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Abstract

Specific electrical conductivity (SC) is a basic, effective indicator of water quality. The recent increase in SC data collected

with high-frequency sensors has created a strong need for algorithms that can aid interpretation of these data. This study

presents an algorithm that finds and quantifies SC temporal patterns and applies that algorithm to a data set from a forested

catchment. During and after rain events, we show three patterns that emerge in SC time series: a solute flush, resulting in an

initial increase in SC, followed by a dilution, followed by the SC’s recovery toward pre-rain conditions. We compared these SC

patterns to precipitation amount and intensity, antecedent wetness, and seasonality. Our results indicate that the magnitude

of the flush was driven primarily by precipitation intensity and total rainfall during a storm, and secondarily by antecedent

moisture conditions. The magnitude of the dilution was driven mainly by precipitation amount. The rate of SC recovery was

driven by precipitation amount and was correlated with the dilution. Overall, the algorithm successfully extracted event-driven

characteristics in the SC time series, allowing the development of functional relationships with hydrologic drivers. Applying

similar methodologies to more catchments in the future will help identify functional relationships at more sites and use these

relationships to identify catchments most sensitive to future precipitation changes.

INTRODUCTION

Data documenting the temporal variation of solute concentrations in streams have advanced the knowledge
about how catchments produce stream flow and impact streamwater quality. Lab analysis of discrete water
samples has underlain this knowledge such as how piston displacement of stored water is a dominant stream
flow generation mechanism in many catchments (Sklash and Farvolden 1979), how mineral weathering and
soil development are impacted by human activities (Bailey 2020), and how hydrology and soil geochemistry
interact to regulate streamwater solutes (e.g., Bennetin et al., 2015), just to name a few examples. However,
weekly or less frequent sampling can inadequately capture temporal patterns in the variation of streamwater
chemistry (Kirchner 2004). Advancements in technology have allowed us to supplement the information
gained from water sampling with high-frequency data from electronic sensors (e.g., Pellerin et al. 2010; von
Freyberg et al. 2017).

Stream solute data allow estimation of the fractional contribution of new precipitation versus older, stored
water to streamflow (Hooper and Shoemaker 1986; Pellerin et al. 2008). This chemical hydrograph separation
can provide insights into how catchments transport rainfall and how catchment characteristics or human
modifications alter this hydrologic transport (Pellerin et al. 2008; Inserillo et al. 2107). Specific electrical
conductivity (SC) is a common solute indicator used for ”new water” estimates (Sklash and Farvolden 1979;
Pellerin et al. 2008). Sensors measuring SC are robust, relatively affordable, and have shown that stream
chemistry is highly variable on short time scales (Walling 1975; Vogt et al. 2010). Analysis of temporal SC
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patterns remains an opportunity for advancing catchment hydrology and biogeochemistry. Improved methods
for analysis of these high-frequency time series can help expand our understanding of water movement and
solute transport through catchments.

During and immediately following storm events, the SC of streams exhibits patterns that provide insights
into catchment hydrology and biogechemistry. During a storm, streamwater SC is diluted by rainwater with
lower SC than the groundwater that is sourcing streamwater prior to the event (Sklash and Farvolden 1979).
Following this, barring further precipitation events, the rainwater continues to drain from the catchment, is
evapotranspired, or is integrated into stores, causing SC to recover towards its pre-storm conditions (Walling
1975). Within certain catchments, a solute flush occurs before dilution (Inamdar et al. 2009; Inserillo et al.,
2017). Specific conductivity drastically increases on the rising limb of some streams’ hydrographs, indicating
a flush of ions entering the stream. This flush may represent a distinct source of water entering the stream
beyond that of mean stored groundwater and rainwater (Walling 1975, Creed and Band 1998, Inserillo et
al. 2017). Pairing meteorologic conditions with sensed, high-frequency time series of stream solutes will
aid understanding how precipitation, antecedent hydrologic conditions, and seasonal changes influence the
variability of those solutes (e.g., Robson 1992, Biron et al. 1999, Kirchner 2004, Fovet et al. 2018).

