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Abstract

DNA metabarcoding has become a powerful approach for analyzing complex communities from environmen-
tal samples, but there are still methodological challenges limiting its full potential. While conserved DNA
markers, like 16S and 18S, often are not able to discriminate among closely related species, other more va-
riable markers — like the fungal ITS region, may include considerable intraspecific variation, which can lead
to over-splitting of species during DNA metabarcoding analyses. Here we assess the effects of intraspecific
sequence variation in DNA metabarcoding, by analyzing local populations of eleven fungal species. We inves-
tigated the allelic diversity of ITS2 haplotypes using both Sanger sequencing and high throughput sequencing
(HTS), coupled with error correction with the software dada2. All focal species, except one, included some
level of intraspecific variation in the I'TS2 region. Overall, we observed a high correspondence between haplo-
types generated by Sanger sequencing and HTS, with the exception of a few additional haplotypes detected
using either approach. These extra haplotypes, often occurring in low frequencies, were likely due to PCR
and sequencing errors or intragenomic variation in the rDNA region. The presence of intraspecific (and pos-
sibly intragenomic) variation in ITS2 suggest that haplotypes (or ASVs) should not be used as basic units
in ITS-based fungal community analyses, but an extra clustering step is needed to approach species-level
resolution.
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Introduction

High throughput sequencing (HTS) of amplified markers i.e. DNA metabarcoding has become a powerful tool
to study microbial communities (Taberlet, et al. 2012; Lindahl, et al. 2013; Goodwin, et al. 2016; Taberlet, et
al. 2018). DNA metabarcoding has considerably improved our understanding of the structure and function
of microbial communities in different habitats (Tedersoo, et al. 2014; Bahram, et al. 2018), and is also a
well-established approach for surveying the biodiversity (Barsoum, et al. 2019) and ecosystem biomonitoring
(Douglas, et al. 2012; Stat, et al. 2017).

The commonly used DNA barcoding region for microorganisms lie within the nuclear ribosomal DNA (rD-
NA). Parts of this region offer conserved primer sites that can be used to amplify broad taxonomic groups,
combined with areas of high interspecific and low intraspecific variation in-between, which can provide some
degree of taxonomic resolution. The most used rDNA barcoding markers for microorganisms include the
Internal Transcribed Spacer (ITS) region for fungi (Nilsson, et al. 2008; Schoch, et al. 2012), the 16S region
for bacteria (Stackebrandt and Goebel 1994) and the 18S region for micro-eukaryotes (Hadziavdic, et al.
2014). Due to different evolutionary rates, these markers include contrasting levels of sequence variability
and, thus, provide various levels of resolution. In general, the fungal I'TS marker includes considerably more
sequence variability compared to 18S, and consequently provides higher interspecific resolution, but also
some degree of intraspecific variability (Nilsson, et al. 2008; Schoch, et al. 2012).

Although often ignored, the peculiarities of these taxonomic markers imply that the sequences should be
processed differently during DNA metabarcoding analyses. For example, in the case of more conserved
markers, like 16S and 18S, merging of taxa is a common problem as it underestimates the species diversity,
while for the variable ITS marker, splitting of taxa based on intraspecific sequence variation is also a concern
in community analyses. In addition, PCR and sequencing errors introduce artificial sequence variation that
can be hard to disentangle from naturally occurring intraspecific sequence variability.

A wide array of different bioinformatics approaches has been developed to group and delineate the HTS data
into biological entities that are used downstream in community analyses. One first approach was to cluster
sequences into operational taxonomic units (OTUs; approximations for biological taxonomic entities), based
on a fixed sequence similarity threshold (Schloss, et al. 2009; Caporaso, et al. 2010; Edgar 2013; Westcott and
Schloss 2015). Later, more elaborate approaches were developed in order to better distinguish between PCR



and sequencing artefacts and biological sequence variation (Mahe, et al. 2015; Boyer, et al. 2016; Callahan,
et al. 2016), and thus, return OTUs better approximating the biological entities.

