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Abstract

In this paper, it is proposed a quantization procedure for the one-dimensional harmonic os-

cillator with time-dependent frequency, time-dependent driven force, and time-dependent dis-

sipative term. The method is based on the construction of dynamical invariants previously

proposed by the authors, in which fundamental importance is given to the linear invariants of

the oscillator.
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1 Introduction

Dynamical invariants were first used by Ermakov to show the connection between

solutions of some special differential equations, referred to as Steen-Ermakov

equations [1]. These equations were first studied by Steen [2] and then redis-

covered by other authors [3]; [4]. After that, Ray and Reid used the Ermakov

approach to construct invariants for a much broader class of differential equa-

tions [5]; [6]; [7]. This purely mathematical interest was the start point of sig-

nificant developments in classical and quantum dynamics.

The importance of the dynamical invariants of a system should not be under-

rated. In classical mechanics, the dynamical constants of motion are the vari-
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. ables that allow complete integration of dynamical systems. In classical field

theories, symmetries of lagrangian systems are related to continuity equations

and time-invariants through the Noether theorem [8] In quantum field theory,

Casimir invariants of symmetry groups are essential to the understanding of the

fundamental particle structure of our universe [9].

In quantum mechanics, a complete characterization of a quantum system is

achieved by the knowledge of a complete set of time-invariant observables, which

are also generators of a complete symmetry of the system. The process of quanti-

zation, therefore, is accomplished by finding an invariant set of stationary eigen-

vectors which generates, hopefully, a Hilbert space. Symmetries are linked to

invariants, and invariants are linked to the very existence of quantum states, on

a very fundamental level.

In time-dependent systems, dynamical invariants play a major role, since the

energy is no longer conserved, and sometimes even defined. Particularly, in

quantum mechanics, systems with time-dependent Hamiltonians do not have

well-defined energy spectra. Even in the case where a complete basis of eigen-

vectors exists, one cannot be sure that this condition persists in time. When

quantization is allowed, the problem of time-dependent hamiltonians can be

dealt with by finding a hermitian quadratic invariant, for which the eigenvalue

problem is well defined [10]. Time-dependent systems appear in several appli-

cations in physics such as ion traps [11]; [12]; [13], optical cavities [14], and to

perform algorithms in quantum computation [15]; [16].

There are several methods to calculate dynamical invariants. In the classical

case, we have Lutzky’s approach [17]; [18], which consists of the application of

the Noether theorem. Another method is the dynamical algebra approach [19];

[20]. Recently, the authors developed a new way to calculate dynamical invari-

ants [21], which consists of combinations of the equations of motion. These last

two methods can be used in both, classical and quantum cases.

In this work, we show how the definition of first-order invariants allows us to ap-

proach the quantization of the one-dimension time-dependent, damped, driven

harmonic oscillator (TDDDHO). In sec. 2, we follow [21] and calculate the lin-

ear invariants for the TDDDHO by taking the combinations of the equations of

motion. Next, in sec. 3, we construct the quadratic invariant and find a Steen-

Ermakov-like equation. In sec. 4, we perform the quantization of the TDDDHO

using the algebra of the first-order invariants. Sec. 5 presents the coordinate

representation in the form of wave eigenfunctions of the quadratic invariant,

2
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. along with a general expression for the uncertainty relations between the ob-

servables (q, p). In section 6, we address the problem of the dissipative oscillator

with constant parameters and general driven force. Finally, in sec. 7, we present

our main observations.

2 First-order invariants of the oscillator

Let us start with the hamiltonian operator

H =
1

2m
e−G(t)p2 +

1

2
mω2 (t) eG(t)q2 − eG(t)F (t) q, (1)

in which the canonical pair (q, p) are Hilbert space operators with commutation

relations [q, p] = i~1, [q, q] = 0, and [p, p] = 0. The term ω(t) represents a time

dependent angular frequency, F (t) stands for a time dependent driven force,

and G (t) is another time dependent function. These functions are supposed to be

at least of class C2. This operator can be seen as a generalization of the Bateman-

Caldirola-Kanai (BCK) model for the dissipative harmonic oscillator [22]; [23];

[24].

Heisenberg’s equations for the hamiltonian (1) are given by

q̇ = e−Gp/m, (2a)

ṗ = eGF − eGmω2q, (2b)

q̈ =
1

m
F − 2gq̇ − ω2q, g (t) ≡ 1

2
Ġ (t) . (2c)

The function g (t) has the interpretation of a dissipative term.

