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Abstract

In this article, we studied certain coefficient bounds and bounds on the third Hankel determinant for the family of starlike and

convex functions of reciprocal order in the open unit disk D = {z ∈ C : |z| < 1}.

Introduction and Preliminaries

Let H denote the family of analytic functions in the open unit disk D = {z ∈ C : |z| < 1}, and A denote the
class of functions f ∈ H, such that

f(z) = z + a2z
2 + a3z

3 + . . . , z ∈ D.

(1)

We denote by S, the functions f in A that are univalent in D.

A function f ∈ A is called starlike, if f is univalent in D and f(D) is a starlike domain with respect to the
origin. Analytically, f ∈ S is called starlike, if and only if <{zf ′(z)/f(z)} > 0, z ∈ D. A function f ∈ S is
called convex, if and only if zf ′(z) ∈ S∗. The class of starlike functions and the class of convex functions
are denoted respectively by S∗ and K.

Let S∗ and K∗, denotes the class of functions f ∈ A, which are stalike of reciprocal order and convex
of reciprocal order, respectively. Analytically, f ∈ S is called starlike of reciprocal order, if and only if
<{f(z)/zf ′(z)} > 0, z ∈ D. A function f ∈ S is called convex of reciprocal order, if and only if zf ′(z) ∈ S∗,
and analytically this is represented by <{f ′(z)/(zf ′(z))′} > 0. Various authors have studied the classes S∗
and K∗ and given some remarkable results (see e.g. (M. Arif et al., 2014; 2013; 2008; 2011)).

For f ∈ A of the form (1), Φλ(f) := a3 − λa2
2 is the classical Fekete-Szegö functional. A classical problem

settled by Fekete and Szegö (1933) is to find for each λ ∈ [0, 1] the maximum value of |Φλ(f)| over the
function f ∈ S, and they proved that

max
f∈S
|Φλ(f)| = {

1
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1 + 2 exp{−2λ/(1− λ)}, λ ∈ [0, 1),
1, λ = 1.

The problem of calculating the maximum of |Φλ(f)| for various subfamilies of A, as well as λ being an
arbitrary real or complex number, was considered by many authors (see e.g. (1992; 2011; 1969; 1987; 1993)).

The Hankel determinant of Taylor coefficients for functions f ∈ A of the form (1), is denoted by Hq,n(f),
and is defined by

Hq,n(f) := |

an an+1 · · · an+q−1

an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2(q−1)

,

(2)

where a1 = 1; n, q ∈ N = {1, 2, . . .}. Several researchers including Noonan and Thomas (1976), Pommerenke
(1966), Hayman (1968), Ehrenborg (2000), Noor (1992) and many more have studied the Hankel determinant
and have given some remarkable results, which are useful, for example, in showing that a function of bounded
characteristic in D.

For f ∈ A of the form (1), H2,1(f) := Φ1(f) = a3 − a2
2 is the Fekete-Szegö functional. Furthermore, the

upper bound of the second Hankel determinant H2,2(f) for various subclasses of A has been studied by many
authors (see e.g. (2012; 2013; 2006; Article 281, 2013)). The third Hankel determinant H3,1(f) is defined
by

H3,1(f) :=

a1 a2 a3

a2 a3 a4

a3 a4 a5

= a3(a2a4 − a2
3)− a4(a4 − a2a3) + a5(a3 − a2

2).

(3)

Recently, the author has studied the bounds on |H3,1(f)| for certain classes of analytic functions (see (2015;
2016)). In the current article, the upper bound of the initial coefficients and the bounds on |H3,1(f)| is being
studied for the functions belongs to the classes S∗ and K∗ as stated above. In our study we shall need the
class P of Carathéodory functions (1983), as defined below.

Let P denotes, the class of analytic functions in D with <(p(z)) > 0 of the form

p(z) = 1 + c1z + c2z
2 + . . . , z ∈ D.

