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Abstract

Background: Atherosclerotic cardiovascular disease (CVD) is severe and early-stage detection is crucial. Elevated arterial

stiffness observed in childhood atherosclerosis is associated with CVD. Stiffness is an efficient marker of CVD in hypertensives.

Assessment of stiffness includes waveform analysis and image-based techniques. Researchers observed several challenges: real-

time application, accuracy, operator variability, image quality, scanning procedure, instrument variability and deficiency of

standardized procedure in the assessment. Methods: We searched PubMed, Embase and Cochrane online library from inception

up to July 2020. Multiple articles on stiffness, pulse wave velocity, assessment and deep learning (DL)-based methods were

analysed. Above all, a DL-based technique for assessment of stiffness from cine-loop is proposed. The method includes region

of interest (ROI) localisation in multiple frames, segmentation of lumen and parameter estimation. Results: Compared to

conventional methods DL provide improved result in lumen diameter and intima-media thickness (IMT) measurements. Using

convolutional neural network (CNN), IMT error was 0.08 mm. Further, error using extreme learning machine-autoencoder was

5.79±34.42 \mum. Furthermore, Jaccard index and Dice similarity in fully convolution neural network (FCN) manifested 0.94

and 0.97 for lumen segmentation respectively. Conclusion: This paper focuses on the association of stiffness and atherosclerosis

leading to CVD. Success of image-based stiffness estimation depends on the visibility and orientation of arteries, operator

experience, intensity variation, shadowing, artefacts, and noise. Traditional methods include transformations to compensate

for these challenges. The success of DL-based techniques in segmentation and localisation inspired application in stiffness

measurement. DL is used to estimate stiffness from cine-loop.

Introduction

Each year CVD accounted for 17.9 million deaths, worldwide [4]. There was a surge of ˜25% in CVD
mortalities from 2000 to 2016 and the majority (85%) were either due to ischemic heart disease or stroke.
Low-and-middle-income countries with sociodemographic index <0.75 [5] reported higher CVD death rate
[6,7]. Further, years of life lost (YLL) increased in CVD while global trends in total YLL decreased in other
diseases [8]. The all-age disability-adjusted life-years (DALY) in CVD soared 6.5% while age-standardized
DALY declined 16.9% from 2005 to 2015 [9]. Furthermore, financial stress raised incident CVD risk and
all-cause mortality in destitute women and single-men [10,11]. The risk is more pronounced in diabetes [12]
and hypertension [13]. To summarize, CVDs deteriorates the quality of life both health-wise and financially;
it should, therefore, be identified at an earlier stage and treated [5].

Atherosclerosis, the process of narrowing arterial walls, is the underlying reason for CVD [14,15]. Expressed
as a thickening on arterial walls, atherosclerosis leads to macrophage accumulation, necrotic core formation,
fibrous-cap, and plaque buildup [16]. Plaque accumulates, perhaps, as a result of an inflammatory response
owing to the progress in atherosclerosis [16]. Several complications of atherosclerosis; for example, plaque
rupture, stenoses, obstruction to blood flow and embolism, lead to severe conditions in CVD [17]. Athe-
rosclerosis appearing in early childhood and young are linked to CVD and remain silent (asymptomatic)
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for several years [18–20]. However, early-stage detection can prevent disease progression by suitable lifestyle
modification and medical intervention [17]. Several studies have observed in the literature that arterial stiff-
ness (or stiffness) and carotid intima-media thickness (IMT) are indicators of atherosclerosis from inception
[21–23].

Arterial stiffness describe the rigidity of arterial walls (or loss of elasticity); is age-dependent [21], and
augment as atherosclerosis progress [24–27]. Several pathological changes involved in the development of
atherosclerosis are instigated in stiffness and both often coexist. Note that mature adults with depression
had augmented IMT and stiffness values [28]. Further, arterial stiffness leads to elevated blood pressure
[29–32] and in hypertensives, augmented stiffness indicate atherosclerotic CVD [33]. Importantly, elevated
stiffness is associated with atherosclerotic cardiovascular events (CVE) [34], stroke [23,35], diastolic heart
failure [33], hypertension [29,30,36], diabetes [37,38], obesity [39–41] and renal disease [42,43].

Several indices, pulse pressure (PP), compliance (C), distensibility (D), pulse wave velocity (PWV), Young’s
modulus, augmented index (AIx), β-stiffness and Cardio-ankle vascular index (CAVI) are applied for the
quantification of arterial stiffness. PP is the difference between systolic and diastolic pressure. Compliance
is often described as the ratio of change in volume to change in pressure (C = Δ῞

greekP), and distensibility is viewed as the compliance per original volume (D = C
V ) [44]. A brief description

of various stiffness indices used in clinical studies is provided in Appendix A .