We proceed by calculating the first-order dynamical invariants related to (2)

with the method proposed by [21]. In this case we define two arbitrary complex

functions α (t) and β (t). Multiplying (2a) by α and (2b) by β, building the linear

combination, and isolating the total time derivative results in the expression

d

dt
(βp+ αmq) =

(
αe−G + β̇

)
p+m

(
α̇− eGω2β

)
q + βeGF. (3)

3
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. Now, we define the function

F (β, t) ≡
∫ t

t0

eG(τ)β (τ)F (τ) dτ, β (t0)F (t0) = 0, (4)

for which we have the identity

βeGF =
dF
dt
. (5)

With (5), we may express (3) in the form

d

dt
(βp+ αmq −F) =

(
αe−G + β̇

)
p+m

(
α̇− eGω2β

)
q.

If the parameters α and β satisfy the ODEs

α+ eG
dβ

dt
= 0,

dα

dt
− eGω2β = 0,

the polynomial

I = βp+ αmq −F (β, t) (6)

becomes a first-order invariant of the system (2).

The functions α and β are not independent solutions, therefore, we may write

(6) depending on β alone:

I = βp−meGβ̇q −F , (7)

where β is now a solution of the equation

β̈ + 2gβ̇ + ω2β = 0. (8)

Now we suppose there is a solution of (8) with the form

4
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.

β ≡ ρ (t) eiφ(t),

with φ(t) and ρ (t) both real functions. Eq. (8) then becomes

ρ̈+ 2gρ̇+
(
ω2 − φ̇2

)
ρ = 0,

2ρ̇φ̇+ ρ
(
φ̈+ 2gφ̇

)
= 0,

and, in this case, it is straightforward to show that

β∗ = ρ (t) e−iφ(t)

is also a solution of (8). Therefore, the operator

I† = β∗p−meGβ̇∗q −F∗ (9)

is also a linearly independent first-order dynamical invariant.

3 The second-order invariant of the oscillator

We may also build quadratic invariants from the equations of motion (2). With-

out the driving force, it would be sufficient to build linear combinations of prod-

ucts of these equations. However, this is not the case when the driving force is

in place. Let us observe the following products between (2a) and (2b):

dq2

dt
=
e−G

m
{q, p} , (10a)

d

dt
{q, p} = 2

e−G

m
p2 + 2eGFq − 2eGmω2q2, (10b)

dp2

dt
= 2eGFp− eGmω2 {q, p} , (10c)

where {q, p} ≡ qp + pq represents the anti-commutator. The r.h.s. of these

equations fail to be purely quadratic forms, because of the presence of the driving

5
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. force. This situation is corrected with the use of the equations of motion (2)

themselves.

Now we take a set of time-dependent functions ci = (c1, c2, c3, c4, c5), build a

linear combination of (2) and (10), and collect the total time derivative. The

result is given by

d

dt

[
c1
q2

2
+

1

2
c2 {q, p}+ c3

p2

2
+ c4q + c5p−F (c5, t)

]
=

=

(
1

2

dc3

dt
+ c2

e−G

m

)
p2 +

(
1

2

dc1

dt
− c2e

Gmω2

)
q2+

+
1

2

(
dc2

dt
+ c1

e−G

m
− c3e

Gmω2

)
{q, p}+

+

(
c2e

GF − c5e
Gmω2 +

dc4

dt

)
q +

+

(
dc5

dt
+ c4

e−G

m
+ c3e

GF

)
p.

Hence, the second-order polynomial

IQ =
c1

2
q2 +

c2

2
{q, p}+

c3

2
p2 + c4q + c5p−F (c5, t) (11)

is a dynamical invariant if the equations

dc3

dt
+ 2

e−G

m
c2 = 0,

dc1

dt
− 2c2e

Gmω2 = 0,

dc2

dt
+ c1

e−G

m
− c3e

Gmω2 = 0,

dc4

dt
+ c2e

GF − c5e
Gmω2 = 0,

dc5

dt
+ c3e

GF + c4
e−G

m
= 0,

are satisfied.

We notice that (11) can be rewritten to depend only on the functions c3 and c5.

