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Abstract

This study aims to describe and demonstrate the applicability of a novel approach used to develop and test new methods based
on species distribution models (SDMs) to establish spatial predictions of EBVs for birds based on bird diversity metrics, such as
the distributions of properties of key bird habitats. A major objective of this study is to determine how to build bird SDMs that
can be used to derive spatial EBVs for birds at a regional scale. We used as predictors 16 environmental variables considered
ecologically meaningful for birds at 100 m spatial resolution, including two bioclimatic variables (Bio17 = precipitation of driest
quarter and Bio7 = temperature annual range) for three periods: ‘current’, ‘future 2050’, and ‘future 2070’, eleven land-cover
(land use) predictors (forest edge, arable land, coniferous forest, broadleaf forest, clear-cut forest, vineyard, settlement area,
river, lake, meadow, and swamp forest), the normalized difference vegetation index (NDVI) and two topographic variables: slope
and topography. We used multiple modelling techniques in the biomod2 package in R v3.3 to build presence-only SDMs relating
bird presence to environmental features for each species. Here, we show that the suitability estimated according to the SDMs
can be used as a spatial ‘species distribution’ EBV (SD EBV) and reflect the habitat quality and trends in climatic and land
use impacts on populations of bird species. These developments should facilitate bird monitoring and management across space
and time, ultimately helping to identify priority bird conservation areas, estimate habitat suitability and provide early warning
signs regarding bird distribution trends. In general, bioclimatic variables, topography and forest structure were indicated to
have an important relation to the species probability maps generated on the basis of the SDMs, signifying a dominant role of
bioclimatic variable Bio17 in the development of habitat suitability patterns.

Abstract

Biodiversity includes many dimensions, and identifying which of them are essential is key to successful mon-
itoring. For this reason, the concept of essential biodiversity variables (EBVs) was introduced, representing
biological state variables or a group of linked variables that are measurable at particular points in time and
space to document biodiversity change. In this study, among the different classes of EBVs, we selected the
‘species population’ class. We focused our study on subclasses of species distributions that can be described
as species presence or absence based on observations that have specified spatial and temporal dimensions.
This study aims to describe and demonstrate the applicability of a novel approach used to develop and test
new methods based on species distribution models (SDMs) to establish spatial predictions of EBVs for birds
based on bird diversity metrics, such as the distributions of properties of key bird habitats. A major objective
of this study is to determine how to build bird SDMs that can be used to derive spatial EBVs for birds at
a regional scale. We used as predictors 16 environmental variables considered ecologically meaningful for
birds at 100 m spatial resolution, including two bioclimatic variables (Bio17 = precipitation of driest quarter
and Bio7 = temperature annual range) for three periods: ‘current’, ‘future 2050’, and ‘future 2070’, eleven
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land-cover (land use) predictors (forest edge, arable land, coniferous forest, broadleaf forest, clear-cut forest,
vineyard, settlement area, river, lake, meadow, and swamp forest), the normalized difference vegetation in-
dex (NDVI) and two topographic variables: slope and topography. We used multiple modelling techniques
in the biomod2 package in R v3.3 to build presence-only SDMs relating bird presence to environmental
features for each species. Here, we show that the suitability estimated according to the SDMs can be used
as a spatial ‘species distribution’ EBV (SD EBV) and reflect the habitat quality and trends in climatic and
land use impacts on populations of bird species. These developments should facilitate bird monitoring and
management across space and time, ultimately helping to identify priority bird conservation areas, estimate
habitat suitability and provide early warning signs regarding bird distribution trends.

In general, bioclimatic variables, topography and forest structure were indicated to have an important
relation to the species probability maps generated on the basis of the SDMs, signifying a dominant role of
bioclimatic variable Bio17 in the development of habitat suitability patterns.