PWV, the most significant measure owing to its association with CVE, is defined as the velocity of pressure,
diameter or flow-velocity wave. Often significant variation in elasticity and impedance is observed in arteries
from proximal to peripheral [45]. This variation leads to amplification, reflection and change in wave shape
along the vasculature attributed to composition, distending pressure, and muscle-tone of the arterial wall [46]
[45][47] [48]. Further, the wave shape is dependent on age group [44,49,50], ageing [51,52], physical fitness
[53,54], insulin produced [55,56], heart rate, body demographics and gender [57–59]. In short, pulse wave is
indicative of hypertension [60], diabetes [56,61,62], aortic disintegration and heart failure [57,63]. From this
point of perspective, the assessment of PWV is a promising approach for predicting atherosclerotic CVD.

Assessment of PWV includes invasive and non-invasive techniques. However, non-invasive techniques are
popular owing to its clinical application. Clinically, PWV is estimated as the ratio of the distance between
two points in distal arteries and time taken by the wave to cover this distance [64]. Based on the methodology
used, non-invasive assessment techniques are either “two-site” (regional) or “one-site” (local). The two-site
method includes traditional “foot-by-foot” method [64] while the one-site method requires multiple variables
for assessment. Studies observed that branchial-ankle PWV (ba-PWV) and carotid-femoral PWV (cfPWV)
are highly correlated with significant methods used in the assessment of PWV [65]. Acceptance of any
particular method for clinical purposes was debated earlier [46,65]. However, cfPWV is considered “gold
standard” due to its strong association with CVD [37,43] and recommendation by various committees [66].
Several challenges owing to the unstandardised nature of assessment are discussed in a later section. Further,
80% of the measured value of cfPWV and 10 m/s cutoff value is accepted clinically [67]. The one-site method
includes image-based techniques that involve localisation and segmentation of the lumen region. Performance
of these techniques depends on the appearance of the artery in a frame, operator experience, and equipment
variability. However, machine learning algorithms proved efficient in localisation and segmentation of lumen
and intima-media complex (IMC).

Machine learning systems extract patterns from raw-data and perform specific tasks. These systems are
supervised or unsupervised based on the availability of labelled data [68]. During training, data is presented
to the system and it produces an output vector based primarily on input and weights. An objective function
measures error between the output vector and the target vector (desired output) [69]. The system then
updates the weights to minimize this error [69]. This technique is repeated for small sets of data until
the mean of the objective function stops decreasing [69]. Further, test-data is used to assess performance
on a generalized data and validation is done for optimization [69]. The inspiration behind the application
of DL framework is to obtain human-like perfectness in tasks like segmentation, object identification and
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classification. The application of DL in various types of applications, such as lumen characterisation, tumour
segmentation and cell detection, has been a motivation for its application on the carotid artery [70].

Major deep learning architectures include the recurrent neural networks (RNN) [69], convolutional neural
network (CNN) [69], deep belief networks (DBN) [70] and autoencoders [71,72]. RNN is a network wherein,
the output of one layer is connected to the next layer. Partial outputs are applied as feedback along with
the next input [69]. RNN is applied in speech and handwriting recognition. The key disadvantage is the
problem of vanishing gradients observed in the backpropagation algorithm. Likewise, CNN is applied in
object identification and classification. The hidden layer in CNN includes stacks of convolution layers, non-
linear activation layers and pooling layers [69]. Moving from the input layer, the first few layers extract
low-level features (edges) and “deeper” layers extract high-level features specific to the object [69]. This
network is often trained using backward propagation [69]. Further, DBNs are applied in image and video
recognition tasks. DBN utilizes unsupervised learning, based on the restricted Boltzmann machine (RBM)
[70]. RBM is a two-layered network wherein the first (input) is called the visible layer and the second is
called the hidden layer. In DBN, several RBMs are stacked: hidden layer of one RBM is connected to the
visible layer of second RBM and so on. Each RBM is independently trained using unsupervised learning and
backpropagation network is applied at the end layers [70]. Likewise, autoencoders also learn features from
raw data in an unsupervised manner. This method offers efficient dimensionality reduction and denoising
capability. Herein, unlabeled inputs are represented (encoded) using the most important features and the
original image (input image) is reconstructed from the encoded image. Different types of autoencoders
in practice are convolutional autoencoder, deep autoencoder and contractive encoder. The most important
challenge faced by DL-based systems is the limited dataset. However, success using transfer learning methods
have motivated research in using other methods, such as reinforced learning and autoencoders. Even so, DL
architectures suffer due to overfitting and underfitting. Overfitting occurs when DL architecture gets trained
to features more than what is required and underfitting is when too little data is provided, and the system
is not modelled accurately. There are several methods that are effectively applied to surmount underfitting
and overfitting.

This review summarizes state-of-the-art techniques used for the assessment of arterial stiffness. The article
is organized into five main sections: Section 2. will begin by describing conventional techniques of PWV
assessment and Section 3. will provide an insight into image-based techniques. Besides, Section 4. will
investigate the application of DL-based systems in clinical diagnosis and the last section will discuss stiffness
computation using DL-framework.