Although somewhat different solutions have been developed in various software (Pauvert, et al. 2019), a
common basic aim in the more recent methods is to identify the underlying haplotypes, present in the
template DNA, that gave rise to all the sequence variability generated during PCR and sequencing. In a
recent study (Callahan, et al. 2019), it was shown that the software dada2 is able to provide single-nucleotide
resolution when analyzing the entire bacterial 16S region. The term amplicon sequence variants (ASVs) has
been coined for the output of dada2 analyses, which are approximations for the underlying haplotypes. For
conserved markers like 16S and 18S, where one single base pair difference can reflect, at least, differences
between species and genera, it has been suggested to use ASVs as input for downstream analyses (Callahan,
et al. 2017). However, for markers with high level of intraspecific variation, like the ITS marker used for fungi
(Nilsson, et al. 2008), this can be highly problematic since the diversity will be tremendously overestimated
by treating each ITS haplotype as a biological entity in downstream statistical analyses. Hence, the ASVs
will (at best) represent different allelic variants of ITS region, while community ecology is typically based on
species-level analyses. To correct for the intraspecific ITS variation, an extra clustering step may be needed
to group haplotypes (or ASVs) into species-level OTUs. For fungi and the ITS region, it has been debated at
which similarity level sequences should be clustered to approximate the species-level (Caporaso, et al. 2010;
Edgar 2013; Westcott and Schloss 2015). Several studies have indicated that 97% represents a reasonable
approximation (Nilsson, et al. 2008; Blaalid, et al. 2013). However, such a general threshold might lead to
splitting of some taxa and lumping of others (Blaalid, et al. 2013).

Despite the high level of intraspecific ITS sequence variation in fungi, we have little knowledge on how this
variation translates into OTU delineation in DNA metabarcoding studies of fungi communities. Here, we
assess how DNA metabarcoding, using the fungal ITS2 marker, is able to deal with intraspecific sequence
variation, and to what degree this variation leads to over-splitting of taxa. To address this topic, we performed
DNA metabarcoding on 176 fungal specimens of 11 basidiomycetes species and compared to the corresponding
Sanger sequences. By denoising the sequence data using dada2 (Callahan, et al. 2016), we tested whether the
same ITS2 haplotypes were identified by DNA metabarcoding and Sanger sequencing, and to what degree
further sequence clustering is needed to approach species-level resolution.

Material and Methods

Eleven wood-decay fungal species (Table 1) were sampled in an old-growth spruce forest in Southeastern
Finland (Issakka, Kuhmo). For each species, 16 individual fruit bodies were collected on distinct spruce logs.
Given that these fungi typically spread by sexual basidiospores, no clonal dispersal between spruce logs is
expected. The fruit body tissue of these fungi is made up of dikaryotic hyphae and heterozygous genotypes
are therefore expected if intraspecific ITS2 variation is present (see Fig. S1 for example).

Approximately five square millimeter (mm?) of tissue were cut out from each fruit body and grinded in 800
ul of 2% CTAB and 1% beta-mercaptoethanol using a Retsch MM200 mixer (4 x 45 s at 25 oscillations).
DNA was extracted using a modified CTAB extraction protocol (Murray and Thompson 1980; Gardes and
Bruns 1993) and cleaned with the E.Z.N.A Soil DNA kit (Omega Biotek) by adding the HTR reagent and
then following the manufacturer s guidelines. DNA was eluted in 100 pl elution buffer, quantified with Qubit
ds DNA BR Assay kit (Life Technologies) and standardized with 10 mM Tris to a concentration range of
5-10 ng/pl.

The 176 fruit body DNA samples were processed into 2 x 96-well PCR plates, together with 16 technical
PCR replicates, two identical mock communities (composed of six fungal species with low probability of
occurrence in our dataset), and two negative PCR controls. Each library was amplified using a combination
of 96 uniquely tagged primers with tags (z ) ranging from 7-9 base pairs. The fungal ITS2 region was
targeted with the gITS7 (5-2 GTGAR TCATCGAR TCTTTG) (Ihrmark, et al. 2012) and ITS4 (5-
z CTCCGCTTATTGATATG) (White, et al. 1990) primers. The PCR mixture in 25 pl final volume,
consisted of 14.6 pl Milli-Q water, 2.5 pl 10x Gold buffer, 0.2 yl ANTP’s (25 nM), 1.5 pl reverse and forward



primers (10 pM), 2.5 ul MgCly (50 mM), 1.0 pl BSA (20 mg/ml), 0.2 ul AmpliTaq Gold polymerase (5 U/ul)
and 5-10 ng/pl of DNA template. The following cycling parameters were used for amplification: enzyme
activation at 95 °C for 5 min, followed by 32 cycles of denaturation at 95 °C for 30 s, annealing at 55 °C for
30 s, extension at 72 °C for 1 min, and a final extension step at 72 °C for 10 min.