Keywords : Essential biodiversity variables, species distribution modelling, species distribution essential
biodiversity variables (SDEBV), bird species, the Swiss Alps

1 INTRODUCTION

Several studies have reported a global decline or local loss of biodiversity around the world (Butchart et al.,
2010; Tittensor et al., 2014; Geijzendorffer et al, 2016; Turak et al, 2017), but the available data, tools, and
methods have been inadequate to reliably quantify this decline (Turak et al, 2017). In addition, obtaining
good-quality information on biodiversity across whole spatial extents poses a challenge because in many
regions, such information is patchy and incomplete, if not unavailable (Turak et al, 2017). Biodiversity
comprises many dimensions, such as distribution, abundance, and composition, and the key to successful
monitoring is thus to identify the most essential variables. For this reason, the concept of essential biodiversity
variables (EBVs) (Pereira et al., 2013) was introduced to represent biological state variables or a group of
linked variables that can be measurable at particular points in time and space to document biodiversity
changes (Vihervaara et al, 2015; Geijzendorffer et al, 2016; Pettorelli et al, 2016; Schmeller et al, 2017;
Haase et al, 2018). An EBV then offers an “interface between raw data and a calculated index” with
which biodiversity alterations among different species and ecosystems can be identified and compared to
regions, various taxonomic classes and various aspects of biodiversity (Brummitt et al., 2016). Conservation
policy in a perfect scenario is directed towards a systematic and comprehensive awareness of the distribution
of all aspects of biodiversity (Ferrier S, 2002).

This study attempts to identify key elements to be monitored, determine the rate and direction of biodi-
versity changes at different spatial scales and time intervals (Pereira et al., 2013; Geijzendorffer et al, 2016;
Pettorelli et al, 2016; Kissling et al., 2018, Turak at al., 2017; Zilioli et al, 2019), and develop a manageable
list of priority measurements for evaluating biodiversity (Brummitt et al, 2016, 2017; Latombe et al, 2017;
Vihervaara et al, 2017; Turak et al, 2017). For example, in forests, variables representing genetic com-
position, species population attributes, community traits or habitat structure can be considered essential
biodiversity variables that can be used by forest managers and policy makers to make appropriate economic
and environmental management decisions (Harrington et al., 2010; De Groot et al., 2010).

An important concern in biogeographical studies that has recently been identified as one of the five ‘grand
challenges’ in organismal biology is understanding how and why species are distributed in space and time
and interact with their environment (Guisan & Thuiller, 2005; Miller, 2010; Kissling et al., 2018). Changes
in distribution and abundance of species have an impact on all aspects of biodiversity and it is crucial to
track such changes to effectively protect population connectivity, its significant traits and functions, and
address the potential extinction threats to species (Jarzyna, M. A., & Jetz, W. 2017; Jetz et al., 2019). This
knowledge is key to detecting “single or aggregate spatial or taxonomic units” at applicable decision-making
scales (Jetz et al, 2019). The ‘species distribution’ EBV (SD EBV), as the second most commonly used EBV
(Vihervaara et al., 2017; Kissiling et al., 2018), allows the development of indicators that reflect population
trends, the extinction of threatened species, the spread of invasive species, and biodiversity responses to land
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use and climate change (Butchart et al., 2010; Kissling et al., 2018). We are able to obtain such significant
information within the EBV class of species population, which is defined as a ‘space-time-species-gram
(cube)’ and is identified according to the three subclasses of species distribution, population abundance, and
population structure (Pereira et al., 2013; Kissling et al., 2018; Jetz et al., 2019).

The SD EBV, defined as the presence or absence of species, is therefore represented by a binary variable of
presence (1) or absence (0) in many cases (Pereira et al., 2013; Latombe et al., 2017; Kissling et al., 2018;
Jetz et al, 2019). Species distributions can be estimated by predictive modelling, such as through the use of
species distribution models (SDMs) (Guisan et al, 2006; Elith & Leathwick, 2009; Pettorelli et al, 2016; Turak
et al, 2017; Kissling et al., 2018), since such models statistically relate to the distributions of populations
(Guisan et al, 2017). The use of SDMs can support biodiversity monitoring initiatives to be directed to areas
where it is more likely to locate species under the focus of the conservation program (Tulloch & Szabo, 2012;
Turak et al. 2017). These models are useful numerical tools employed to integrate the observed abundance or
occurrence of species and environmental predictors to predict species distributions, environmental suitability,
or the probability of species occurrence across a landscape and provide great opportunities to learn about
the past, current, and future distributions of species (Elith & Leathwick, 2009; Guillera-Arroita et al., 2015;
GEO BON, 2015; Naimi & Araújo, 2016; Vihervaara et al, 2017; Jetz et al, 2019; Dantas de Paula et al.,
2019). Therefore, SDMs can characterize ecological niches using environmental predictors to predict the
presence/absence of a species in the study area (Hirzel et al, 2008; Vihervaara et al, 2017; Jetz et al, 2019),
and the spatial patterns of species distributions can provide information regarding the rarity and potential
extinction risk of species, which is essential to effective monitoring (Kissling et al, 2018; Jetz et al, 2019).