Let us rename them as γ and σ, respectively. In this case, the second-order

6
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. invariant is given by

IQ =
1

2

(
meG

)2(1

2

d2γ

dt2
+ g

dγ

dt
+ ω2γ

)
q2 − m

4
eG
dγ

dt
{q, p}

+
γ

2
p2 −meG

(
dσ

dt
+ γeGF

)
q + σp−F (σ, t) , (12)

and ODEs for γ and σ follow:

1

2

d3γ

dt3
+ 3g

d2γ

dt2
+
(
ġ + 4g2 + 2ω2

) dγ
dt

+

(
dω2

dt
+ 4ω2g

)
γ = 0, (13a)

d2σ

dt2
+ 2g

dσ

dt
+ ω2σ = −3

2
eGF

dγ

dt
− eG

(
dF

dt
+ 4gF

)
γ. (13b)

Eq. (13a) above has a first integral given by

d2γ

dt2
+ 2g

dγ

dt
+ 2ω2γ =

1

2γ

(
dγ

dt

)2

+ e−2GC, (14)

which can be turned into a Steen-Ermakov-like equation through the change of

variables γ = r2:

d2r

dt2
+ 2gr3dr

dt
+ ω2r =

e−2GC

2r3
. (15)

The Steen-Ermakov equation itself is obtained when g = 0. The equation for σ is

relevant only if the force term is present. Otherwise, the above invariants resem-

ble the case of the oscillator with time-dependent frequency already addressed

in the ref. [21].

4 Quantization of the oscillator

Now we wish to explore the fact that the first-order operators (7) and (9) are

two dynamical invariants of the oscillator if β and β∗ are two L.I. solutions of

(8). The commutation relations are found to be

7
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. [
I, I†

]
= Ω1, Ω ≡ im~eGW, and W ≡ β̇∗β − β∗β̇.

The remaining relations are just [I, I] =
[
I†, I†

]
= 0. In fact, using (8) it is

straightforward to see Ω is a constant of motion by itself.

We define the operators

a ≡ I√
Ω
, a† ≡ I†√

Ω
, (16)

which obey the commutation relations

[
a, a†

]
= 1, [a, a] =

[
a†, a†

]
= 0.

Since a and a† are invariants, any product between them is also a dynamical

invariant. This fact allows the introduction of the number operator

n̂ ≡ a†a, (17)

which is a time-conserved self-adjoint quadratic quantity. The quantization is

performed by assuming the existence of a complete set of eigenstates |n〉, i.e.,

n̂ |n〉 = n |n〉 ,

where n is a positive real number, because of the positivity of the inner product.

The complete algebra of the oscillator is shown to be given by

[
a, a†

]
= 1, [n̂, a] = −a,

[
n̂, a†

]
= a†, (18)

from where we derive

a |n〉 =
√
n |n− 1〉 , a† |n〉 =

√
n+ 1 |n+ 1〉 , (19)

therefore, a and a† are ladder operators. As usual, we suppose the existence of

a fundamental state, defined by a |0〉 = 0, and therefore n must be a natural

8
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. number. All other eigenstates can be derived from

|n〉 =

(
a†
)n

√
n!
|0〉 , (20)

and the quantization procedure is complete.

We see that the dynamical algebra of the operators n̂, a, and a†is the same as of

the simple harmonic oscillator, so it is the Hilbert space spanned by the |n〉 states.

What is distinct among the several possible choices of the parameters (g, ω,F)

are the behavior of the physical characteristic functions of the model, as the

energy values, expected values, and others.

5 Eigenvalue solutions, eigenfunctions, and uncer-

tainty

Let us now show the explicit form of the number operator:

n̂ = a†a =
1

Ω

(
1

2

[
I†, I

]
+

1

2

{
I†, I

})
=

1

2

(
1

Ω

{
I†, I

}
− 1

)
.

The quantity 1
2

{
I†, I

}
is also a quadratic self-adjoint dynamical invariant, cal-

culated by

1

2

{
I†, I

}
= β∗βp2 − 1

2
meG

(
β∗β̇ + β̇∗β

)
{q, p}+m2e2Gβ̇∗β̇q2

− (β∗F + F∗β) p+meG
(
β̇∗F + β̇F∗

)
q +

1

2
F∗F .

The definition of the real function γ ≡ 2β∗β results in the expression

1

2

{
I†, I

}
=

1

2

(
meG

)2(1

2

d2γ

dt2
+ g

dγ

dt
+ ω2γ

)
q2 − 1

4
meG

dγ

dt
{q, p}+

1

2
γp2

− (β∗F + F∗β) p+meG
(
β̇∗F + F∗β̇

)
q +

1

2
F∗F .

Now, we define σ ≡ −β∗F − F∗β, which leads to

9
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.