The quality of PCR products was controlled by electrophoresis on a 2% agarose gel prior to normalization
using the SequalPrep Normalization Plate Kit (Invitrogen) and eluted in 20 pl elution buffer. The 96 PCR
products within each library were pooled, concentrated and purified using Agencourt AMPure XP magnetic
beads (Nerliens Meszansky AS) and the DNA concentration was measured with Qubit ds DNA BR Assay
kit (Life Technologies). The two libraries were barcoded with Illumina adapters, spiked with 20% PhiX and
sequenced in one Illumina MiSeq (Illumina, San Diego, CA, USA) lane with 2x300 base pair paired-end
reads at StarSEQ (StarSEQ GmbH, Mainz, Germany).

For comparison, we generated Sanger sequences of ITS2 for the 176 fruiting bodies. Amplification was
performed with ITS3 (5-GCATCGATGAAGAACGCAGC) and ITS4 (5-TCCTCCGCTTATTGATATGC)
primers (White, et al. 1990), with the same PCR mix and program as above. The resulting amplicons
were cleaned with ExoProStar (Sigma Aldrich) and sequenced in both directions by Eurofins Genomics
(Ebersberg, Germany)

The resulting metabarcoding dataset comprised 25,953,804 reads. The sequences were demultiplexed with
cutadapt (Martin 2011) and low quality reads were removed (at least 26 bp overlap between query and target,
no indel and minimum length of 100 bp). dada2 (Callahan, et al. 2016) was used for error correction and
merging of the reads, without truncating the sequences in order to preserve length variability. Taxonomy
was assigned to the raw ASVs by the unite database (Koljalg, et al. 2005) , and the resulting ASV table
consisting of 3,647 sequences. For downstream analyses, we retained only 57 sequences assigned to the 11
target species, numerous others occurred in the HTS data because of fungicolous fungi growing inside the
fruit bodies.

Both the ASVs and the Sanger sequences were further processed in geneious prime 2020.0.5
(https://www.geneious.com). The Sanger sequences were manually curated and poor-quality sequences were
excluded from the dataset. Heterozygous sites were characterized according to the IUPAC nucleotide code,
and the forward and reverse reads were merged when possible (depending on quality). Separate sequence
alignments were generated from ASVs and Sanger sequences, which were then merged to a single alignment
for each species.

The Sanger sequences, many with heterozygous sites due to allelic variability in the dikaryotic tissue, were
dephased i.e the consensus sequence of each sample was split into two homozygous sequence strands, and
analyzed for DNA polymorphisms in dnasp v.6 (Rozas, et al. 2017). Hence, for each species, we obtained
one haplotype dataset from the Sanger sequences and another from the HTS and compared their relative
abundance in R (v 3.6.2; R Core Team 2019). Haplotype networks for the 11 species were generated with
popart (Leigh and Bryant 2015), displaying the level of intraspecific variation in ITS2. In the calculation of
haplotype network, indels were scored as characters, where multi-position gaps were scored as one mutational
event. A biplot showing the correspondence in relative abundance of each haplotype across the two datasets
was made in R (v 3.6.2; R Core Team 2019). At last, the sequences from the two haplotype datasets were
clustered with 97% identity by VSEARCH (Rognes, et al. 2016).

Results

We obtained high quality ITS2 Sanger sequences for 151 out of 176 fruit bodies, ranging from 6 to 16 fruit
bodies per species. The remaining fruit bodies either did not amplify or resulted in low-quality sequences,
due to fungicolous fungi growing inside the fruit bodies (generating multiple templates) or high level of
heterozygosity of indels, leading to chromatograms hard to interpret. The ITS2 sequences were dephased
into one to six ITS2 haplotypes per species (Table 1), identifying a total 45 haplotypes from the Sanger
dataset. For all species, except Amylocystis lapponica represented by haplotype, some level of intraspecific
ITS2 sequence variation were present in the local population.



Although we obtained HTS data for 163 out of 176 fruit bodies distributed across the eleven species, for
comparative purposes we only focused on the specimens for which Sanger sequences were available. After
removing all ITS2 sequences corresponding to fungicolous fungi, a total of 2,316,395 ITS2 sequences were
attributed to the 11 target species. After denoising the sequences using dada2 and removing five additional
chimeric sequences, we identified between 1 and 8 haplotypes (ASVs) for each species (Table 1), in total 57
haplotypes.