Some studies have attempted to shift the current focus from global and international monitoring to national
and even local geographical application of EBVs, arguing that biodiversity is better understood at national
or regional level in terms of ‘local eco-evolutionary processes’ (Vihervaara et al., 2017). EBVs can also
become more practical and informative at a national monitoring level, as high-quality biodiversity data
are an essential component of environmental models that attempt to describe the ecosystem (Michener &
Jones, 2012; Vihervaara et al., 2017). Obtaining representative datasets of EBVs will depend on how the
data are integrated, by means of data harmonization (EBV-ready datasets) and modelling effort (derived
and modeled EBV data), with other EBVs. Such integration relies on the indicators that could be used to
determine which classes of EBVs could be quantified with existing datasets and the development of proper
monitoring frameworks to resolve major data gaps (Henry et al., 2008; Legnyel et al., 2008; Geijzendorffe
et al., 2016; Proença et al., 2017; Vihervaara et al., 2017; Kissling et al., 2018). Bird and butterfly data,
for instance, can be used as quantifying indicators to determine “the added value of dataset integration”
for the assessment of species abundance at large scales (De Heer et al., 2005; Gregory et al., 2005, 2009;
Geijzendorffe et al., 2016).

The development of models and indicators of EBV candidates, such as species distributions, and their
responses to drivers of biodiversity change and ’regime shifts’ has been identified as the main challenge in
several studies (Pereira et al., 2013; Turak et al, 2017). In these studies, indicators are considered to be efficient
and capable of accessing and synthesizing the wealth of data for a given EBV candidate, such as species
distributions, and appear to be sufficiently powerful to convey information on the status of biodiversity.
The Red List Index, for example, is partly composed of data on two different EBV variables, abundance of
species and their distributions, that can reflect changes in species abundance and distribution and be used to
monitor species conservation status across space and time (Pereira et al., 2013; Pettorelli et al, 2016; Turak
et al, 2017).

In a review, Kissling et al., 2018 addressed challenges related to ‘Big Data’ in biodiversity and how to build
global EBV data products from multisource datasets. They found that building reliable and representative
global EBV data products from multiple sources entails filling data gaps at the spatial, temporal and taxono-
mic scales and benefits from the use of accessible or no restricted data. Geijzendorffer et al., 2016 used EBVs
to identify gaps in the reporting requirements for biodiversity and the available information. They evaluated
how the mobilization, modelling and continuous processing of the current data could lead to a reduction in
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such gaps. The ongoing development of the EBV framework has been observed to limit spatial, temporal and
realm analyses and essential information on changes in biodiversity. As an enhanced strategy for site-based
long-term future studies, Haase et al., 2018 proposed incorporating two frameworks of ecosystem integrity
(EI) and EBVs. Their recommendations of variables, measurements, and instrumentation could lead to the
global harmonization of field research, and any researcher who does some type of ecological field work could
use these guidelines as a framework for the systematic collection of environmental data.