β̇∗F + F∗β̇ = −
(
dσ

dt
+ γeGF

)
.

On the other hand, F∗F = F (β∗, t)F (β, t) = −2F (σ, t). Therefore,

1

2

{
I†, I

}
=

1

2

(
meG

)2(1

2

d2γ

dt2
+ g

dγ

dt
+ ω2γ

)
q2 − 1

4
meG

dγ

dt
{q, p}+

1

2
γp2

−meG
(
dσ

dt
+ γeGF

)
q + σp−F (σ, t) ,

which is precisely the second-order invariant (12). The above result implies

IQ = Ω

(
n̂ +

1

2

)
, (21)

so IQ has the same eigenstates of n̂.

Moreover, considering 〈q |a| 0〉 = 0, and the eigenvalue problem q |q′〉 = q′ |q′〉,
the eigenfunction of the fundamental state obeys the equation

(
F +meGβ̇q + i~β

d

dq

)
ψ0 (q) = 0,

which has the solution

ψ0 = A exp

[
−1

2

1

i~β

(
meGβ̇q2 + 2Fq

)]
, (22)

with the normalization constant

A =

(
1

2π~2

Ω

β∗β

)1/4

exp

[
−
(

1

β∗β

)2 1

Ω
(Im (β∗F))2

]
.

The complete set of normalized eigenfunctions are found to be

ψn =
1√

2n · n!

(
i

√
β∗

β

)n
ψ0Hn

[√
Ω

2β∗β

(
q

~
+

2

Ω
Im (β∗F)

)]
, (23)

where Hn(x) are the Hermite polynomials. Here, we stress the fact that (23) are

eigenfunctions of the operator IQ, but they are also solutions of the Schrödinger

10
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. equation (i~∂t −H)ψ = 0. These states are the same found in [25], where cohe-

rent states of the general one-dimensional oscillator are discussed.

Writing the canonical variables in the form

q =
i~√
Ω

(
β∗a− βa†

)
− 2

~
Ω

Im (β∗F) ,

p =
im~eG√

Ω

(
β̇∗a− β̇a†

)
− 2m~eG

Ω
Im
(
β̇∗F

)
,

allows us to calculate the uncertainty relations

(∆q)2
n (∆p)2

n =
2m2~4e2G

Ω2
γβ̇∗β̇

(
n+

1

2

)2

.

6 The underdamping oscillator

Let us analyze the case g2 ≤ ω2 with both ω and g constant parameters, and F =

F (t) still arbitrary. In this case, the function G should be linear in t. Let us

suppose it to have the form of G = 2gt. We also have the solution

β = exp(−gt) exp(iω̄t), ω̄2 ≡ ω2 − g2, (24)

while β∗ is just the complex conjugate. With (24), the linear dynamical invariants

of the system become

I = eiω̄t
[
e−gtp+m (g − iω̄) egtq − e−iω̄tF

]
,

together with the adjoint operator I†. We also have the function Ω = 2mω̄~,

which gives the ladder operators

a =
eiω̄t√
2mω̄~

[
e−gtp+m (g − iω̄) egtq − e−iω̄tF

]
,

and the adjoint a†.

In this case, the quadratic invariant can be found from (12):

11
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.

IQ = e−2gtp2 +m2ω2e2gtq2 +mg {q, p}

−meG
(
dσ

dt
+ γeGF

)
q + σp−F (σ, t) . (25)

Note that IQ is an invariant observable, so the invariant eigenvalues

In = 2mω~
(
n+

1

2

)
(26)

represent invariant characteristic values of the oscillator.