The goal of this study was to analyze the temporal behavior of streamwater SC in response to a variety
of different precipitation events. To this end, high frequency data from an in situ sensor deployment were
used to analyze the magnitude of solute flushing (FSC), the magnitude of SC dilution (DSC), and the rate
at which SC recovers after a dilution occurs (RSC). We developed an algorithm to objectively analyze these
chemograph patterns and produce functional relationships between storm characteristics and stream SC
behavior.

METHODS

This study presents an approach to extract, quantify, and explain three temporal patterns within SC time
series, which are related to streamwater responses to rain events. These patterns are found in chemographs
produced from in situ sensors across numerous New Hampshire lotic systems (Inserillo et al. 2017). The first
of these patterns is a rapid increase in SC near the beginning of a precipitation event, on the rising limb of a
hydrograph, known as a solute flush (Figure 1). The second is the subsequent dilution of SC, as low SC water
(i.e., precipitation) mixes with higher SC water (i.e., groundwater); and the third is the recovery of SC as that
low conductivity water leaves the catchment and the streamwater returns to a SC resembling groundwater.
Although flushing responses do not occur in all streams, dilutions and their subsequent recoveries after a
precipitation event are common (e.g., Inserillo et al. 2017).

We developed an algorithm to consistently and objectively locate these temporal patterns in streamwater
SC, quantify the FSCand DSC behavior, and calculate the RSCthat follows. This process was sequential: a
flush following the onset of rain, a dilution following a flush, if one was present, and a recovery following
a dilution, if one was present. We then compared those streamwater responses to various environmental
conditions surrounding the periods in which they occurred, to understand how such independent variables
related to each chemograph pattern. The environmental conditions examined were based upon precipitation,
antecedent moisture, and the season in which the precipitation event occurred.

Precipitation variables included the total amount of precipitation (PT), the intensity at which it fell (IP),
and maximum precipitation intensity per 20-minute interval (IP,max). Precipitation that occurred after a
flush reached its peak would not influence the FSC; likewise, with the maximum dilution and DSC. So, for
both flushing and dilution responses, each precipitation variable was analyzed only from the beginning of
the storm to the point in time at which the response occurred. Analysis of the RSCincluded the precipitation
of the entire event, as the tail end of a storm presumably impacts the rate at which SC recovers, and as the
recovery is an expression low SC water leaving the system or becoming chemically similar to stored water.

Antecedent moisture variables included the length of the inter-storm period (ISP) and the cumulative vapor
pressure deficit (ΣVPD) during that period of time. The ISP was determined by the amount of time between
the first measurement of rain for a precipitation event and the last measurement of rain for the previous event.
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The ΣVPD for that period of time was indicative of the intensity of drying pressure and was determined by
summing the vapor pressure deficit (VPD) over this ISP. VPD was calculated by subtracting vapor pressure
(VP) from saturated vapor pressure (VPS). VP was calculated by multiplying relative humidity (RH) by
VPS. VPS was calculated using

where T was air temperature in °C, and the resulting VPSwas in kPa (Bolton 1980). These temperature and
RH data were measured at 20-minute intervals, and all subsequent calculations maintained this time step.

Variables of seasonal impact were the day of year (DoY) on which the precipitation event began and the
median air temperature (TA) of the day on which the event began. In both instances the day on which the
event began was the calendar day that the first rain measurement of that precipitation event occurred.

Sites and Data Used

The algorithm we developed was designed around a single streamwater SC sensor that was deployed in Clay
Brook, a lotic system in New Hampshire, U.S.A. (Figure 2), which repeatedly exhibited all three SC patterns.
We used data from May to November for the 2013 and 2014 calendar years. The SC sensor recorded both
electrical conductivity (EC) and water temperature. Using these the two measures, the EC was corrected
for temperature and reported as if recorded at 25 °C, giving the SC. SC was calculated using

where T was water temperature in °C and both EC and the resulting SC were in μS cm-1.