Among the different EBV classes, in this study, we focus primarily on the species-level distribution of
biodiversity as an EBV candidate for the EBV population class to aid the implementation of the EBV
framework at the species level (Pereira et al., 2013; Kissling et al., 2015; Geijzendorffer et al., 2016). This
study aims to evaluate and demonstrate the applicability of SDMs to establish spatial predictions of the
EBV candidate ‘species distribution’ in the EBV population class for bird species (as a regional indicator,
as EBVs are scalable and tend to change in size and scale) based on bird diversity metrics, such as the
distribution and abundance of properties of key bird habitats. One of the main objectives of this study is to
determine how to develop more accurate bird indicators for three periods (current, future 2050, future 2070)
in response to land use and climate change (Butchart et al., 2010; Kissling et al., 2018) based on SDMs that
can be used to derive spatial species distributions for birds under climate change and variation in land use,
as bird SDMs can be used as a small part and a spectrum from national to regional scales in the development
of a spatial EBV for birds (Huntley et al., 2004, Elith & Leathwick, 2009; Vihervaara et al., 2017).

As outputs of models, these indicators can convey information regarding the status of bird species so that
changes in the conservation status of species can be monitored across a temporal framework and provide a
great opportunity to learn more about the past, current, and future distributions of species (MacKenzie et al.,
2006; Elith & Leathwick, 2009; Guillera-Arroita et al., 2015; Naimi & Araújo, 2016; Turak et al., 2017; Jetz
et al., 2019; Dantas de Paula et al., 2019). These developments should therefore facilitate the monitoring and
management of bird distributions across space and time, as conservation planning requires the identification
of habitats (Gogol-Prokurat, M., 2011), which will ultimately help to identify priority bird conservation areas
and estimate habitat suitability and can provide early warning signs regarding bird distribution trends (Elith
et al., 2006; Brummitt et al., 2017). Such information also helps to identify the obstacles affecting regional
species distributions, as partial consideration of the SD EBV, in current and future times (Butchart et al.,
2010; Pereira et al., 2013; Tittensor et al., 2014).

In this study, we used occurrence data for 14 bird species as raw data in the first step of the ‘derived and
modeled EBV data’ workflow (Kissiling et al., 2018), considered the SD EBV on a regional scale and built
spatial SDMs as EBVs occurring between the raw bird data and indicators (indices derived from the SD
EBV) to map current and future species distributions to identify areas of optimal habitat suitability (Hirzel
et al., 2006; Brummitt et al., 2017). These developments could support the protection and management of
bird species across space and time, ultimately help define bird protection and habitat adequacy targets and
provide early warning signs related to bird distribution patterns.

2 MATERIALS AND METHODS

2.1 Study area and species data

Hosted file

image1.emf available at https://authorea.com/users/361270/articles/482723-spatial-
predictions-of-regional-species-distribution-essential-biodiversity-variables-sd-ebvs-a-
bird-perspective-in-the-swiss-alps

The study area is located in the western Swiss Alps in Vaud (46deg10’ to 46deg30’N; 6deg50’ to 7deg10’E;
Figure 1). Since 2013, it has been an interdisciplinary and transdisciplinary research site for the Univer-
sity of Lausanne, and it currently belongs to the Interdisciplinary Center for Mountain Studies (CIRM)
(http://rechalp.unil.ch). It covers an area of approximately 700 km2 and an elevational gradient extend-
ing from Lake Geneva at 372 m a.s.l. to Pointe des Diablerets at 3,210 m a.s.l. (Descombes et al., 2017;
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Scherrer et al., 2019). This area is negatively affected by human activity, such as the dense population and
intensive farming in the Rhone Valley, tourism and leisure activities, and more extensive farming in the
subalpine regions characterized by a mosaic of meadows, pastures, and forest and woodland patches (see
http://rechalp.unil.ch; Randin et al., 2009; Scherrer et al., 2019; Amini Tehrani et al., 2019). The bird data
were obtained from the Swiss Ornithological Institute (Monitoring Haufige Brutvogel [MHB]; Schmid et al.,
2004), with data collection beginning in 1999 and performed annually (for more information on the sur-
vey, seehttps://www.vogelwarte.ch/de/projekte/monitoring/monitoring-haeufige-brutvoegel), Swiss Breeding
Bird Atlas 2013–2016 (Knaus et al., 2018; see https://www.vogelwarte.ch/en/projects/monitoring/swiss-
breeding-bird-atlas), and Swiss Biodiversity Monitoring [BDM], an ongoing biodiversity monitoring program
including bird species richness data collected since 2001 that are updated annually, to obtain information
on the populations of the most common species in terms of trends and changes in range size. Surveys
and monitoring methods follow those of the Sempach’s Common Breeding Bird Survey (MHB) of the Swiss
Ornithological Institute (BDM 2014), which are described in detail in the following paragraphs (more de-
tails athttp://www.biodiversitymonitoring.ch/en/background.html). These data were collected on the basis
of the systematic sampling (1263 sampling points) of 267 quadrats, each covering 1 km2, located as grid
cells distributed across Switzerland (39 quadrats are located in our study area). The data were collected
three times during the breeding season (15 April–15 July) and twice for quadrats located above the timber-
line at an elevation of approximately 2000 m. Each survey took 3-4 hours along a 4-6 km transect, along
which breeding birds were marked according to visual observations or acoustic identification (Royle et al.,
2007; Kery & Royle, 2009). A set of 14 bird species were used in this study, with 11 species known as
near threatened (NT) and 3 vulnerable (VU) based on the national red list (Table S1). This classification
allowed us to apply the research approach to a wide range of rare to poorly sampled bird species. We
only considered birds with a sample size of greater than 20 presence records, as species with fewer presence
records are not deemed appropriate for use in modelling due to errors connected with very small sample size
(Thuiller et al., 2005).

