkage

R0 (-) Basic reproduction number 14.2 (1.90) –
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Parameter (unit) Description Population Mean (%RSE) η shrinkage

p (copies/mL.d-1) Viral production/release rate 49.9 (2.30) –
δ (d-1) Infected cell mortality rate 1.20 (7.90) –
T0 (cells/mL) Initial target epithelial cells 1.33 × 105 FIX –
V0 (copies/mL) Initial viral load 10.0 FIX –
k (d-1) Eclipse (transition) rate 3.0 FIX –
c (d-1) Free virus elimination rate 10.0 FIX –
ΒΣ῞ δ (%CV) Inter-individual variability on δ 54.2 (18.1) 29.6
Log-additive error (cells/mL) Residual error 2.90 (5.76) 7.32

Abbreviations: BSV, between subject variability represented as a coefficient of variation (CV); RSE, Relative
Standard Error.

Table 4 Simulated viral kinetic outcomes following intervention at various times after infection

Intervention
Time
= 0
days

Intervention
Time
= 0
days

Intervention
Time
= 0
days

Intervention
Time
= 0
days

Intervention
Time
= 0
days

Intervention
Time
= 0
days

Intervention
Time
= 0
days

Intervention
Time
= 0
days

(None)
(N=1000) β=6/5

(N=1000) ρ=6/5

(N=1000) δ=6/5

(N=1000) c=6/5
(N=1000) ρ=2/5

δ=2/5

ς=2/5

(N=1000) β=2/5

ρ=2/5

δ=2/5

(N=1000) ρ=3/5

δ=3/5

(N=1000)
Detectable
Viral
Test, >
100
copies/mL
Undetectable 0 (0%) 272

(27.2%)
1000
(100%)

1000
(100%)

361
(36.1%)

401
(40.1%)

364
(36.4%)

1000
(100%)

Detectable 1000
(100%)

728
(72.8%)

0 (0%) 0 (0%) 639
(63.9%)

599
(59.9%)

636
(63.6%)

0 (0%)

Modified
R0, -
Mean
(SD)

14.2 (0) 1.59
(1.28)

0.895
(0)

0.899
(0)

1.40
(1.75)

1.17
(0.437)

1.18
(0.278)

0.896
(0)

Median
[Min, Max]

14.2 [14.2,
14.2]

1.30 [-6.66,
13.8]

0.895
[0.895,
0.895]

0.899
[0.899,
0.899]

1.28 [-23.1,
12.2]

1.12 [-9.42,
2.19]

1.12 [-4.52,
2.22]

0.896
[0.896,
0.896]
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Intervention
Time
= 0
days

Intervention
Time
= 0
days

Intervention
Time
= 0
days

Intervention
Time
= 0
days

Intervention
Time
= 0
days

Intervention
Time
= 0
days

Intervention
Time
= 0
days

Intervention
Time
= 0
days

Duration
of
Shed-
ding,
days
Mean
(SD)

10.7
(5.76)

17.7
(14.3)

0 (0) 0 (0) 9.62
(9.14)

9.40
(9.21)

12.9
(12.0)

0 (0)

Median
[Min, Max]

9.00 [3.46,
47.8]

17.7 [0,
41.4]

0 [0, 0] 0 [0, 0] 8.63 [0,
28.0]

8.62 [0,
26.4]

12.0 [0,
34.5]

0 [0, 0]

Target
Pool
Re-
main-
ing,
%
Mean
(SD)

0 (0) 62.8
(35.5)

100
(0.0267)

100
(0.0238)

65.2
(34.1)

73.1
(29.5)

73.0
(29.6)

100
(0.0250)

Median
[Min, Max]

0 [0, 0] 63.4 [0,
100]

100 [99.9,
100]

100 [99.9,
100]

69.0 [0,
100]

82.4 [0,
100]

83.2 [0,
100]

100 [99.9,
100]

Intervention
Time
= 3
days

Intervention
Time
= 3
days

Intervention
Time
= 3
days

Intervention
Time
= 3
days

Intervention
Time
= 3
days

Intervention
Time
= 3
days

Intervention
Time
= 3
days

Intervention
Time
= 3
days

(None)
(N=1000) β=6/5

(N=1000) ρ=6/5

(N=1000) δ=6/5

(N=1000) c=6/5
(N=1000) ρ=2/5

δ=2/5

ς=2/5

(N=1000) β=2/5

ρ=2/5

δ=2/5

(N=1000) ρ=3/5

δ=3/5

(N=1000)
Detectable
Viral
Test,
>100
copies/mL
Undetectable 0 (0%) 1 (0.1%) 5 (0.5%) 1 (0.1%) 3 (0.3%) 0 (0%) 0 (0%) 1 (0.1%)
Detectable 1000

(100%)
999
(99.9%)

995
(99.5%)

999
(99.9%)

997
(99.7%)

1000
(100%)

1000
(100%)

999
(99.9%)
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Intervention
Time
= 3
days

Intervention
Time
= 3
days

Intervention
Time
= 3
days

Intervention
Time
= 3
days

Intervention
Time
= 3
days

Intervention
Time
= 3
days

Intervention
Time
= 3
days

Intervention
Time
= 3
days

Modified
R0, -
Mean
(SD)