2. Search methodology

A systemic search on Google scholar, Medline, Science Direct and Cochrane database resulted in 58042
studies. The search terms used were “Arterial stiffness”, “Pulse wave velocity”, “cardiovascular risk assess-
ment”, “intima-media thickness”, “lumen diameter”, “deep learning ” and “convolutional neural network”.
Figure 1. shows the trend on articles from 2000 to 2021 for arterial stiffness. Further, our team focused on
peer-reviewed journals and filtered the list for stiffness measurement using image-based techniques. Major
research journals were included while other studies were categorized and 145 studies were finalized for this
review.

3. Conventional techniques in PWV assessment

Waveform-based techniques applied flow velocity, pressure or diameter waves for PWV assessment [73].
Techniques utilized either two-site (Figure 2.) or one-site method for PWV estimation [44]. The former
method includes evaluation of flow velocity at two distinct sites separated by a measurable distance and the
latter applied either Moens-Korteweg (Eq. 1) [74–77] or Bramwell-Hill equation (Eq. 2) [78].

PWV=
√

Ym.h
2.r.ρ

3
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where Ym is Young’s modulus, h is the IMT, r is the lumen radius and ρ is the blood density.

PWV=
√

∆P
∆῞.ρ =

√
1
ρΔ

where Δ? is the pressure change, ΔV is the volume change and D is the distensibility coefficient.

Herein, simultaneous measurement of two variables is essential for example, pressure and flow velocity
(Doppler) or pressure and diameter (wall tracking). These are further investigated in Section 3. of this
paper. A significant two-site method such as velocity-encoded MRI includes transit time [73], flow-area
[79], and cross-correlation techniques [80]. In this method, flow pulses are measured at dual sites over
multiple cycles and ensemble averaging are employed for accurate results. Further, specific devices employed
pressure/displacement waves for PWV estimation; for example Complior [81], SphygmoCor [82,83], PulsePen
[84]. However, these devices use manual external tape measurements and therefore, error prone.

Additionally, consumption of meals [85], caffeine [86], and/or cigarette [87] influenced arterial stiffness.

4. Image-based methods of stiffness computation

Image-based stiffness computation involves three stages: 1) segmentation of the lumen and IMC 2) estimation
of lumen diameter (LD) and IMT, and 3) computation of Young’s modulus (or β-stiffness and Peterson’s
modulus). Algorithms used for segmentation of lumen and IMC are of two types: boundary-based and
region-based. Boundary-based (edge-based) approaches include methods that applied Hough transform [88],
snake algorithm [89], active contours [90], and level-sets [91]. However, information about the intensity and
curvature of the artery is required before initialisation of contour and energy functions [92]. Region-based
methods involve split-and-merge algorithms that include watershed [93], region splitting, region merging [94]
and graph-based approaches [95]. Concisely, based on operator intervention splitting, these algorithms are
either semi-automatic or automatic. Moreover, a few techniques process multi-frame while others process a
single frame. After segmentation of the ROI, estimation of LD and IMT is done using distance measurement
techniques such as mean-absolute distance or polyline distance. The final stage of stiffness computation
includes the application of Eq. 1 or Eq. 2.

4. 1 Segmentation of lumen region and assessment of lumen diameter

Lumen is the area between the lumen-intima (LI) boundary of the near-wall (LI-near) and far-wall (LI-
far). The distance between LI-near and LI-far is defined as lumen diameter (LD) whereas the gap between
intima and media is labelled as IMT. Figure 3. shows a longitudinal segment of the common carotid artery
(CCA) and the delineation of LI and MA boundaries. Characterization of the lumen is primary for the
assessment of LD and IMT. However, lumen recognition is challenging because of variability in dataset,
plaque composition-and-morphology, arterial structure, presence of stenosis, jugular vein and importantly
the imaging standards [96,97]. Algorithms applied several theories to overcome these challenges. The most

prominent assumptions are that (a) the brightest boundary corresponds to media-adventitia (MA) edge,
and (b) the arterial blood flow is laminar [88]. These theories aid in identifying the edges and ROI. In
previous studies of Sifakis et al. [98], statistical estimates were used for automatic recognition of lumen,
both in multi-frame and single frame. The success rate was 99% and the algorithm was effective even in the
presence of plaques and moderate amounts of “mimicking arteries” [98]. Surprisingly, the algorithm failed
in images with poor far-wall representation and sharp arterial curvature [98]. Over the years, an enormous
amount of work was done on automated lumen characterization. Araki et al. [88] used automated ROI
detection, spectral analysis and K-means classifier for lumen characterization. The algorithm performed
well (Dice similarity ˜1) but was susceptible to noise, motion artefacts and presence of plaque. Molinari
et al. [99] suggested a novel approach for seed point selection followed by curve fitting and classification.
The method was successful in 92% cases except in the presence of backscattering and plaque [99]. Most
algorithms in the past preferred straight vessels in the frame for better segmentation. Kumar et al. [100]