(4)

2
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It is well known (1983) that for the function p ∈ P is of the form (4), |cn| ≤ 2, for all n ≥ 1. This inequality
is sharp and the equality holds for the function ϕ(z) = (1 + z)/(1− z).

The power series (4) converges in D to a function in P, if and only if the Toeplitz determinants

Tn(p) = |

p(z) =

m∑
ν=1

ρν
1 + ενz

1− ενz
, m ≥ 1,

2 c1 c2 · · · cn
c−1 2 c1 · · · cn−1

c−2 c−1 2 · · · cn−2

...
...

...
. . .

...
c−n c−n+1 c−n+2 · · · 2

, n ∈ N

and c−n = cn, are all nonnegative. The only exception is when p(z) has the form

where ρν > 0, |εν | = 1, and εk 6= εl if k 6= l; k, l = 1, 2, · · · ,m; we have then Tn(p) > 0 for n < m− 1 and
Tn(p) = 0 for n ≥ m. This necessary and sufficient condition is due to Carathéodory and Toeplitz and can
be found in (1958). In particular, for n = 2, we have

T2(p) = |

2 c1 c2
c1 2 c1
c2 c1 2

= 8 + 2<{c21c2} − 2|c2|2 − 4|c1|2 ≥ 0,

which is equivalent to

2c2 = c21 + x(4− c21)

(5)

for some x with |x| ≤ 1. Similarly, if

T3(p) = |

2 c1 c2 c3
c1 2 c1 c2
c2 c1 2 c1
c3 c2 c1 2

,

3



P
os

te
d

on
A

u
th

or
ea

10
S
ep

20
20

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

96
99

01
.1

30
38

17
6

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

then T3(p) ≥ 0 is equivalent to

|(4c3 − 4c1c2 + c31)(4− c21) + c1(2c2 − c21)2| ≤ 2(4− c21)2 − 2|(2c2 − c21)|2.

(6)

Solving (6) with the help of (5), we get

4c3 = c31 + 2c1x(4− c21)− c1x2(4− c21) + 2(4− c21)(1− |x|2)z,

(7)

for some x and z with |x| ≤ 1 and |z| ≤ 1. Furthermore, the following well-known results are being useful
to obtain our main results.
Lemma 1. (1969) If p ∈ P, then for any complex number ν,

|c2 − νc21| ≤ 2 max{1, |2ν − 1|},

and equality holds for the functions given by

ψ(z) =
1 + z2

1− z2
and ϕ(z) =

1 + z

1− z
.

Lemma 2. (1969) Let the function p given by (4) is in the class P. Then for all n and s (1 ≤ s < n), we
have |cn − cscn−s| ≤ 2.
Lemma 3. (1958) (See also (1982)) If p ∈ P, then the following expressions are all bounded by 2, and are
all sharp:

1. |c21 − c2|,

2. |c3 − 2c1c3 + c3|,

3. |c41 + 2c1c3 + c22 − 3c21c2 − c4|,

4. |c51 + 3c1c
2
2 + 3c21c3 − 4c31c2 − 2c1c4 − 2c2c3 + c5|

5. |c61 + 6c21c
2
2 + 4c31c3 + 2c1c5 + 2c2c4 + c23 − c32 − 5c41c2 − 3c21c4 − 6c1c2c3 − c6|.

The following inequalities can also be obtained in the proof of a result in (1982)

a. |2c21 − c2| ≤ 6

b. | − 6c31 + 7c1c2 − 2c3| ≤ 24

c. |24c41 − 46c21c2 + 22c1c3 + 7c22 − 6c4| ≤ 120

d. | − 120c51 + 96c4c1 + 50c2c3 + 326c31c2 − 202c21c3 − 127c1c
2
2 − 24c5| ≤ 720.

4
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Lemma 4. (2015) Let p ∈ P. Then for all n,m ∈ N,

|µcncm − cm+n| ≤ {

2, µ ∈ [0, 1],
2 |2µ− 1|, elsewhere.

If 0 < µ < 1, then the inequality is sharp for the function p(z) = (1 + zm+n)/(1 − zm+n). In other cases,
the inequality is sharp for the function p(z) = (1 + z)/(1− z).