Overall, we detected 65 haplotypes, of which 37 (57%) were shared between the two approaches (Table S1),
eight (12.3%) only from Sanger sequencing, while 20 (30.8%) were specific to the HTS data. With some
exceptions, a high correspondence was found in the relative abundance of haplotypes across the two datasets
(Fig. 1). The haplotype networks (Fig. 2) illustrate the relationship between the haplotypes identified
from the two datasets and demonstrate the level of intraspecific variation across species, varying from one
haplotype (inAmgylocystis lapponica ) to eleven (in Phellopilus nigrolimitatus ). The networks also indicate
that most haplotypes were closely related, separated by a few mutational steps. Five haplotypes were in
very low abundance in the HTS dataset, ten folds lower than what would be expected from a single allele
being present in the population (i.e. total read number divided by number of alleles, Table S1). These rare
haplotypes likely represent PCR, and sequencing errors, or alternatively, intragenomic variation.

After clustering the sequences with 97% identity, we obtained 13 clusters or OTUs for the 11 species. Each
species was represented by one OTU, exept for two, Phellopilus nigrolimitatus and Phlebia centrifuga , which
were represented with two OTUs.

Discussion

In general, we observed a good correspondence between the two methods, Sanger sequencing versus DNA
metabarcoding, in assessing allelic variation in the ITS2 marker across the eleven fungal species, with 57%
of the detected haplotypes shared across the two datasets. We also observed a high correlation in relative
abundances of haplotypes across the datasets, where the most striking mismatches were caused by single base
pair indels. The additional haplotypes detected by one of the approaches can either be due to methodological
errors introduced at various steps, or they may represent de facto sequence variation that one of the methods
failed to detect.

In some fungal species, intragenomic variation in I'TS occurs due to lack of concerted evolution homogenizing
the paralogs (Lindner and Banik 2011). Such variation is hard to detect with direct Sanger sequencing, since
a consensus sequence is derived from the multiple DNA templates. Although intragenomic ITS paralogs are
rare (Lindner, et al. 2013), we cannot rule out the possibility that some of the extra haplotypes detected by
HTS represent ITS paralogs.

Alternatively, some of the unique haplotypes appearing in low abundance in the DNA metabarcoding dataset
might be due to PCR errors introduced during the initial PCR cycles and that dada2 failed to identify as
artifacts. Although dada2 algorithm has a chimeric sequence filter implemented, five chimeric haplotypes
occurred in the filtered DNA metabarcoding dataset, with chimeric breakpoints towards either the beginning
or the end of the sequences. This exemplifies that a few haplotypes (ASVs), can be erroneous even after
dada2 processing. By analyzing full-length 16S rRNA of mock communities of bacteria sequenced with
PacBio SCC, a high correspondence was detected between the original templates and the obtained ASVs
(Callahan, et al. 2016). However, also in this case, some additional ASVs detected were either due to
PCR or sequencing errors, or alternatively, intragenomic 16S variation (Vétrovsky and Baldrian 2013). It is
important to keep in mind that ASVs are probabilistic sequence reconstruction based on error models and
thus have an associated uncertainty. When it comes to the additional haplotypes in the Sanger dataset, this
could result from erroneous dephasing of the original Sanger sequences.

For all the target species, except one, some level of intraspecific variation in the ITS2 region was detected,
even at the fine geographic scale (i.e. a single forest). This corresponds well with the previous literature
on intraspecific ITS variability in the fungal kingdom (Smith, et al. 2007; Nilsson, et al. 2008). Nilsson
et al. (2008) reported an intraspecific sequence variability of 3.33% (& standard deviation of 5.62) for



Basidiomycota. For some of the target species, sequence variation in the ITS region has been previously
reported across broader spatial scales (Kauserud and Schumacher 2002; Kauserud and Schumacher 2003), in
line with our results.

It has recently been advocated to use the term ASVs (in our study largely referred to as haplotypes) as the
basic units in microbial community analyses (Callahan, et al. 2017). Indeed, this is a reasonable approach
for conserved markers, like 16S and 18S, when a single base pair mutation may separate between species
or even genera. This is however not the case for variable markers with intraspecific variation. Our results
show that in the variable ITS marker, a clustering step is needed after error correction to approach species-
level resolution. After clustering our haplotypes, we obtained 13 OTUs representing the 11 species, with
two species represented by two haplotypes. The importance of this depends on the study aims. In studies
emphasizing beta diversity (community turnover), it has previously been shown that comparable results
can be obtained using ASVs or OTUs representing sequence clusters (Glassman and Martiny 2018). In line
with this, Botnen et al (2018) demonstrated that beta diversity patterns are highly robust against different
clustering levels, ranging from 85% sequence similarity to 99%, both for ITS and 16S data. The most frequent
OTUs (or ASVs) drive the community pattern and they largely show the same distributions across different
data treatments (Botnen, et al. 2018).