Clay Brook is located in the hills at the southern end of the White Mountains. Its headwaters begin on
Plymouth Mountain and, flowing generally northward, ends with its confluence with the Baker River, a
tributary to the Pemigewasset and Merrimack Rivers, which drain to the Atlantic Ocean. The location
of the sensor and pour point of the studied catchment area is roughly halfway through the stream’s full
watercourse, encompassing a catchment area of 7.49 km2 (Figure 2). The median elevation of the basin
is 359 m, with an average slope of 9 degrees. The catchment is 89.3% forested with a mix of hardwood
and coniferous trees. Common species include American beech, red maple, sugar maple, red oak, yellow
birch, eastern hemlock, and red spruce. The remaining 10% of the catchment’s land cover is split between
agriculture and wetlands, including 1.3% development. The soils of the region are generally coarse textured
Spodosols of a range of drainage classes.

We used meteorologic data from the Plymouth Regional Airport, Plymouth, NH (NOAA ID K1P1) located
4.6 km from the sensor site at 43.78° latitude, -71.75° longitude, at an elevation of 154 m. We used data
from the airport’s weather station, which measured air temperature, relative humidity, and precipitation in
20-minute intervals.

The SC sensor data from Clay Brook were measured with an Onset Hobo Data Logger U24, which recorded
water temperature and EC at a 4-minute interval. The sensor has an EC accuracy of 3% of the reading value,
or 5 μS cm-1, whichever is greater, and a temperature accuracy of 0.1°C. The sensor’s operating range is
-2°C to 36°C in non-freezing conditions and has a resolution of 1μS cm-1 and 0.01°C. The data were screened
to remove any records that were consistent with the sensor being out of the water at low flows, and random
sensor malfunctions that resulted in one data point being excessively high compared to the preceding and
following data points. Independent lab analysis of field grab samples at this site suggest that the sensor
accuracy is within 5%. We further screened data to only include periods of time from May 1 to October 31
when regional rainfall-runoff responses are generally not complicated by snow and ice (Figure 3).

Extraction of SC Patterns

The algorithm we developed extracted information from in situstream sensors and weather data and sequen-
tially assessed the three aforementioned patterns that occur in response to precipitation events: the flush,
dilution, and recovery. This algorithm fully processed the available data 10,000 times, with each iteration
using our defined parameters sampled randomly from a uniform distribution (Table 1). The range for each
distribution was chosen through trial and error and visual assessment of the SC time series of the catchment.
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The algorithm first identified unique precipitation events, defined by a parameter, B , which was the amount
of time between non-zero precipitation measurements (Figure 4). The time between each precipitation mea-
surement was calculated, and if the gap between one measurement and the previous measurement exceeded
B , the latter measurement was determined to be the start of a new, separate event. The total amount of
precipitation for each of these unique precipitation events was then calculated, and if that value was lower
than a fixed amount, defined by a parameter, A , the streamwater SC characteristics associated with that
event were not analyzed.

If a storm was detected, the algorithm then analyzed the changes in streamwater SC. It first determined the
pre-storm trajectory (PST): the trend of the stream’s SC prior to precipitation, projected forward in time
as if no rainwater had been added to the catchment. To find the PST, a Sen (1968) slope estimate of the SC
data was fit to the time series. The time period used for the estimate ranged between the first precipitation
measurement of the event and B . The PST was then projected forward in time to the periods during and
after the occurrence of rain. The algorithm determined the residuals surrounding the PST line and using
those residuals, found the SC values that deviated far enough from the PST to be considered a flush or
dilution caused by the rain event. The magnitude of the deviation was defined by the number of standard
deviations of the residuals, and represented by the parameterG .

To find the peak of the flush, the algorithm created a temporal window ranging between the event’s first
precipitation measurement and a period of time defined by parameter D , and then found the maximum
value of SC during the period. If that maximum value was greater than Gstandard deviations from the PST,
it was accepted as a legitimate response to the precipitation event.

The algorithm found the maximum dilution differently whether a flush was detected or not. If a flush was
found, the range to look for a maximum dilution was set between the time at which the peak flush occurred
and a time period after the storm’s last precipitation defined by parameterE . If a flush was not detected, the
range was created to be between the 6 hours prior to a storm’s last precipitation and E . In either instance,
the algorithm then found the minimum value of SC within that window. If that minimum value was less than
Gstandard deviations from the PST, it was accepted as a legitimate response to the precipitation event.

The values of both the peak flush and maximum dilution were added or subtracted, respectively, from what
the SC would have been if no precipitation had occurred. This value was determined by calculating the SC
value on the PST at the time in which both responses reached their apex. The difference resulting from our
observed stream SC behavior and what the PST suggested the SC would otherwise be was defined as the
FSC and DSC, both having units of μS cm-1.