H3,1(f) for the function belongs to the class S∗
The following is our first result in this section.
Theorem 0.1. Let the function f given by (1) is in the class S∗. Then we have |an| ≤ n, n = 2, 3, 4. This
result is sharp and equality is attained for the function e1(z) = z(1 + z)−2.

Proof. Let us consider f ∈ S∗. Then by the definition, we have

f(z) = zf ′(z) p(z),

(1)

where p ∈ P is of the form (4). Substituting the series expansion of f(z), f ′(z) and p(z) in (1), and equating
the coefficients, we get

an =
1

1− n
(cn−1 + 2a2cn−2 + 3a3cn−3 + · · ·+ (n− 1)an−1c1) ,

which in particular gives us

—a3| =
1

4

∣∣3c21 − x(4− c21)
∣∣

—a4| =
1

12

∣∣−6c31 + (4− c21){5c1x+ c1x
2 − 2(1− |x|2)z}

∣∣ .

5
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a2 = −c1, a3 =
1

2
(2c21 − c2), a4 =

1

6
(7c1c2 − 2c3 − 6c31),

and

a5 =
1

24
(24c41 − 46c21c2 + 20c1c3 + 9c22 − 6c4).

Bounds for |a2| is obvious as |c1| ≤ 2. Bounds for |a3| and |a4| can be directly obtained from results
mentioned in a and b of Lemma 3. Furthermore, by using (5) and (7) in (??), for some x and z such that
|x| ≤ 1 and |z| ≤ 1, we obtain

and

To show the sharpness, by setting c1 = 2 and x = 1 in (5) and (7), we obtain c2 = c3 = 2. Using these values
in the above relations, we find that the result is sharp and the extremal function would be e1(z) = z(1+z)−2.
This completes the proof of the theorem.

Theorem 0.2. Let the function f given by (1) is in the class S∗. Then we have |a5| ≤ 39/7.

Proof. If f ∈ S∗, then by using the value of a5 from (??), we obtain

—a5| = 1
96

∣∣27c41 + (4− c21){−46c21x− 23c21x
2 + 28c1(1− |x|2)z + 36x2} − 24(c4 − c1c3)

∣∣ .

—a5| ≤ 1
96

[
27c4 + (4− c2){46c2µ+ 23c2µ2 + 28c(1− µ2) + 36µ2}+ 48

]
:= D(c, µ).

∂D
∂µ= 1

48 [(4−c2){23c2(1+µ)+4µ(9−7c)}].

maxµ∈[0,1]D(c, µ) = D(c, 1) = 1
16 (−7c4 + 40c2 + 32).

6
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|a5| =
1

24

∣∣24c41 − 46c21c2 + 14c1c3 + 9c22 − 6(c4 − c1c3)
∣∣ .

By using (5) and (7), for some x and z such that |x| ≤ 1 and |z| ≤ 1, we get

If p(z) ∈ P, then p(eiαz) ∈ P. We can always select a real α in p(eiαz) so that cne
iαn ≥ 0. Hence we may

suppose that cn ≥ 0 (n ∈ N). Furthermore, the power series (4) converges in D to a function in P, if and
only if the Toeplitz determinants Tn(p) and c−n = cn, are all nonnegative, i.e. c1 is real, c1 ≥ 0 and |c1| ≤ 2.
Therefore, letting c1 = c, we may assume without restriction that c ∈ [0, 2]. Hence, applying the triangle
inequality with µ = |x|, and applying Lemma 2, we obtain

Now we need to maximize D(c, µ) on the region Ω = {(c, µ) : 0 ≤ c ≤ 2 and 0 ≤ µ ≤ 1}. For this, first we
estimate

For 0 < µ < 1, and for fixed c with 0 < c < 2, we observe that ∂D
∂µ > 0. Therefore, D(c, µ) becomes an

increasing function of µ, and hence it cannot have a maximum value at any point in the interior of the closed
region Ω. Moreover, for a fixed c ∈ [0, 2], we have

Therefore, by the second derivative test we can see that D(c, 1) has maximum value at c, where c2 = 20/7.