According to our results, we conclude that DNA metabarcoding, based on HT'S and error-correction with da-
da2, to a large extent reflects the allelic variation in natural populations and is a powerful approach to resolve
complex communities. Given the limitations of DNA metabarcoding to separate closely related species when
targeting single DNA marker, multiple independent DNA markers are often required to improve taxonomic
resolution. Yet, we are still not in a position to generate multi-locus datasets from most environmental samp-
les. Alternatively, third generation sequencing technologies (e.g. PacBio, Oxford Nanopore) are promising
to generate longer barcodes (e.g. 500-1500 bp for 16S, > 700 bp for ITS and 650 bp for COI) and improve
taxonomic resolution (Kennedy, et al. 2018; Tedersoo, et al. 2018). To head towards this direction, we will
require databases with higher coverage of different regions to provide more reliable taxonomic classification,
in addition to suitable bioinformatics tools.
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Tables

Table 1. Comparison of Sanger and HTS sequences. Only specimens for which sequences were obtained
from both approaches are shown. Sequence length (base pair) is the overlap between Sanger and HTS
sequence alignments, number of dephased sequences correspond to the I'TS2 sequence from each dikaryotic
(n+n) individual and ASVs stands for amplicon sequence variants. Total haplotypes (Hap.) include common
haplotypes from both Sanger and HTS and additional haplotypes identified by either approach.

Sequence Sanger Sanger Sanger
length se- se- se-

Species Specimen (bp)? quences quences quences ASVs ASVs ASVs
Dephased  PolymorphicHap. Reads PolymorphicHap.
sequences  sites sites

Amylocystis 9 308 18 0 1 66,364 0 1

lappon-

ica

Antrodia 16 188 32 3 4 178,787 3 4

serialis

Fomitopsis 16 229 32 5 5 238,143 7 8

pini-

cola

Fomatopsis 15 277 30 5 ) 168,991 6 8

roseaq

Gloeophyllum6 271 32 5 5 429,990 5 5

separ-

wum

Phlebia 16 276 32 1 2 355,067 10 4

cen-

trifuga



Sequence Sanger Sanger Sanger
length se- se- se-
Species Specimen (bp)? quences quences quences ASVs ASVs

ASVs

Phellinus 16 282 32 5 4 178,295 5
ferrugi-

neofus-

cus

Phellopilus 6 296 12 9 6 46,677 8
ni-

grolim-

itatus

Phellinus 16 281 32 4 5 120,306 4
viticola

Postia 10 232 20 2 3 191,483 10
caesia

Trichaptum 15 268 30 7 ) 148,066 7
abiet-

mum

Figures

Figure 1. Biplot showing the correspondence of haplotypes in relative abundance across the two datasets
(Sanger sequencing on x-axis and HTS on y-axis).

Figure 2. Haplotype networks displaying the level of intraspecific variation in ITS2 for the 11 fungal species.
Each circle represents one haplotype and each dash represent one mutational step. Green color indicates
haplotypes detected both by Sanger sequencing and HTS, yellow haplotypes from HTS dataset, and blue
haplotypes were only detected by Sanger sequencing. Red arrows indicate haplotypes occurring with very
low sequence abundance in the HTS data i.e. 10 times below what would be expected from a single allele in
the population. The naming of haplotypes (Hap-1 to Hap_65) follows Table S1.
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Amylocystis lapponica Antrodia serialis Fomitopsis pinicola

. Hap_1

Hap_8

Hap_5 Hap_3 Hap_2 Hap_4

Fomitopsis rosea Gloeophyllum sepiarium

Hap_17

Hap_27 . .
Phlebia centrifuga

N

Hap_20

Hap_16

Hap_30 Hap_29 Hap_31 Hap_32

Phellinus ferrogineofuscus

Hap_36 Hap_34 Hap_37 Hap_33 Hap_35

Hap_45
Phellopilus nigrolimitatus

74

Hap_48

Hap_44
Phellinus viticola

Postia caesia Trichaptum abietinum Hap_39

Hap_56

Hap_52 Hap_53
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