4
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applied spatial transformation for pre-processing (straightening curved vessels) and scale-space for boundary
segmentation. Dice similarity and Jaccard index were 94.2, 89.1and 93.9, 88.6 respectively on two different
sets of GT. Carvalho et al. [95] used contrast-enhanced ultrasound along with the B-mode ultrasound to
overcome motion artefacts and noise. Further, joint-histogram and graph-based methods were employed for
segmentation. The authors informed segmentation error as the average root mean square error (RMSE) of
112±73 μm compared with the expert recording on two datasets [95]. Rocha et al. [101] used a linear-Bayes
classifier along with dynamic programming (DP) for segmentation on 199 images. The authors reported a
success rate of 99.5% and robustness to shadowing, scanner variability and plaque irregularity [101]. Further,
reviews on a comparison between different segmentation approaches are presented elsewhere [102]. Table I.
summarizes benchmarking studies on lumen segmentation and LD assessment.

Table I. Benchmarking studies on lumen segmentation and LD assessment.

Study Method Dataset & size Measures Findings

Sifakis et al. [98] Vertical intensity
profile based signal
selection, segment
filtering, Statistical
methods for lumen
centre point
identification

N = 2149 (100) SR =100% Mean
FC = 95.76±9.61%
Error = 0.43±0.26
mm

CCA recognition in:
poor image quality,
presence of plaque,
jugular vein,
intensity variations
and moderate
arterial curvature

Araki et al. [88] Spectral analysis for
peak detection,
K-means classifier

N = 404 (202) DS ˜1, JI=92.1
Mann-Whitney U=
63,356.5 Mean
error, PoM
Cross-correlation
SSI

Segmented result
close to GT.
Consistent LD
assessment.
Automated and
manual results are
consistent if
SSI>40%.
Susceptible to noise,
motion artefacts
and noise.

Molinari et al. [99] Geometric feature
extraction, Line
fitting, classification

N = 200 mean distance
errors ± SD in
near-wall = 1.05 ±
1.04 pixels in far
wall 2.68 ± 3.94
pixels

Automatic
delineation of CCA.

Kumar et al. [100] Vertical spectral
analysis to trace
adventitial border
Spatial
transformation to
straighten curved
vessels. Scale-space
segmentation.

N = 404 (202) DS and JI were 94.2
(89.1) and 93.9
(88.6). Mean LD
error = 0.27±0.25
mm Mean IAD
error = 0.24±0.24
mm

Delineation lumen
and adventitial
borders even in
curved vessels.
Validated with
expert readings

Carvalho et al. [95] Centreline
estimation,
Graph-based
segmentation using
DP.

N = 21 (17): 2
datasets of size 11
and 10

Dataset 1(RMSE =
191±43 μm) and
Dataset 2 (RMSE
351 ± 176 μm)
carotids.

Both contrast
enhanced-US and
B-mode were used
for lumen
segmentation.
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Study Method Dataset & size Measures Findings

Rocha et al. [101] Auto ROI, DP to
delineate
longitudinal paths,
Linear Bayes
classifier.

N=199 Two
datasets

SR=99.5% Real-time
processing, fully
automated.

4. 2 Segmentation LI-far wall and IMT assessment.

Although IMT can be assessed at both walls, far-wall is more reliable than the near-wall. Further, far-
wall IMT is associated with coronary heart disease and mean IMT, especially those measured 1 cm away
from the bulb, is correlated with risk factors [103,104]. Previous research has largely overlooked computer-
aided methods in IMT measurements [105]. Liguori et al. [106] used pattern recognition and edge detection
techniques for LI-MA delineation. This semi-automated method reported high-correlation (0.97) with manual
methods. Dynamic programming (DP) is a highly optimised search-based method useful for edge detection
[95,101,107]. However, the method showed limited success in curved vessels. Zhou et al. [108] applied
a modified DP for intima-media segmentation. The method was efficient and invariant to the rotation
but refrained from IMT estimation. Important studies showed that integrated methods provide a better
approximation. Faita et al. [109] applied gradient-based edge detection fused with a robust edge detector
(“FOAM”) followed by a heuristic search. The algorithm performed well when validated with two expert
readings on 150 scans. Further, the authors displayed real-time processing using video of the cardiac cycle
and the Bland-Altman plots showed zero inter-observer variability [109].