2.2 Environmental data

We used as predictors 16 environmental variables that are considered ecologically significant and affect mobile
species such as birds (Jaberg & Guisan, 2001), with data collected from multiple sources at 100 m spatial
resolution (Table 1) (more information in supplementary information) and manipulated the data in ARCGIS
10.2 (Environmental System Research Institute, Inc.) or R 3.3 (R Core team, 2016). These variables include
two bioclimatic variables, Bio17 (precipitation of driest quarter) and Bio7 (temperature annual range),
with data for the three periods of current, future 2050, and future 2070 derived from MeteoSwiss Grid-
Data Products at 1 km resolution, eleven land-cover (land use) predictors (including forest edge, arable
land, coniferous forest, broadleaf forest, clear-cut forest, vineyard, settlement area, river, lake, meadow, and
swamp forest (with the proportion of each land-cover type across the area calculated with a land-cover layer
(Geostat 2013/2018, OFS) reclassified into two classes (1 or 0)), the normalized difference vegetation index
(NDVI; Rouse et al. 1973), and two topographic variables: slope and topography. The variables were chosen
as to not be too highly correlated (Spearman correlation <0.7) (Dormann et al., 2013). For details regarding
the environmental variables, see Table 1 and the supplementary methods.

2.3 MODELLING

2.3.1 Species distribution models

The SDMs were constructed with modelling algorithms to explain the correlation between the bird occurrence
data and geographically coincident environmental variables (Manel et al, 1999; Distler et al, 2015). We
used multiple modelling techniques (Guisan et al., 2017) in the biomod2 package (Thuiller et al., 2016) to
build presence-only SDMs for each species in R v3.3 (R Core Team, 2016) relating bird presence to the
environmental variables (Brambilla & Ficetola, 2012). Our choice of modelling techniques was aimed at
capturing the variability in the different classes of algorithms (e.g., regression-based and regression-tree)
and taking advantage of the use of different algorithms on the same platform (Meller et al., 2014). We
combined the outputs from the different algorithms to obtain the best results (Guisan et al, 2017). SDMs
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include generalized linear models (GLMs), as an example of a parametric regression-based approach with a
strong statistical foundation that is particularly useful for habitat suitability modelling (Guisan et al., 2002;
Austin, 2002, Guisan et al., 2017), multivariate adaptive regression splines (MARS; representing a regression
technique providing an alternative regression-based method for fitting nonlinear responses using piecewise
linear fits rather than smooth functions) (Elith et al, 2006; Leathwick et al, 2006), generalized boosting
models (GBM; boosted regression trees, multivariate nonparametric regression and data-adaptive techniques)
(McCaffrey et al, 2004) and random forest (RF; an ensemble learning technique based on combining a large
set of decision trees) (Dobrowski et al, 2011; Vincenzi et al, 2011). All models were calibrated with presence-
only data and 10,000 pseudo-absence records randomly selected (Wisz & Guisan 2009; Breiner et al., 2015;
Thuiller et al., 2016) with the disk parameter to prevent pseudo-absences selection within a radius of 1 km
from a training presence (Progin et al., 2018). As unbalanced prevalence reduces the accuracy of the models,
the pseudo-absences were weighted equally to the presence (prevalence of 0.5; Ferrier et al., 2002; Thuiller
et al., 2016; Guisan et al.,2017; Thuiller & Zimmermann, 2017; Scherrer et al., 2019). Model accuracy
was evaluated with a repeated (10 times) split-sample procedure. An evaluation dataset was obtained by
randomly drawing 30% of the records from the original dataset. The remaining 70% were used as training
data to fit the models.