To calculate the RSC, a Sen’s slope estimation was again used. The time range for this estimate began at the
point of maximum dilution, if one was determined to be present, and ended an amount of time later defined
by parameter F . The slope of the resulting line was classified as the RSC, having a unit of μS cm-1 day-1.

If a flushing response was either not detected or was not deemed different enough from normal variations
in the SC, the algorithm still searched for a dilution response. However, if a dilution was not detected or
deemed variable enough, the RSC was not calculated, because there would be no beginning point from which
to conduct the Sen’s slope estimation.

Creating Robust Results

We did not know the best parameter values, nor their distribution, so we assigned a uniform distribution for
each parameter and used a Monte Carlo approach so that we could produce more robust results (Paxton et
al 2001). We randomly sampled 10,000 values of the six parameters that were used in the algorithm (Table
1). These varying parameters allowed us to simulate many combinations of parameter values. Therefore,
each iteration of the algorithm produced a different estimate of our focus variables (e.g. FSC, PT). Thus,
we created a rule set to decide how to summarize these Monte Carlo iterations. We narrowed the available
pool of iterations for each single precipitation event based on first, how frequently a distinct precipitation
event was detected, and second, how often that unique event exhibited a chemograph response.
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Subsequently, we considered precipitation events highly likely to represent the reality of conditions and
catchment characteristics only if the algorithm detected that unique event within at least 70% of its iterations
(7,000 or more instances out of the 10,000). Of the storms that passed the 70% threshold, only those that
resulted in a SC response 60% of the time were considered highly likely to have a SC response present (a
minimum of between 4,200 responses out of 7,000 existing storm events and 6,000 responses of 10,000 existing
storm events). The precipitation events that survived this culling were summarized by the median values
of each dependent variable: FSC, DSC, RSC. These were then compared to the independent, environmental
factors surrounding the event.

Data Analysis

Kendall’s correlation τ was used to quantify the monotonic relationships between independent and dependent
variables. The Kendall correlation utilized a two-sided p-value, which we accepted as statistically significant
below an α value of 0.05. We also conducted a multivariate analysis utilizing multiple linear regression in
order to quantify multivariate relationships with the dependent variables. All dependent and independent
variables, and their equivalent base 10 log, were tested for normality using a Shapiro-Wilk test. If the
non-transformed variable was deemed normal by having a p-value of greater than 0.05, it was used. If it
was non-normal, the log transformed variable was used only of it was deemed to be more normal than the
non-transformed variable. We used Bayesian Information Criterion (BIC) to choose the best combination
of variables driving the relationships (Burnham and Anderson 2004) and accepted a p-value of 0.05 to be
statistically significant.

RESULTS

Assessing the Algorithm

We visually assessed the accuracy of the algorithm by plotting the algorithm-generated chemograph charac-
teristics with the actual precipitation and SC data. Each analyzed storm was evaluated graphically, including
the distribution of estimated FSCand DSC values (Figures 5 and 6). The median values of the slopes of both
the PST and RSC were matched with their median intercepts so that each could be plotted. This resulted in
a total of 34 days on which a storm began, 29 of which showed a flushing response and 28 showed a dilution
and recovery. For one storm event, the algorithm did not detect the chemograph responses which we were
assessing. Each of the remaining 33 storms had either a flush or dilution and subsequent recovery, or both.

Univariate Correlations

The correlations between the FSC and the independent variables revealed statistically significant relationships
with IP, IP,max, and PT(Table 2, Figure 7). These 3 relationships were drawn from 27 algorithm-identified
flushes in response to precipitation events. This number differed from the 29 available flushes due to a gap
in the VPD data record. The Kendall’s τ value for IP was 0.502 (p<0.001), for IP,max was 0.486 (p<0.001),
and for PT was 0.422 (p=0.001).

The correlations between the DSC and the independent variables also showed statistically significant rela-
tionships with IP, IP,max, and PT(Figure 8). These 3 relationships were drawn from 28 algorithm-identified
dilutions in response to precipitation events. The Kendall’s τ value for IP was 0.407 (p=0.003), for IP,max

was 0.38 (p=0.006), and for PTwas 0.628 (p<0.001).