Another important study by Rossi et al. [110] presented segmentation based on two methods: adventitial
delineation using sustain attack filter and intimal delineation using multiscale anisotropic barycentre (MAB).
The authors reported a variation of 1.3% for diameter and 3% for IMT in 36 recordings. However, accuracy
of the technique varied considerably based on probe positioning, patient orientation, artefacts and image
quality [110]. Later a more robust method, the Hough transform (HT) often used for the detection of lines
and circles, was used for carotid artery segmentation [111]. Golemati et al. [112] applied HT and observed
that accuracy and specificity were >0.96 for both transversal and longitudinal images of non-atherosclerotic
subjects. However, the results depend on plaque, shadow and scanner variation [112]. Some scholars have
researched snake-algorithm. Loizou et al. [113], Petroudi et al. [90] and Santhiyakumari et al. [114]
used snake-algorithm (active contour) for intima-media segmentation. Despite good results, the method
is limited by lengthy processing time and initialization. Destrempes et al. [115] argued that distribution
of echogenicity in a vertical strip of pixels is a mixture of three Nakagami distributions related to intima,
media and adventitia. The authors then applied maximum-a-posteriori (MAP) estimation and expectation-
maximization for segmentation [115].

Molinari et al. and the team proposed several techniques for segmentation and IMT measurement [116,117].
The team performed LI segmentation based on local statistics and signal analysis and reported improvement
in both LI detection (+32.3%±6.7%) and IMT measurement (+43.5%±2.4%) [118]. In another research,
the team applied, feature extraction, curve fitting and classification, more suitable for MA segmentation
[117]. As stated earlier, the integrated approach improved IMT estimation (+3.6±1.4%) and segmentation
efficiency [117]. Both IMT and LD show variations in a cardiac cycle. Tracking these variations in IMT is a
serious challenge. Ilea et al. [119] adopted segmentation on a video of the cardiac cycle using a Canny edge
detector and adaptive normalisation [119]. Table II review various findings on IMT measurement.

Table II. Benchmarking studies on IMT measurement

6
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Study Method Dataset & Size Measures Findings

Zhou et al. [108] Modified DP N=200 (32) videos Overall error, Total
time, Bland-Altman
plots

Accuracy improved
when the algorithm
was refined using
snake.

Faita et al. [109] Gradient-based edge
detection

N=150 Bland-Altman plots variation in mean
bias ± SD of 0.001
± 0.035. High
accuracy and
real-time
application

Rossi et al. [110] Adventitial
delineation using
sustain attack filter,
intimal delineation
using MAB.

N=36 (12) Bland-Altman plots,
Measurement error

Intra-observer
variability = 0,
suitable for clinical
trials, comparison
with synthetic
ultrasound images.
Radiofrequency
envelopes analysed.

Golemati et al.
[112]

Hough transform,
Canny edge
detection. Both
B-mode and
M-mode ultrasound

N=5 Radial displacement
of ROI

Accurate for
non-stenotic.
Atherosclerotic
plaque affected the
result.

Loizou et al. [113] Snake algorithm
Speckle reduction

N=100 Bland-Altman plots intra-observer error
= 0.08 Hausdorff
distance = 5.2

Petroudi et al. [90] Active contour,
Speckle removal

N=100 Mean absolute
distance. Polyline
distance. Hausdorff
distance.

Mean absolute
distance error =
0.095±0.0615 mm,
Polyline distance =
0.096±0.034 mm.
Hausdorff distance
= 0.176±0.047 mm.

Santhiyakumari et
al. [114]

Active contour
segmentation.
Semi-automatic
ROI identification

N=100 63 normal Coefficient of
variation, Pearson’s
CC, Wilcoxon
metric

Inter-method error
= 0.09 mm CV =
18.9%

Destrempes et al.
[115]

Expectation
maximisation
algorithm,
Nakagami
distribution

N=30 Mean distance,
Hausdorff distance

Error in: LI = 0.46
mm MA = 0.41 mm

Molinari et al. [117] Local statistics.
Integrated approach
(Greedy algorithm).

N=200 Polyline distance,
Mean system error

Error in: LI =
26.3±55.6 μm MA
= 16.2±31.3 μm
IMT = 83.1±61.8
μm
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Study Method Dataset & Size Measures Findings

Ilea et al. [119] Unsupervised IMC
video segmentation

40 and 772 frames coefficient of
variation,
Bland-Altman plot

Auto tracking of
IMT variations in a
cardiac cycle.

MAB: multiscale anisotropic barycentre, CC: correlation coefficient

The segmentation methods are often followed by distance measurement for estimation of LD and IMT.
Standard procedures for distance measurement involved three different methods: centre line distance (CLD),
polyline distance (PLD) and mean absolute distance (MAD) [120,121].

4.3 Challenges in image-based methods

Thus, conventional segmentation methods are either semi-automatic or automatic. Human intervention is
required at many stages, for example, ROI selection, seed point and/or contour initialization, and distance
evaluation [122]. This leads to additional latency and is often error prone. Further, the curvature of the
artery and its orientation impinge on segmentation [122]. Most segmentation algorithms require arteries to
be recorded horizontally. Spatial transformations are applied to improve orientation before segmentation
[122]. Furthermore, the presence of plaque, plaque irregularity and mimicking arterial structures such as
jugular vein complicates the process. Moreover, scanner variability, operator experience, angle of incidence
(of ultrasound probe), blood back-scattering, shadowing and ultrasound artefacts add to the conundrum
[123]. Application of machine learning and deep learning algorithms provided a competitive edge in this
scenario.