2.4 Projecting distributions

We used an ensemble of models (e.g., fitted with different modelling methods or with different sets of
predictors) (Palialexis et al, 2011), as the general predictions obtained from two or more models, even when
they contain different environmental predictors, may show equal predictive performance. This results in
different spatial predictions and makes it impossible to know which of the equivalent candidate models
should be used (Randin et al, 2006; Guisan et al, 2017). To describe the current and future distributions of
bird species, we projected the SDMs for all 14 species into a mean climate space for three time periods: the
current time (1981-2010), future 2050 (2045-2074), and future 2070 (2070-2099). The models estimated the
birds’ distributions for the current time and projected them into the future given the bioclimatic predictors
Bio7 and Bio17. This process resulted in three grid outputs (current, future 2050, and future 2070) for
each species. To obtain the predicted species distribution maps for the current time, we stacked climatic
suitability values across all SDMs and then averaged the suitability values (Distler et al, 2015). To generate
probability maps (mean habitat suitability) for each time in the future (2050 and 2070), we considered
the impact of climate change under the future emission scenario A2, which is commonly considered to be
the worst-case scenario, describing a heterogeneous world with a continuously increasing global population
(Sheffield & Wood, 2008; Mokany et al., 2012). We then stacked the individual projected probabilities of all
species predictions to yield the projected species distribution (Mateo et al, 2012).

2.4.1 Changes in species relative abundance

Predicted species abundance is related only indirectly to how much habitat is maximally occupied by species
(Zurell et al, 2012). The trends of the changes in species abundance and distribution can be used to monitor
changes in the conservation status of species across time (Turak et al, 2017). Predictions of the changes
in species relative abundance were made for the current time, future 2050 and future 2070. Then, we used
the criteria used for the identification of IUCN Red List categories (critical, endangered and vulnerable) for
conservation purposes (Bibby et al, 2000).

2.5 Model performance

We used three statistics to evaluate the predictive performance of the models: the area under the receiver
operating characteristic curve (AUC), which has been commonly used for measuring the performance of
SDMs, the true skills statistic (TSS), and Cohen’s kappa statistic (KAPPA) (Cohen 1960; Allouche &
Kadmon, 2006; Fernandes et al., 2018). These techniques were used to assess the agreement between the
presence and pseudo-absence records and the predicted probability of occurrence (Elith et al, 2006) and
analyze the uncertainty around the mean from different algorithms (ensemble models) (Barry and Elith,
2006; Van Niel & Austin, 2007; Guisan et al., 2017). Here, we applied weighted model averaging across the
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four modelling methods (Wintle et al., 2003; Guisan et al, 2017).

3 RESULTS

3.1 Important predictors and model performance

When averaging the individual bird species distributions across all species, precipitation of driest quarter
(Bio17), coniferous forest (coniferous), and topography (topo) were the variables showing the greatest rela-
tive contributions to the model fits (0.16, 0.14, and 0.13, respectively) (Figure 2). For the near-threatened
(NT) species, Bio17 (0.17), topo (0.10) and forest edge (0.10) showed a positive relationship with the species
probability maps, while for vulnerable (VU) species, coniferous (0.20), topo (0.15), Bio17 (0.14) and temper-
ature annual range (Bio7) were the most important predictors. In the SDMs, bioclimatic variables generally
had a significant relationship with the species probability maps, suggesting that Bio17 plays a dominant
role in shaping patterns of habitat suitability (Distler et al, 2015). The SDMs with ROC, KAPPA, and
TSS scores of 0.71, 0.38, and 0.67, respectively, and a mean AUC score = 0.71 had good performance in
predicting the distributions of bird species (Araujo et al., 2005) (Figure 3, 4).