The correlations between the RSC and the independent variables resulted in a statistically significant rela-
tionship with PT (Figure 9). This relationship was drawn from 28 algorithm-identified recoveries in response
to precipitation events. The Kendall’s τ value for PT was 0.564 (p<0.001). There was also a significant
relationship with another dependent variable: DSC (τ=0.45; p<0.001).

Multiple Linear Regressions

The multiple linear regression between the log transformed FSC and the independent variables showed three
variables driving the relationship (Table 3). The correlation with log transformed IP, log transformed IP,Max,

5
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and log transformed ΣVPD resulted in p<0.001 and an adjusted R2 of 0.54. The equation of the regression
was

The multiple linear regression between the DSC and the independent variables showed two variables driving
the relationship. The correlation with log transformed PT and the slope of the PST resulted in p<0.001 and
an adjusted R2of 0.78. The equation of the regression was

The multiple linear regression between RSC and the independent variables showed a single variable driving
the relationship. The correlation with log transformed PT resulted in a p<0.001 and an adjusted R2 of 0.39.
The equation of the regression was .

DISCUSSION

The algorithm was effective at extracting patterns of solute flushing, dilution, and recovery. Quantifying
these chemograph characteristics and comparing them to the environmental variables revealed that the three
precipitation variables exerted the greatest influence on these patterns. The methodology we used here can
be expanded to other catchments in order to characterize and compare them using the easily obtained,
high-frequency data sources that have been produced and collected in recent years. Given the ability of the
algorithm to extract both solute flush and dilution characteristics, we expect that other temporal behaviors
that occur in other streams could be extracted with the general approach that we used.

Efficacy of the Algorithm

There has been a major increase in in situ sensor-obtained streamwater data (e.g., Pellerin et al. 2010,
Rode et al. 2016, Duncan et al. 2018, Fovet et al. 2018), creating a need for automated analyses that
explore the data, reveal patterns, and aid in interpretation. There are numerous methods to analyze water
quality time series (Hirch et al. 1982, Cun and Vilagines 1997, Faruk 2009), however these were not well-
suited to extracting the characteristic hydrologic patterns which were our focus, due to the thresholds and
conditional decisions needed to identify each pattern. Our methodology presents a novel way to extract
useful information from the deluge of data provided by modern high-yield sensors. While we demonstrate
the approach for SC, the general approach may be useful for data from other types of water quality sensors.
Our algorithm’s extraction of SC patterns was assessed to be accurate and similar to what would be obtained
from human estimation (Figures 5 and 6). The rare instances in which the algorithm was not accurate are
acceptable, given the beneficial nature of the automation; essentially that the process is highly robust due
to the Monte Carlo approach, which has previously been shown to accurately extract complicated patterns
from time series (e.g., Contosta et al. 2016). Similar approaches using machine learning would possibly
outperform our algorithm, and we see this as a likely next step in analyzing streamwater sensing data.

Environmental Controls on Chemograph Characteristics

Both flushing and dilution are strongly correlated with rainfall-based variables. This leads to the assessment
that both are primarily driven by the mixing of different sources of water, rather than more nuanced controls
like seasonality of solute generation or variation in storage (as represented by antecedent moisture indicators).
The importance of source water mixing, and the relative contributions of new and old water to streamflow,
has been previously discussed at length (Pinder and Jones 1969, Sklash and Farvolden 1979, Kirchner 2003)
and are consistent with our results involving SC dilution. However, the functional relationships we show
(Figure 8), obtained solely from SC and precipitation data, may be useful in characterizing hydrologic
systems for comparison.