4. DL-based systems in clinical diagnosis

Several studies observed that DL improved accuracy in diagnosis and clinical assessment. The DL archi-
tectures performed well, especially in cardiovascular MRI (CMR), fatty liver disease (FLD) tissue charac-
terization and rheumatic arthritis. Although these are separate areas of medical science where different
modalities are used, the success of DL motivates the expansion of its horizon. Moreover, the success of DL-
based strategy in anatomical research inspire application in CVD diagnosis and prediction. Schmauch et al.
proposed a DenseNet-based supervised learning system for the detection classification of focal liver lesions
(FLL) [124]. The authors demonstrated region-of-convergence (ROC) and area under the curve (AUC) scores
of 0.935 and 0.916 for lesion detection and classification on 367 ultrasound images [124]. Huynh et al. [125]
applied transfer learning for detecting malignant tumours. Features from pre-trained AlexNet were used for
training. The network had performance similar to analytical methods (AUC = 0.81) [125]. Hatipoglu et al.
performed cell segmentation using three DL-based methods: CNN, DBN and autoencoder. The comparative
study reported that CNN and autoencoders outperformed conventional segmentation techniques [126].

Table III Benchmarking deep learning-based studies in clinical diagnosis.

Study
Dataset
(Population) Method Measures Findings

Bai et al. (2018)
[127]

N = 4875 UK
Biobank

FCN Mean absolute
distance, Hausdorff
distance

Human-like
performance in
evaluating CMR
images. Dice
metric= 0.94 (LV
cavity), 0.88 (LV
myocardium) 0.90
(RV cavity).
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Dataset
(Population) Method Measures Findings

Wang et al.
(2017) [128]

N = 840 (210)
mammograms

CNN:10
convolution layers
and two fully
connected layers

Free response
receiver operating
characteristics
(FROC) analysis.

Two-class
classification
problem to
categorize breast
arterial
calcification
(BAC) pixels and
non-BAC pixels
in mammograms,
a risk marker of
CAD. Calcium
mass
quantification
analysis

Jamthikar et al.
(2020) [129]

N = 404 (202) ML-based risk
factor classifier

AUC = 0.99 (P <
0.001) compared to
conventional

57.14%
improvement over
conventional
algorithm. PoM
and FoM = 96%.
Mean absolute error
< 5%.

Biswas et al. (2018)
[130]

N = 63, Liver US:
36 with FLD, 27
normal

CNN, SVM, ELM.
Tissue
characterization,
risk stratification

ROC, reliability
index, timing
analysis.

DL: Robustness to
noise, 100%
accuracy at 15%
cropping of borders.
DL better than
SVM & ELM

Kuppili et al. [131] N = 63 ELM, SVM AUC, speed test
validation

96.75% accuracy in
ELM, 89.01%
accuracy in SVM
AUC 0.97 and 0.91
in ELM and SVM,
respectively. Speed
improvement of
40% in ELM

Hemalatha et al.
[132]

N = 276 MEDUSA
database

Hit-or-miss
transform for
bone-line
segmentation,
Active contour for
localization

Accuracy, precision,
specificity,
sensitivity, ROC

95.02% ± 2.78
accuracy Increase in
true positives from
78.12% to 98.15%.
False positives
decreased by 1.41%.
CNN applied for
classification

9
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Poplin et al. [133] N = 48,101, N =
12,026 Validation:
UK Biobank N =
236,234, N = 999
EyePACS

Inception-v3 neural
network
architecture.

MAE in prediction.
AUC for the binary
classifier. Cohen’s
kappa for multiclass
classification

Age prediction:
MAE 3.26 years and
3.48 in UK Biobank
and EyePACS.
Ethnicity
prediction: Kappa
score of 0.6 and
0.75. Prediction on
the onset of MACE:
AUC of 0.7 from
retinal fundus
images alone

MAE: Mean absolute error, MACE: Major adverse cardiac events

Bai et al. showed that Fully Convolution Network (FCN) matches expert like performance in speed, scala-
bility and accuracy over CV magnetic resonant (CMR) image segmentation and clinical measurements [127].
In another study on fatty liver disease (FLD) tissue characterization, Kuppili et al. [131] observed accuracy
of 96.75% using SymtosisTM, an extreme learning machine (ELM). Further, Biswas et al. [130] developed a
DL-based system and exhibited 100% accuracy on a database of 63 samples. Meanwhile, Hemalatha et al.
[132] used DL for analysing different grades of synovitis. The study observed an increase in false positives,
a decrease in false negatives and an average accuracy of 95.02% ± 2.78 in 276 images. Wang et al. devel-
oped a CNN-based detection of calcification using mammograms and achieved human-like perfection [134].
Google used DL to analyse retinal fundus images and predicted multiple cardiovascular risk factors with
good accuracy [133]. The team observed that retinal fundus images could accurately predict cardiovascular
diseases and found method comparable to traditional risk calculators. Benchmarking studies and outcomes
are summarized in Table III. Further, the favourable outcomes inspire the application of DL in stiffness
computation.