It is possible to calculate the fundamental eigenfunction with the use of (22),

resulting in the normalized function

ψ0 = egt/2
(mω̄
π~

)1/4

exp

[
− 1

2m~ω̄
e2gt

(
Im
(
e−iω̄tF

))2]×
× exp

(
− i

2

mḡ

~
e2gtq2 +

i

~
e−iω̄tFegtq

)
(27)

where g ≡ g − iω. A straightforward calculation shows that

ψn =
(i)n√
2n · n!

e−inω̄tψ0Hn (x) (28)

are the normalized eigenfunctions, where

x =

√
mω̄

~
egtq −

√
1

m~ω̄
Im
(
e−iω̄tF

)
.

Moreover, we have the uncertainty relations

(∆q)2
n (∆p)2

n = ~2 ω̄
2 − g2

ω̄2

(
n+

1

2

)2

,

which are time-independent.

Let us display some results for the case F = F0 sin (αt). Since the force term

does not change the differential equations for β and β∗, their solutions are the

12
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. same as the ones proposed in this section. Now that we have a force term we

need to calculate F given by (4), resulting

F = F0e
ḡ∗t g

∗ sin (αt)− α cos (αt) + αe−ḡ
∗t

(g∗)2 + α2
.

The parameter σ is given by

σ =
−2F0[(

g2 − ω2 + α2
)2

+ 4ω2g2
] {2ωg

[
ω sin(αt)− αe−gt sin(ωt)

]
+
(
g2 − ω2 + α2

) [
g sin(αt)− α cos(αt) + αe−gt cos(ωt)

]}
,

and F(σ, t) becomes

F (σ, t) =
−2F 2

0 e
2gt[(

g2 − ω2 + α2
)2

+ 4ω2g2
] {[ω sin(αt)− αe−gt sin(ωt)

]2
+
[
g sin(αt)− α cos(αt) + αe−gt cos(ωt)

]2}
.

The simple harmonic oscillator is trivially recovered in the case G = 0, ω = ω,

and F = 0, which also gives the condition σ = 0.

7 Further observations

In this work, we showed a procedure for the quantization of the harmonic os-

cillator with time-dependent frequency, time-dependent driven force, and time-

dependent dissipative term. The procedure is based on the construction of the

linear invariants of the BCK Hamiltonian (1), which turns out to be ladder ope-

rators. We also construct the Hilbert space of the system and calculate the wave

eigenfunctions.

This approach shows that the fundamental quantities turn out to be the linear

invariants. Other attempts of analyzing the quantum oscillator from the dyna-

mical invariant point of view can be found in the literature, most of them are

based on the second-order invariant (16) as the proper Hamiltonian operator, as

the case of [26]. However, the fundamental role of the linear invariants for the

13
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. quantization of the oscillators can be found in [27]; [25]. In fact, the procedure

of the ref. [25] is very close to the one employed here. In the case of the under-

damped oscillator, we also report to the refs. [28], where the authors propose a

quantization procedure based on the construction of first-order actions, and also

to the ref. [29].

We found that the abstract Hilbert space of the general quadratic oscillator is

the same as the simple harmonic oscillator. However, it is not a surprise that

the same is not observed with the solutions of the Schrödinger equation, which

are also eigenfunctions of the quadratic invariant IQ. The wave functions ψn

are time-dependent and lead, in the general case, to time-dependent expectation

values and uncertainty relations for the canonical operators. In the special case

of constant parameters, however, the uncertainty relations between q and p are

time-independent.

We note that the procedure in [21] does not need a Hamiltonian function, but

can be implemented from the equation of motion (2c). However, some caution

would be advised. First, the first-order equations,

ẋ = y, ẏ = −Ġy − ω2x+ F/m,

do not constitute a canonical system, since it is not compatible with the condi-

tion [x, y] = i~. A direct calculation shows that

d

dt
[x, y] = −Ġ [x, y] , =⇒ [x, y] = i~ exp

(
−Ġt

)
.

This result alone would make us believe that the system is indeed dissipative sin-

ce it is clear that the allowed classical states would collapse to the zero volume

in time. However, if there would be a local transformation to a set of canonical

variables, a volume preserved phase-space would emerge. This phase-space would

obey the Darboux and the Liouville theorems. The condition for the existence

of such transformation is given by {x, y} = e−Ġt, where {•, •} are the Pois-

son brackets with respect to the variables (q, p). This condition is indeed quite

general. However, the only allowed transformation that leads to the two first

equations of (2a) is given by x = q, and y = e−Ġt/2p provided G is homogeneous

of degree zero. Both sets of first-order equations are not generally compatible.

14
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