In the case of flushing events, our results suggest that a third source of solute-laden water (aside from
the typically assumed two members: groundwater and rainwater) is entering the stream system before
precipitation is transported to the stream, resulting in SC dilution (Robson et al. 1992, Creed and Band
1998, Inamdar et al. 2009). This third source, however, may quickly exhaust its supply, resulting in water
following the same pathway but exhibiting a lower concentration as a storm progresses. For example, at
the nearby Hubbard Brook Experimental Forest, the upper intermittent stream reaches are characterized by
high dissolved organic carbon and aluminum, and low pH, due to eluvial processes in the bedrock controlled
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soils that predominate the upper catchment (Bailey et al. 2019). As the catchment wets up, the active
portion of the stream network may quickly expand into the upper catchment, causing a flush of solutes from
near-stream soils , that may then be quickly diluted by precipitation or from lower SC water as deeper soils
lower in the catchment increase their contribution to runoff. Analyses of flushing would benefit from three-
end member mixing models being used in future studies, requiring sensing of additional chemical tracers
(Burns et al. 2001, Hooper 2003). SC has been an effective catchment hydrology tracer in the past (Davis
et al. 1980, Pellerin et al. 2008, Cox et al. 2007), however, the role of the solute flushing in mixing analysis
needs to be addressed more thoroughly.

The univariate results indicate that this third source of water is driven into the system not simply by the
amount of rainwater added, but maybe more importantly by the intensity at which it is added. Rainwater
can cause flushing events in two ways. First, it can displace stored high SC water into the stream during pre-
cipitation events, or second, it can reach the stream as high SC water after gaining solutes via mixing during
transport (Robson et al. 1992). Because FSC is more correlated with IP and IP,max than PT, we hypothesize
that the flush of high SC water is from either near-stream soils, ephemeral streambeds, or development of
saturated conditions in shallow to bedrock soils: pathways which allow more rapid movement of water to
the watershed outlet, whether that water is precipitation that picked up solutes or is the displacement of
ionically enriched stored water.

If this is the case, we predict that the solutes responsible for this flush are those which are shallow (e.g.
dissolved organic C and nitrate) rather than those which are weathering-derived (e.g. Ca, Na). If piston
flow later takes over as the major contributor of high SC water, as has been shown to be the case in systems
without flushing events (Sklash and Farvolden 1979), then we hypothesize that the solutes responsible would
be from deeper, weathering-derived sources. Sample collection during precipitation events would indicate
which specific solutes are entering the stream system and allow an evaluation of which of these processes
drives SC dynamics.

The RSC relationship with PT is expected given it is driven by the dissipation of a pulse of low SC rainwater
through higher SC stored water, however we see potential to further explore this chemograph characteristic to
understand catchment hydrologic function. As more rainwater enters the system and increases the deviation
from the catchment’s normal, high-SC state (shown by a higher DSC), the system responds by recovering
more quickly. As the new water leaves the system, the SC will move towards pre-event concentrations. The
rate at which this rebound occurs may be used to characterize the catchment’s export of new water. It
may be possible to derive hydrogeologic characteristics using RSC, similar to previous hydrograph recession
analysis (Brutsaert and Nieber 1977).

The best multiple linear regression models we produced for DSC and RSC ended up with PT as a primary
driver, accompanied in the case of DSC with PST, which is due to the manner in which the algorithm
quantifies the DSC. The current analysis for these two SC patterns suggests that the system was so influenced
by precipitation that the importance of other controls, while physically relevant, were either very difficult
to detect, were relatively unimportant, or were restricted by the constraints of available data. Similarly, no
seasonal variables significantly influenced flushing, dilution, or recovery behaviors, suggesting that seasonal
variation of runoff generation was similarly masked by precipitation characteristics or due to us limiting our
analysis to the snow-free season.

The lack of correlation between antecedent conditions (ΣVPD and ISP) and DSC does not agree with
previous studies, and accordingly is unexpected, as the drying pressure exerted on a catchment influences
the hydrologic storage capacity of its soils, and thus runoff generation (Biron et al. 1999, Detty and McGuire
2010, Grand-Clement et al. 2014). It is possible that there is a threshold system response to drying, rather
than a gradient response, thus revealing no correlations in our analyses pertaining to ΣVPD or ISP. Or,
drying pressure’s effect may be masked by the importance of precipitation amount and intensity. We expect
that this result may change if we had more storms to analyze and could then apply data-intensive, non-
parametric multivariate models (e.g., regression trees) due to the complex nature of hydrologic systems.
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Cumulative vapor pressure deficit did, however, emerge as a driving factor in our multiple linear regression
model for FSC, indicating that the drying pressure exerted on the catchment is a factor in flushing responses.
The antecedent conditions here likely influence the connectivity of soil water to the stream, becoming more
disconnected with greater ΣVPD. As rainfall connects soils to the stream, a stronger pathway is formed,
allowing ions to more freely mobilize. Again, this relationship may become stronger and more clearly
important to FSC with the study of additional storms.