∂D
∂c= 1

48 [54c3+23cµ(4−c2)(2+µ)−c(46c2µ+23c2µ2+36µ2)+14(1−µ2)(4−3c2)].

Furthermore, if we look for the critical points on the boundary of Ω, we estimate

Now we look for the critical point of D(c, µ) which must satisfy ∂D
∂µ = 0 and ∂D

∂c = 0, and one can check

easily that the points (c, µ) satisfying such conditions are not interior point of Ω. So the maximum cannot
attain in the interior of Ω. Now to see on the boundary, taking the boundary line L1 = {(2, µ) : 0 ≤ µ ≤ 1},
we have D(2, µ) = 5 which is a constant. Along L2 = {(0, µ) : 0 ≤ µ ≤ 1}, we have D(0, µ) = (1 + 3µ2)/2,
which gives the critical point (0, 0). Along L3 = {(c, 1) : 0 ≤ c ≤ 2}, we have D(c, 1) = (−7c4 +40c2 +32)/16,
which gives the critical points (0, 1) and (

√
20/7, 1). Along L4 = {(c, 0) : 0 ≤ c ≤ 2}, we have D(c, 0) =

(27c4 − 28c3 + 112c+ 48)/96, which gives no critical points in Ω. Observe that

D(0, 0) < D(0, 1) < D(2, µ) < D(
√

20/7, 1).

Hence
max

Ω
D(c, µ) = D(

√
20/7, 1) = 39/7.

This completes the proof.

Remark. For f ∈ S∗ of the form (1), Arif et al. (M. Arif et al., 2014) obtained that

|a2| ≤ 2 and |an| ≤
2

n− 1

n−1∏
k=2

(
3k − 1

k − 1

)
(n = 3, 4, 5, · · · ).

Here we observe that, our result obtained in Theorem 0.1 and Theorem 0.2 provides the improvement in the
upper bound of the initial coefficients an, n = 3, 4, 5.

7
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Theorem 0.3. Let the function f given by (1) is in the class S∗. Then we have

|a3 − a2
2| ≤ 1, |a2a3 − a4| ≤ 2 and |a2a4 − a2

3| ≤ 1.

(3)

These inequalities in (3) are sharp and the extremal function is e1(z) = z(1 + z)−2.

—a3 − a2
2| =

∣∣−c2
2

∣∣ , |a2a3 − a4| = 1
3 |−2c1c2 + c3|

—a2a4 − a2
3| = 1

24

∣∣−4c21c2 + 8c1c3 − 6c22
∣∣ .

Proof. If f ∈ S∗, then the values of a2, a3 and a4 are given in (??). Using these values, we obtain

and

Clearly, it follows that |a3 − a2
2| = |c2/2| ≤ 1.

—a2a3 − a4| ≤ 1
3 |2c1c2 − c3| ≤

1
3 [2 |2 · 2− 1|] = 2.

Now, by using Lemma 4, we obtain

Furthermore, by using (5) and (7), for some x and z such that |x| ≤ 1 and |z| ≤ 1, we get

—a2a4 − a2
3| ≤

1

48

[
(4− c2){8c+ (c2 − 8c+ 12)µ2 + 2c2µ}+ 3c4

]
:= F3(c, µ).

|a2a4 − a2
3| =

1

48

∣∣(4− c21)[−2c21x− 4c21x
2 − 3x2(4− c21) + 8c1(1− |x|2)z]− 3c41

∣∣ .
(4)

8
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As |c1| ≤ 2, letting c1 = c, we may assume without restriction that c ∈ [0, 2]. Thus, applying the triangle
inequality with µ = |x|, we obtain

Next, by differentiating F3 with respect to µ, we observe that, F3 is an increasing function of µ on [0, 1].
Thus it attains the maximum value at µ = 1. Again F3(c, 1) = 1, is a constant. Hence

max
Ω

F3(c, µ) = F3(c, 1) = 1.