3.2 Current and future patterns of species distributions

The SDMs provided relatively the same estimated patterns of current and future distributions across the two
groups of species (near threatened (NT) and vulnerable (VU)) (Figure 5). The estimated habitat suitability
at the current time peaked in the eastern part of the study area, along the highland area, agricultural area
and forest edge; conversely, lower latitudes and areas with lower elevations supported fewer species. In the
future (2050), the species distributions are expected to increase across sections of the central, northern and
southeastern parts of the study area according to the SDMs, and suitable habitat is projected to extend into
these parts of the study area at high altitudes. In 2070, higher altitudes and areas with higher elevations
are expected to support more species across most of the eastern and southern parts of the study area and
into northern parts. These results suggest that in the future, higher altitudes in the study area will support
more species, especially in the eastern part.

3.3 Changes in current and future species relative abundance

The results highlight that the relative abundance of all 14 evaluated species except for Tetrao tetrix (Black
Grouse) andEmberiza cirlus (Cirl Bunting) will gradually increase from the current time to the future (2050
and 2070) (Figure 6). T. tetrix showed a decline in relative abundance of 9.10% between 2050 and 2070
(20 years), and for Emberiza cirlus , there was a small decrease (0.17%) between the current and future
times (2050), with a decrease of 1.41% between 2050 and 2070 (Figure 6). These species could thus be
in danger in 2070, especially T. tetrix , which could become vulnerable (VU) by 2070, as this species was
predicted to lose 10% of its abundance over 20 years (Pereira et al., 2013; IUCN. (2010); Pettorelli et al,
2016). The abundances of Alectoris graeca ,Delichon urbicum , and Sylvia borin were predicted to increase
negligibly from the current time to the future (2050) and to experience a slight declining trend between 2050
and 2070. Thus, for these three species, a nonsignificant change from the beginning of the current time to
2070 is expected to occur, and the trend of species abundance during the three evaluated times will change
approximately insignificantly.

4 DISCUSSION

A major focus of this work was to consider EBVs at a regional scale (western Swiss Alps) by building spatial
SDMs, map current and future species distributions to identify areas of optimal habitat suitability (Hirzel
et al, 2006; Brummitt et al, 2017), and ultimately identify priority conservation areas for bird species at
this scale (Elith et al, 2006; Gogol-Prokurat, M. 2011). Here, we examined the SD EBV at the regional
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scale to evaluate the response of bird species to land use and climate change (Huntley et al. 2004, Elithand
& Leathwick, 2009) and then provided useful information for conservation planning (Brotons et al, 2004;
Brummitt et al, 2017; Latombe et al, 2017) that could be scaled up to the national level. As a partial
consideration of the SD EBV, it was also important to explore which barriers currently and in the future
negatively affect regional species distributions (Butchart et al., 2010; Pereira et al., 2013; Tittensor et al.,
2014). One of the most efficient approaches is to help practitioners with interpretation in planning and the
application of management decisions; therefore, the models and distribution maps involving the SD EBV
on a regional scale can be used as comprehensive and practical tools for biodiversity conservation decisions
(Turak et al, 2017) and applied at a larger scale both nationally and globally.