Climate change is causing more intense precipitation events with longer inter-storm periods (Allan and Soden
2008, Yu et al. 2016). Our results indicate a likelihood of higher variability in streamwater SC as these
climate-driven effects take hold. The greater precipitation amounts and intensities will cause higher spikes
in the concentration of solutes at the beginning of a precipitation event and higher dilution of stream solutes
later in events. This may have a negative effect on lotic organisms that rely on certain ranges of SC, or
concentrations of the ions that SC represents, to carry out biologic functions (Daley et al. 2009). And,
depending on the solutes making up the ionic composition of the streamwater, these may impact the waters
used for human consumption. Thus monitoring of SC and automated detection of responses provides an
effective tool for surface water assessments.

CONCLUSION

Our algorithm extracted three chemograph patterns, which routinely appear in response to rain events. Our
comparison of these patterns to independent environmental conditions suggested that the major factors driv-
ing the variability in flushing, dilution, and recovery behavior were the precipitation amount and intensity.
Seasonal variables were largely unimportant at this catchment or overshadowed by the heavy influence of
rainfall. When analyzed using multiple linear regression, antecedent moisture was shown to be a factor in
driving flushing responses, but not in driving dilution or recovery responses. Our methodology can be useful
for analysis of other catchments, revealing functional relationships between independent, environmental vari-
ables and streamwater SC responses. The results of such investigations could help characterize catchments
in a robust, objective, and repeatable manner, with implications for guiding water resource management
decisions.
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Figure Captions and Tables

Figure 1: A conceptual model of the specific conductivity (SC) patterns that streamwater takes during and
after a precipitation event. Highlighted are the aspects that we use to characterize the watershed response
to individual precipitation events: the flush, dilution, and rate of SC recovery. Also shown is the pre-storm
trajectory, or the course of streamwater SC prior to the influence of a precipitation event, which is used to
quantify both the magnitude of the flush and the magnitude of the dilution.

Figure 2: A map of the Clay Brook catchment.

Figure 3: The full record of specific conductivity (SC) and precipitation data for the months we analyzed in
both 2013 and 2014.

Figure 4: A visual representation of the parameter ranges for the Monte Carlo calculations. Parameter A
defined the minimum amount of precipitation for an event to be considered for analysis. Parameter B defined
both the time between individual precipitation measurements that separated unique events, and the range
of time to define the pre-storm trajectory (PST). Parameter D defined the amount of time for a flushing
response to be found after the storm began. Parameter E defined the amount of time for a dilution response
to be found after the flush occurred, or after 6 hours prior to the end of the storm’s precipitation if no
substantial flush was present. Parameter F defined the amount of time in which the slope of the rate of
specific conductivity (SC) recovery was calculated after the dilution. Parameter G defined the number of
standard deviations above or below the PST line that a peak flush or maximum dilution must have exceeded
in order to be declared substantial enough for analysis.

Figure 5: The algorithm-derived points of peak flush and maximum dilution for a precipitation event begin-
ning on May 8, 2013. and their respective distributions. Of note are the three points in which a peak flush
was found across iterations, due to the variable range of Parameter D, and the increasing specific conductiv-
ity (SC) values of those points occurring in time. In this way, the algorithm seeks the truest representation
of a flush over time. A) The distributions of algorithm derived peak flush values (number of times a peak
flush was detected / number of times the precipitation event was detected). B) The median of the extracted
peak flush and maximum dilution values from each of the algorithm’s iterations. These points overlay the
SC data surrounding the precipitation event. The pre-storm trajectory (PST) and rate of SC recovery (RSC)
are also displayed with estimated intercepts for appropriate visual representation. C) The distribution of
algorithm derived maximum dilution values (number of times a maximum dilution was detected / number
of times the precipitation event was detected).