14.2 (0) 1.54
(0.833)

0.895
(0)

0.899
(0)

1.67
(1.16)

1.19
(0.207)

1.19
(0.221)

0.896
(0)

Median
[Min, Max]

14.2 [14.2,
14.2]

1.30 [0.929,
13.4]

0.895
[0.895,
0.895]

0.899
[0.899,
0.899]

1.33 [0.947,
13.6]

1.13 [0.936,
2.19]

1.12 [0.937,
2.24]

0.896
[0.896,
0.896]

Duration
of
Shed-
ding,
days
Mean
(SD)

10.3
(4.79)

18.5
(16.8)

9.66
(6.57)

4.93
(2.21)

11.3
(10.9)

7.50
(6.10)

9.70
(9.13)

6.15
(3.53)

Median
[Min, Max]

9.00 [3.40,
41.2]

9.94 [0,
54.4]

6.72 [0,
25.4]

4.00 [0,
11.2]

6.72 [0,
51.1]

4.61 [0.180,
26.2]

5.31 [2.65,
39.1]

4.55 [0,
15.2]

Target
Pool
Re-
main-
ing,
%
Mean
(SD)

0 (0) 22.4
(30.1)

22.1
(32.0)

20.6
(30.7)

19.7
(28.5)

20.8
(29.8)

22.7
(31.6)

23.8
(32.6)

Median
[Min, Max]

0 [0, 0] 2.85 [0,
100]

0.550 [0,
100]

1.00 [0,
99.7]

1.10 [0,
99.9]

1.30 [0,
99.4]

2.10 [0,
99.3]

2.05 [0,
99.9]

Intervention
Time
= 5
days

Intervention
Time
= 5
days

Intervention
Time
= 5
days

Intervention
Time
= 5
days

Intervention
Time
= 5
days

Intervention
Time
= 5
days

Intervention
Time
= 5
days

Intervention
Time
= 5
days

(None)
(N=1000) β=6/5

(N=1000) ρ=6/5

(N=1000) δ=6/5

(N=1000) c=6/5
(N=1000) ρ=2/5

δ=2/5

ς=2/5

(N=1000) β=2/5

ρ=2/5

δ=2/5

(N=1000) ρ=3/5

δ=3/5

(N=1000)

13
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Intervention
Time
= 5
days

Intervention
Time
= 5
days

Intervention
Time
= 5
days

Intervention
Time
= 5
days

Intervention
Time
= 5
days

Intervention
Time
= 5
days

Intervention
Time
= 5
days

Intervention
Time
= 5
days

Detectable
Viral
Test,
>100
copies/mL
Undetectable 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Detectable 1000

(100%)
1000
(100%)

1000
(100%)

1000
(100%)

1000
(100%)

1000
(100%)

1000
(100%)

1000
(100%)

Modified
R0, -
Mean
(SD)

14.2 (0) 1.58
(0.860)

0.895
(0)

0.899
(0)

1.69
(1.23)

1.18
(0.214)

1.18
(0.206)

0.896
(0)

Median
[Min, Max]

14.2 [14.2,
14.2]

1.32 [0.959,
13.5]

0.895
[0.895,
0.895]

0.899
[0.899,
0.899]

1.32 [0.956,
13.3]

1.11 [0.925,
2.25]

1.11 [0.930,
2.22]

0.896
[0.896,
0.896]

Duration
of
Shed-
ding,
days
Mean
(SD)

10.5
(5.32)

11.1
(7.65)

8.57
(5.56)

4.79
(1.00)

8.05
(5.27)

6.20
(3.08)

6.83
(4.69)

5.37
(1.76)

Median
[Min, Max]

9.00 [3.34,
44.0]

9.00 [3.40,
53.8]

7.17 [3.46,
50.2]

4.49 [3.40,
16.0]

6.94 [3.40,
53.4]

5.37 [3.34,
38.0]

5.94 [3.46,
52.8]

4.94 [3.34,
26.2]

Target
Pool
Re-
main-
ing,
%
Mean
(SD)

0 (0) 1.99
(9.75)

2.13
(10.0)

2.16
(9.54)

1.84
(8.74)

2.38
(10.6)

2.42
(11.4)

1.53
(8.44)

Median
[Min, Max]

0 [0, 0] 0 [0, 88.8] 0 [0, 89.6] 0 [0, 92.4] 0 [0, 93.9] 0 [0, 98.2] 0 [0, 95.0] 0 [0, 95.5]

Intervention
Time
= 10
days

Intervention
Time
= 10
days

Intervention
Time
= 10
days

Intervention
Time
= 10
days

Intervention
Time
= 10
days

Intervention
Time
= 10
days

Intervention
Time
= 10
days

Intervention
Time
= 10
days

(None)
(N=1000) β=6/5

(N=1000) ρ=6/5

(N=1000) δ=6/5

(N=1000) c=6/5
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Intervention
Time
= 10
days