5. Stiffness computation using DL-framework and proposed work

Stiffness measurements involve estimation of LD and IMT, state-of-the-art techniques applied in segmenta-
tion and analysis of lumen region are benchmarked in this section. Menchón-Lara et al. applied machine
learning (ML) for carotid far-wall segmentation [120]. The method used multi-layer perceptron-based binary
classifier to trace IMT and surmounted morphological variations in the artery. Segmentation error for LI,
MA was 37.03±18.57 μm, 34.52±10.29 μm and IMT assessment error was 37.63±25.18 μm. Later, a modified
algorithm by the same team applied DL-based classifier for ROI detection and was successful in almost all
(99.44±0.05%) cases [2]. The estimated mean IMT error reduced to 5.8±34 μm for 67 subjects [2]. However,
the study failed for near-wall analysis. Biswas et al. applied DL for lumen detection and characterisation
[3]. The system used a 13-layered CNN for feature extraction (encoder), and a three-layered FCN for lumen
segmentation (decoder); reported accuracy of 99.89% in LD measurement. Further, Jaccard index and Dice
similarity for lumen segmentation on 407 images was 0.94 and 0.97 respectively and were effective in both
far-wall and near-wall detection.

In a multi-frame approach, Tajbakhsh et al. automated frame selection, ROI localisation, and IMT mea-
surement using DL [135]. Frames corresponding to the R wave in ECG were used as the reference in frame
selection and carotid bulb (˜1 cm radius) was used for ROI localisation. This improved localisation error for
LI but had little impact for MA due to low-contrast and poor gradient. Moreover, the results agreed with the
expert readings (p ˜0.5 in ANOVA) on 44 videos from 11 subjects. Limited dataset affects the performance
of DL-system so researchers used a patch-based approach. Lekadir et al. [136] used image patches on an

10
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architecture that included four CNN and three FCN layers for tissue characterization (as lipid core, fibrous
and calcified). The authors applied 90,000 patches from readings of 56 subjects to train the network and
were successful in 78.5% trials [136]. Perhaps, this was due to the limited dataset and quality of GT used to
train the network. Studies on DL-based lumen segmentation techniques are compared in Table IV.

Discussion

From this, several conclusions can be derived. Important studies in stiffness assessment reported ambiguity
caused by the non-uniformity in external distance measurement. Further, the external distance measurement
does not consider the internal contour of the artery which is important. Researchers presented a difference
in reference values of PWV owing to local or regional measurement. The image-based techniques propose an
added advantage of presenting a clear idea of atherosclerosis. These techniques are either fully automated
or semi, based on supervisor involvement. Moreover, these methods required arteries to be straight and
horizontal for best performance. Further, noise and artefacts deteriorated the assessment. Evidence presented
here is conclusive on the success of DL in lumen characterisation and segmentation. This paper proposes deep
learning-based stiffness measurement from cine-loop, a short (ultrasound) video, of the carotid artery. Cine-
loop capture IMT and LD variations over many cardiac cycles and averaging over multiple frames diminish
the effects of noise. Recently, Patel et al. [137] estimated elasticity using ELM. ELM was applied for ROI
localisation, and in 100 images maximum-IMT and maximum-LD error were 20 mm and 91 mm, respectively.
However, the study estimated Young’s modulus and at present little is known about the correlation between
modulus of elasticity and cfPWV in a clinical setup.

The proposed method includes four stages of operation (illustration in Figure 4.): pre-processing, ROI
localisation: extraction of lumen region, LD/IMT assessment and stiffness computation. The purpose of
pre-processing is auto-crop of textual data with emphasis on tissue region. Pre-processing involves tasks such
as brightness transformation, geometric transformation edge detection and image restoration in preparing
the ultrasound image for the training and testing. Manual tracing by experts is used as GT for training.
Networks for lumen and/or intima-adventitia are trained using separate GT. Further, down sampling is
applied to improve processing efficiency. Often ECG recordings are made along with the carotid scan. R-
wave is used to synchronize frames in consecutive cardiac cycles. IMT is processed from frames 5 seconds
after R-wave to capture the extreme values during the two phases of the cardiac cycle: systole and diastole.
Lumen region and IMC region are the ROI in stiffness computation leading to stiffness computation as
analysed in Section 2 of this paper. ROI localisation is applied twice in the entire process: one for the
identification of LI-far region and two for recognition of LI-near zone. LI-far facilitates the computation of
IMT. Both LI-far and LI-near were required for the assessment of LD. LD/IMT assessment was performed
using a poly-line distance method.

Conclusion

This study is important for several reasons. First, the review summarized trends in PWV assessment inves-
tigating leading research works. Further, arterial stiffness using image-based techniques were analyzed es-
pecially, localization, segmentation, and characterization. Besides, benchmarking DL-based work in medical
framework inspired application in lumen segmentation and characterization. Finally, stiffness computation
using DL is expected to work perfectly and provide reliable diagnostic support.