Figure 6: The algorithm-derived points of peak flush and maximum dilution for a precipitation event begin-
ning on October 4, 2014. and their respective distributions. Unlike Figure 5, the earlier point for peak flush
is chosen more frequently by the algorithm because the first has a greater specific conductivity (SC). In this
way, the algorithm retains the truest representation of a flush despite later options being available. A) The
distributions of algorithm derived peak flush values (number of times a peak flush was detected / number
of times the precipitation event was detected). B) The median of the extracted peak flush and maximum
dilution values from each of the algorithm’s iterations. These points overlay the SC data surrounding the
precipitation event. The pre-storm trajectory (PST) and rate of SC recovery (RSC) are also displayed with
estimated intercepts for appropriate visual representation. C) The distribution of algorithm derived maxi-
mum dilution values (number of times a maximum dilution was detected / number of times the precipitation
event was detected).

Figure 7: Kendall’s τ relationships for the magnitude of peak flush (FSC) and A) precipitation intensity
(IP), B) maximum precipitation intensity (IP,max), and C) total precipitation (PT). Whiskers indicate the
interquartile range of the values obtained from the 10,000 iterations. An absence of whiskers indicates 100%
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confidence in the value across all iterations.

Figure 8: Kendall’s τ relationships for the magnitude of maximum dilution (DSC) and A) precipitation
intensity (IP), B) maximum precipitation intensity (IP,max), and C) total precipitation (PT). Whiskers
indicate the interquartile range of the values obtained from the 10,000 iterations. An absence of whiskers
indicates 100% confidence in the value across all iterations.

Figure 9: Kendall’s τ relationships for the rate of specific conductivity recovery (RSC) and A) precipitation
intensity (PT) and B) magnitude of the dilution (DSC). Whiskers indicate the interquartile range of the
values obtained from the 10,000 iterations. An absence of whiskers indicates 100% confidence in the value
across all iterations.

Table 1: Ranges for each parameter’s uniform distribution. The PT is the total precipitation for a storm,
the RSC is the recovery rate of SC after peak dilution, and PST is the pre-storm trajectory.

Parameter Description Distribution

A Minimum PT to qualify a precipitation event 0 to 5 mm
B Maximum amount of time between precipitation measurements to qualify as same event 12 to 24 hours
D Maximum time after beginning of event to find the peak flush 0 to 48 hours
E Maximum time after end of an event to find the maximum dilution 20 min to 48 hours
F Amount of time after a dilution to calculate RSC 0 to 72 hours
G Minimum SC deviation from the PST to qualify a flush or dilution 1 to 3.5 standard deviations

Table 2: Kendall’s τ values of every relationship analyzed. P-values are indicated as follows: *<=0.1;
**<=0.05; ***<=0.01; ****<=0.001.

Variable FSC DSC RSC

IP 0.499**** 0.407*** 0.048
IP,max 0.532**** 0.38*** -0.124
PT 0.405*** 0.628**** 0.564****
ISP 0.064 -0.125 0.077
ΣVPD 0.118 0.016 0.069
TA 0.171 0.175 0.249*
DoY 0.032 -0.132 -0.175
PST -0.212 0.138 -0.021
FSC — -0.011 -0.032
DSC — — 0.45****

FSC = Magnitude of the Flush μS cm-1

DSC = Magnitude of the Dilution μS cm-1

RSC = Rate of Specific Conductivity Recovery μS cm-1 day -1

IP = Precipitation Intensity mm hr-1

IP,max = Maximum Precipitation Intensity mm 20min-1

PT = Total Precipitation mm

ISP = Inter-storm Period days

ΣVPD = Cumulative Vapor Pressure Deficit kPa
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TA = Median Air Temperature ºC

DoY = Day of Year —

PST = Pre-Storm Trajectory μS cm-1 day-1

Table 3: Results of the multiple linear regression analysis. The FSC is the SC flush, the DSC is the maximum
dilution of SC, and the RSC is the recovery rate of the SC from peak dilution.

Dependent
Variable Coefficient

Independent
Variable 1
(Value)

Independent
Variable 2
(Value)

Independent
Variable 3
(Value)

Log FSC -0.41 Log IP (0.39) Log IP,Max (0.47) Log ΣVPD (0.30)
Log DSC -17.14 Log PT (21.29) Pre-Storm Slope

(2.27)
—

RSC -1.34 Log PT (2.43) — —
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