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Abstract

Abstract. A w-distance on a metric space (X, d) is a function p : X ×X → [0,∞) which is lower semicontinuous with respect
to the second varibale, satisfies the triangle inequality and for all ε > 0 there exists a δ > 0 such that p (z, x) ≤ δ and p (z, y) ≤ δ
imply d (x, y) ≤ ε for all x, y, z ∈ X. In this short note we prove that a metric space with a w-distance p is complete if and only
if every sequence {xi} such that

∑∞
i=1

p (xi, xi+1) <∞ converges.

The notion of w-distance on a metric space was introduced and studied bu Kada et al. in [2].

Definition 1. Let (X, d) be a metric space. A w-distance on X is a function p : X ×X → [0,∞) satisfying
the following conditions:

(P1) p (x, y) ≤ p (x, z) + p (z, y) ;

(P2) p (x, ·) : X → [0,∞) is a lower semicontinuous function for all x ∈ X ;

(P3) for all ε > 0 there exists a δ > 0 such that p (z, x) ≤ δ and p (z, y) ≤ δ imply d (x, y) ≤ ε ;

for all x, y, z ∈ X.

We recall that a real-valued function f defined on a metric space (X, d) is lower semicontinuous at a point x ∈
X if for any sequence {xn} ⊆ X converging to x we have that either lim infxn→x f (xn) = +∞ or f (x) ≤
lim infxn→x f (xn).

The following lemma shall be used to prove the main result.

Lemma 1. [4] Let (X, d) be a metric space with a w-distance p. If {xn} is a sequence in X such that

lim
n →∞

sup
m>n

p (xn, xm) = 0

then {xn} is Cauchy.

We prove the following statement, which is the main result of this note.

Theorem 1. A metric space (X, d) with a w-distance p is complete if and only if :

(1) every sequence {xi} ⊆ X such that

∞∑
i=1

p (xi, xi+1) <∞

converges to some x ∈ X.
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Proof. (⇒:) Let (X, d) be complete, and let {xi} ⊆ X be a sequence such that
∑∞

i=1
p (xi, xi+1) <∞. Then

for all ε > 0 there exists Nε ∈ N such that
∑∞

i=n
p (xi, xi+1) < ε for all n ≥ Nε. Hence, for all m,n ∈ N

such that m > n ≥ Nε we have

p (xn, xm) ≤
m−1∑
i=n

p (xi, xi+1) ≤
∞∑
i=n

p (xi, xi+1) < ε

which implies that limn →∞ supm>n p (xn, xm) = 0, so by Lemma 1, {xi} is Cauchy. Since X is
complete, {xi} converges to some x ∈ X.

(⇐:) Now suppose that (1) holds, but X is not complete, so there exists a Cauchy sequence {xi} ⊆ X which
is not convergent. Let F = {xi : i ∈ N}, and let p : X ×X → [0,∞) be defined as

p (x, y) =

{
d(x, y), if x, y ∈ F,
2 diamF, otherwise.

Since {xi} is Cauchy sequence which is not convergent, the set F is closed and bounded, so p is a w-
distance onX (see [2, Example 7]). Let ij be the least natural number such that p(xn, xm) = d (xn, xm) ≤ 1

2j

for all m,n ∈ such that m > n ≥ ij . Then we have

∞∑
j=1

p
(
xij , xij+1

)
≤
∞∑
j=1

1

2j
<∞

which by (1) means that {xi} has a convergent subsequence
{
xij
}
which is impossible (since its limit would

be the limit of the whole sequence). �

Remark. In [5] the authors characterized completeness of metric spaces with a w-distance via generalized
Banach’s contraction, i.e. the weak contraction. In [3] the author of the present paper introduced the func-
tions δp and αp (p-diameter and Kuratowski p-measure of noncompactness) on such spaces and studied
the metric completenes via those functions. Hence, we can now formulate our second main result, which
represents an analogue of [1, Theorem I.5.1] for metric spaces with a w-distance, and summarizes all known
characterizations of completeness for such spaces. For the definition of weak contraction we refer the reader
to [5], and for the definitions of δp, αp to [3].

Theorem 2. Let (X, d) be a metric space with a w-distance p. The following conditions are equivalent.

(i) X is complete;

(ii) Every weak contraction on X has a uniqe fixed point;

(iii) Every sequence Fn of nonempty closed subsets in X such that Fn+1 ⊆ Fn for all n ∈ N and
limn→∞ δp (Fn) = 0 has a singleton intersection;

(iv) Every sequence Fn of nonempty closed subsets in X such that Fn+1 ⊆ Fn for all n ∈ N
and limn→∞ αp (Fn) = 0 has a nonempty compact intersection;

(v) Every sequence {xi} such that
∑∞

i=1
p (xi, xi+1) <∞ converges.

Proof. (i)⇔(ii) is proven in [5, Theorem 4], (i) ⇔ (iii) ⇔ (iv) is proven in [3, Theorem 3.1] and (i) ⇔ (v)
is Theorem 1 of the present paper.
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