To get the sharpness, by setting c1 = 2 and x = 1 in (5) and (7), we obtain c2 = c3 = 2. Using these values,
we get the results in (1) are sharp and the extremal function would be e1(z) = z(1 + z)−2. This completes
the proof of the theorem.

Theorem 0.4. Let the function f given by (1) is in the class S∗. Then we have

|H3,1(f)| ≤ 116

7
.

—H3,1(f)| ≤ |a3||a2a4 − a2
3|+ |a4||a2a3 − a4|+ |a5||a3 − a2

2| ≤ 3 + 8 + 39
7 = 116

7 ,

Proof. Using the bounds obtained above in Theorem 0.1–Theorem 0.3 and applying the triangle inequality,
we estimate

and this completes the proof.

H3,1(f) for the function belongs to the class K∗
Theorem 0.5. Let the function f given by (1) is in the class K∗. Then we have |an| ≤ 1, n = 2, 3, 4.

Proof. Let f ∈ K∗, then by the hypothesis it is clear that f(z) ∈ K∗ if and only if zf ′(z) ∈ S∗. Thus
replacing an by nan in (??), we obtain

a2 = −1

2
c1, a3 =

1

6
(2c21 − c2), a4 =

1

24
(7c1c2 − 2c3 − 6c31),

and

a5 =
1

120
(24c41 − 46c21c2 + 20c1c3 + 9c22 − 6c4).
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(1)

Bounds for |a2| is obvious as |c1| ≤ 2. Bounds for |a3| and |a4| can be directly obtained from results
mentioned in a and b of Lemma 3. This completes the proof of the theorem.

Theorem 0.6. Let the function f given by (1) is in the class K∗. Then we have |a5| ≤ 39/35.

Proof. Let f ∈ K∗, then using a5 from (1), we can write

—a5| = 1
480

∣∣27c41 + (4− c21){−46c21x− 23c21x
2 + 28c1(1− |x|2)z + 36x2} − 24(c4 − c1c3)

∣∣ .

—a5| ≤ 1
480

[
27c4 + (4− c2){46c2µ+ 23c2µ2 + 28c(1− µ2) + 36µ2}+ 48

]
:= Z(c, µ).

∂Z
∂µ= 1

480 [(4−c2){23c2(1+µ)+4µ(9−7c)}]>0 for (0≤µ≤1).

|a5| =
1

120

∣∣24c41 − 46c21c2 + 14c1c3 + 9c22 − 6(c4 − c1c3)
∣∣ .

By using the relations (5) and (7), for some x and z such that |x| ≤ 1 and |z| ≤ 1, we estimate

As |c1| ≤ 2, letting c1 = c, we may assume without restriction that c ∈ [0, 2]. Thus applying the triangle
inequality and Lemma 2 with µ = |x|, we obtain

Differentiating Z(c, µ) with respect to µ, we get

Note that, Z is an increasing function of µ on [0, 1]. Thus it attains maximum value at µ = 1. Again,
Z(c, 1) = (−21c4 +120c2 +96)/240, is an increasing function of c on [0,

√
20/7]. Thus (

√
20/7, 1) is a critical

point of Z.
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Again, if we look for the critical points on the boundary of Ω, as we have done earlier, we get (0, 0), (0, 1)
and (2, µ), 0 ≤ µ ≤ 1 are the other critical points in Ω, and for these points we have

Z(0, 0) < Z(0, 1) < Z(2, µ) < Z(
√

20/7, 1).

Hence
max

Ω
Z(c, µ) = Z(

√
20/7, 1) = 39/35.

This completes the proof of the theorem.

Remark. For f ∈ K∗ of the form (1), Arif et al. (M. Arif et al., 2014) obtained that

|a2| ≤ 1 and |an| ≤
2

n(n− 1)

n−1∏
k=2

(
3k − 1

k − 1

)
(n = 3, 4, 5, · · · ).