Table IV. Comparison of DL-based segmentation studies

Study Method Dataset & Size Measures Findings

Menchón-Lara et al.
[120]

Multi-layer
perceptron binary
classifier

N=60 (30 subjects) Bland-Altman plots,
mean absolute
distance, poly-line
distance and
centre-line distance.

Error in: LI
=37.03±18.57 μm,
MA= 34.52±10.29
μm,
IMT=37.63±25.18
μm
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Study Method Dataset & Size Measures Findings

Menchón-Lara et al.
[2]

ELM-based
autoencoder

N=67 Mean absolute
difference,
correlation
coefficient

Error in
IMT=5.79±34.42
μm

Biswas et al. [3] Encoder and
decoder based on
DL.

N=407 (204) Precision-of-merit,
Figure-of-Merit
analysis,
inter-operator
variability, and
ROC analysis.

LD measurement
accuracy=99.89%
Jaccard index and
Dice similarity for
lumen segmentation
on 407 images was
0.94 and 0.97

Tajbakhsh et al.
[135].

DL-based frame
selection, ROI
localisation, IMT
assessment

N=48 videos (12) Bland–Altman plot
Localisation error
FROC curve

Error in LI = 2.68
μm, MA = 3.69 μm,
IMT =2 3.4±17.3
μm Localisation
error = 0.19 mm
(carotid bulb
region) and 0.35
mm

Lekadir et al.
[136]

CNN-based
plaque
characterization

N=90000 image
patches (56)

Correlation=0.90
with expert
readings.

78.5%
improvement over
SVM method.
Real-time
processing.

Table V. Abbreviations and description

Abbreviations Description

AIx Augmentation index
AS Arterial stiffness
AUC Area under the curve
baPWV Branchial-ankle PWV
CAVI Cardio-ankle vascular index
CCA Common carotid artery
cfPWV Carotid-femoral PWV
CNN Convolutional neural network
CVD Cardiovascular disease
D Distensibility
DALY Disability adjusted life lost
DBN Deep belief network
DBN Deep belief networks
DL Deep learning
ELM Extreme learning machine
FCN Fully convolutional neural network
FoM Figure of merit
FVE Fourier velocity encoder
GT Ground truth
IMC Intima-media complex
IMT Intima-media thickness

12
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Abbreviations Description

LD Lumen diameter
MA Media-adventitia
MACE Major adverse cardiac events
MRI Magnetic resonance imaging
PoM Precision of merit
PP Pulse pressure
PWV Pulse wave velocity
RBM Restricted Boltzmann machine
RBM Restricted Boltzmann machine
RMSE Root mean square error
RNN Recurrent neural network
ROC Region of convergence
ROI Region of interest
SSI Stenosis severity index
SVM Support vector machine
YLL Years of life lost

Figure 1. Chart on count of articles from 2000 to 2021 for arterial stiffness
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Figure 2. Two-site method for evaluation of PWV (cfPWV) (courtesy Lorent et al.[46])

Figure 3. Longitudinal section of the common carotid artery. (a) original image (b) here LI and MA borders
are delineated.

Figure 4. DL architecture for lumen segmentation

14
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Appendix A

Stiffness indices

Compliance coefficient of a vessel wall is defined as [138]C = ΔΑ

greekp=[πDd (Ds −Dd) /2] /ΔΠwhereΔA is change in cross-sectional area; ΔΠ is pulse pressure; Ds, Dd are
arterial diameter in systole and diastole respectively. The distensibility coefficient is described as [138]:

D = ΔΑ

greekA . p=2[(Ds −Dd) /Dd]ΔΠ

Pulse wave velocity (PWV) as explained by Bramwell and Hill is [138]:

PWV =

√
ΔΠ

ρ . Δ῞
=

1√
ρ . Δ

=

√
Dd

2
ΔΠ

ρ (2.Dd.ΔD + ∆D2)

A significant version applied for the analysis of PWV is using the Moens-Korteweg equation:

PWV =

√
E .h

2 .r.ρ

where ∆D is the alteration in artery diameter, ρ is the density of blood. E is the young’s modulus, h is the
IMT and r is the radius of the artery. The stiffness-index β is stated as [139]:

β =
ΔΠ

english(Ds −Dd) /Dd

Augmentation index is the difference between first and second systolic peaks in pressure waveform relative
to PP. AIx is analysed from pressure waveform and is stated as [139]:

AIx =
(P1 − P2)

PP
.100%

β =
ln (Ps/Pd)

(Ds −Dd) /Dd

Cardio-ankle vascular index (CAVI) is an indicator of stiffness from the aorta to ankle [140]. CAVI is defined
as:

CAVI = a

[
2 ρ

ΔΠ
ln (Ps/Pd) .PWV 2

]
+ b

where a and b are adjustable constants.
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