Intervention
Time
= 10
days

Intervention
Time
= 10
days

Intervention
Time
= 10
days

Intervention
Time
= 10
days

Intervention
Time
= 10
days

Intervention
Time
= 10
days

Intervention
Time
= 10
days

(N=1000) ρ=2/5

δ=2/5

ς=2/5

(N=1000) β=2/5

ρ=2/5

δ=2/5

(N=1000) ρ=3/5

δ=3/5

(N=1000)
Detectable
Viral
Test,
>100
copies/mL
Undetectable 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Detectable 1000

(100%)
1000
(100%)

1000
(100%)

1000
(100%)

1000
(100%)

1000
(100%)

1000
(100%)

1000
(100%)

Modified
R0, -
Mean
(SD)

14.2 (0) 1.57
(1.03)

0.895
(0)

0.899
(0)

1.57
(1.09)

1.19
(0.228)

1.17
(0.200)

0.896
(0)

Median
[Min, Max]

14.2 [14.2,
14.2]

1.29 [0.963,
13.3]

0.895
[0.895,
0.895]

0.899
[0.899,
0.899]

1.29 [0.946,
13.2]

1.12 [0.926,
2.25]

1.11 [0.930,
2.23]

0.896
[0.896,
0.896]

Duration
of
Shed-
ding,
days
Mean
(SD)

10.7
(5.71)

10.8
(5.45)

8.89
(3.63)

7.84
(1.49)

9.09
(3.49)

8.31
(2.15)

8.69
(2.38)

8.16
(1.80)

Median
[Min, Max]

9.54 [3.28,
52.2]

9.54 [3.40,
37.4]

8.79 [3.86,
32.0]

8.71 [3.86,
9.32]

8.84 [3.40,
39.8]

8.79 [3.28,
22.4]

8.94 [3.46,
21.2]

8.79 [3.40,
15.0]

Target
Pool
Re-
main-
ing,
%
Mean
(SD)

0 (0) 0 (0) 0.000800
(0.0173)

0.000800
(0.0161)

0.0101
(0.249)

0.0113
(0.283)

0.00150
(0.0353)

0.00170
(0.0401)

Median
[Min, Max]

0 [0, 0] 0 [0, 0] 0 [0, 0.500] 0 [0, 0.400] 0 [0, 7.40] 0 [0, 8.50] 0 [0, 1.10] 0 [0, 1.20]

Figures

Figure 1 Display of the SARS-CoV-2 viral load data pooled from 13 studies
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SARS-CoV-2 viral load versus time data from 13 published studies22-34. Lines represent the data for each
individual subject. Horizontal dashed lines show the lower limit of quantitation from each study.

Figure 2 Schematic of the target cell-limited model of viral infection

Hosted file

image2.emf available at https://authorea.com/users/355077/articles/478455-using-in-silico-

viral-kinetic-models-to-guide-therapeutic-strategies-during-a-pandemic-an-example-in-

sars-cov-2

Figure 3 Visual Predictive Check of the target cell-limited model for SARS-CoV-2
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Visual predictive check for SARS-CoV-2 viral kinetics in symptomatic infected subjects. Orange lines show
model-predicted percentiles (N = 500 replicate datasets) with black lines representing corresponding observed
percentiles. Censored data are shown in green. The 90th prediction interval is illustrated using dashed lines.

Figure 4 Effect of monotherapy and combination interventions on detectable viral load

Percent of subjects with detectable (>100 copies/mL) viral load.
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Figure 5 Effect of monotherapy and combination interventions on SARS-CoV-2 viral kinetics

Red, dashed line is the assumed LLOQ of 100 copies/mL.

Median viral load by treatment and intervention time.

Figure 6 Effect of interventions on the remaining target epithelial cell pool population

Median target cell population by treatment and intervention time.

Supplemental material

Supplemental Table 1 Viral load exposures summarized by disease severity

Infection severity N AUC (log10 copies × d/mL) VLmax (log10 copies/mL) Tmax (days)

Median [range] Median [range] Median [range]
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Infection severity N AUC (log10 copies × d/mL) VLmax (log10 copies/mL) Tmax (days)

Mild 38 78.9 [9.26 - 2050] 7.05 [3.69 - 10.6] 4.00 [-2.00 – 21.0]
Mild-to-Moderate 14 39.1 [25.8 - 1710] 4.74 [1.19 - 7.32] 4.74 [1.01 – 15.0]
Moderate 1 217 [217 - 217] 7.67 [7.67 - 7.67] 2.00 [2.00 – 2.00]
Severe 10 321 [65.1 - 20700] 5.62 [3.59 - 7.98] 5.00 [1.86 – 8.00]
Uncomplicated 13 95.3 [34.7 - 504] 5.63 [3.69 - 7.43] 7.00 [2.00 – 27.0]
Unknown 29 144 [37.1 - 661] 4.92 [2.78 - 9.66] 5.00 [-1.00 – 32.0]

Abbreviations: AUC, area under the viral load curve; Tmax, time of peak viral load; VLmax, peak viral load.

Supplemental Figure 1 Distribution of viral load exposures by disease severity

No apparent trend in viral exposures by infection severity in the current analysis population.

Supplemental Figure 2 Impact of infection severity on estimated between-subject variability
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