Here we observe that, our result obtained in Theorem 0.5 and Theorem 0.6 provides the improvement in the
upper bound of the initial coefficients an, n = 3, 4, 5.
Theorem 0.7. Let the function f given by (1) is in the class K∗. Then we have

|a3 − a2
2| ≤

1

3
, |a2a3 − a4| ≤

4

3
and |a2a4 − a2

3| ≤
1

8
.

(2)

The first inequality of (2) is sharp and equality is attended for the function e3(z) = z + 1
3z

3.

—a3 − a2
2| = 1

12

∣∣c21 − 2c2
∣∣ , |a2a3 − a4| = 1

24

∣∣2c31 − 5c1c2 + 2c3
∣∣ ,

—a2a4 − a2
3| = 1

144

∣∣−5c21c2 + 6c1c3 + 2c41 − 4c22
∣∣ .

—a3 − a2
2| = 1

12

∣∣c21 − 2c2
∣∣ = 1

6

∣∣c2 − 1
2c

2
1

∣∣ ≤ 1
6 · 2 max{1, |2(1/2)− 1|} = 1

3 .
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Proof. If f ∈ K∗, then by using the values of a2, a3 and a4 which are given in (1), we obtain

and

By using Lemma 1 we obtain

Next by using Lemma 4, we obtain

|a2a3 − a4| =
1

24

∣∣2c31 − 5c1c2 + 2c3
∣∣ ≤ 1

24

[
2|c1|3 + 2

∣∣∣∣52c1c2 − c3
∣∣∣∣]

≤ 1

24
[2 · 8 + 2 · 2|2(5/2)− 1|] =

4

3
.

Now, by using the relations (5) and (7), we obtain

|a2a4 − a2
3| =

1

288

∣∣(4− c21){−3c21x− (4− c21)2x2 + 6c1(1− |x|2)z − 3c21x
2}
∣∣ .

(3)

As |c1| ≤ 2, letting c1 = c, we can assume without restriction that c ∈ [0, 2]. Thus applying the triangle
inequality with µ = |x|, we get

∂G3
∂µ= 1

288 (4−c2){3c2+(8−6c+c2)2µ}>0 for 0≤µ≤1.

max0≤µ≤1G3(c, µ) = G3(c, 1) = (8 + 2c2 − c4)/72 = G3(c).

|a2a4 − a2
3| ≤

1

288

[
(4− c2){6c+ 3c2µ+ (8− 6c+ c2)µ2}

]
:= G3(c, µ).

(4)

Furthermore, differentiating G3(c, µ) with respect to µ, we get

Hence G3(c, µ) is an increasing function of µ on [0, 1]. Thus, it attains maximum value at µ = 1. Let

12
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Again note that, G3(c) is an increasing function on [0, 1], so G3(c) attend maximum value at c = 1. Hence
G3(c, µ) have maximum value at the point (1, 1), that is

max
Ω

G3(c, µ) = G3(1, 1) = 1/8.

This completes the proof of the theorem.

—H3,1(f)| ≤ 1537
840 .

Theorem 0.8. Let the function f given by (1) is in the class K∗. Then we have

—H3,1(f)| ≤ |a3||a2a4 − a2
3|+ |a4||a2a3 − a4|+ |a5||a3 − a2

2| ≤ 1
8 + 4

3 + 39
105 = 1537

840 ,

Proof. Using Theorem 0.5–Theorem 0.7 and applying the triangle inequality, we obtain that

and this completes the proof.

References

Article Id 989640, 1–6. (2014).

(2013).

(2008).

(2011).

(1933).

(1992).

(2011).

(1969).

(1987).

(1993).

(1976).

(1966).

13



P
os

te
d

on
A

u
th

or
ea

10
S
ep

20
20

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

96
99

01
.1

30
38

17
6

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

(1968).

(2000).

(1992).

(2012).

(2013).

(2006).

(2013).

(2015).

(2016).

(1983).

(1958).

(1969).

(1982).

(2015).

14