4.1 Variable importance and species distribution maps

Our results are consistent with the finding that the most important variables are the bioclimatic variable of
precipitation of driest quarter (Bio17), subalpine forest (coniferous forest) and topography. These variables
are positively related to the occurrence probability of the species (Stephan et al. 1992; Hatchwell et al. 1996),
and most of the species considered in this study inhabit alpine, subalpine, flower meadow, and montane forest
edge habitat and brood on the ground in mown meadows in highland areas (Muller et al., 2005; Berger-
Fluckiger et al., 2008; Liedvogel et al., 2018; Horch & Spaar, 2010, 2016). Therefore, conservation efforts
should focus on managing agricultural areas and forest edges to optimize the habitat for these species. In
addition, we identified strong bioclimatic dependencies that account for preference of species for altitudinal
scale and the related forest ecosystems (von dem Bussche et al., 2008). These results are consistent with
predictions from climate-based hypotheses, which suggest that upward shifts in bird distributions in the
future are expected to result from climate warming and that these species track climate change (Maggini et
al, 2011; Chen et al, 2011; Zbinden & Haller, 2013; Roth et al, 2014). In May and June (breeding season),
temperatures are high and little rainfall occurs, causing many alpine birds to temporarily move to higher
altitudes (Sattler et al, 2017). Therefore, species will benefit from warmer temperatures and eventually
extend their habitat scale to higher elevations (Hughes, L. 2000; Parmesan & Yohe, 2003; von dem Bussche
et al., 2008).

The results of our study also indicate that lower temperatures are critical for the distribution of most
species in this mountainous area, as they respond negatively to higher temperatures, moving to higher
altitudes in response (see Maggini et al., 2011; Maggini et al., 2014). Therefore, the findings reveal that bird
populations would possibly be impacted by climate change during the breeding season due to the seasonal
rise in temperature.

The findings of our study show that in the western Swiss Alps, climate, specifically temperature, is the key
driver of bird distributions, such that slight variations in temperature can cause bird species to ascend in
elevation during the breeding season. As previously reported, the most extreme impacts of climate change
on high mountains such as the Alps are anticipated to occur by the end of the 21st century (Beniston et al.
1997; Hughes, L. 2000; Sergio, & Newton, 2003), and in the western Alps, sudden habitat loss is expected
to occur under certain climate change scenarios.

We conclude that vulnerable species, such as Ring Ouzels, show structure-dependent occurrence rather than
direct exclusion through other effects (Buchanan et al. 2003). Altered landscape patterns such as transition
of deciduous forest to higher elevations and the expansion of forests to farmlands would possibly have a
profound effect on the distribution of Blackbirds and Ring Ouzels because of extreme changes in land cover.
Indeed, reforestation and new plantings have negative effects on Ring Ouzels (Bolliger et al., 2000; Sigmaplan
et al., 2001; Horch & Holzgang, 2006; von dem Bussche et al., 2008). For these species, the combination of
mowing practices in accordance with the species’ breeding phenology (Muller et al., 2005) and low input of
fertilizer in grassland (e.g., the further restriction of liquid manure application, a very common practice in
Switzerland that is acceptable in organic production) would certainly be key conservation measures (Richner
& Tippet, 1999; Muller et al, 2005; Britschgi et al., 2006, Horch & Spaar, 2016).

The Black Grouse (T. tetrix ) is another example of a species that sensitively reacts to the abandonment of
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alpine summer pastures and the subsequent intrusion of shrubs and trees (Patthey et al, 2012; Zurell et al,
2012). The Black Grouse occupies the same narrow altitudinal belt around the timberline where snow-sports
activities generally occur (Menoni & Magnani, 1998; Zeitler & Glanzer, 1998; Zeitler, 2000), highlighting
the necessity of establishing wintering refuges as a result of anthropogenic factors linked to outdoor snow-
sports activity rather than other factors such as hunting pressure or breeding habitat quality (Patthey
et al. 2008). Snow sports cause disturbance and stress to wildlife (Korner; 2000). Therefore, structural
elements are crucial in explaining species incidences, and thus temperature and altitudinal conditions are
less important for these species (Bolliger, 2002). Breeding Black Grouse hens require a patchy mosaic of
diverse types of vegetation, none of which overwhelms the landscape, not just at the local foraging scale
but also within the broader habitat matrix (Braunisch et al, 2016; Patthey et al, 2012;). The simplest and
most efficient solution thus far is to create winter refuges that limit to a minimum the interaction between
snow-sports participants and Black Grouse, as demonstrated by the success story reported in Arlettaz et
al. (2013, 2015). The creation of wildlife refuges, by limiting human access to key habitats of vulnerable or
endangered species, has proven to be an effective tool in this context (Knight & Temple, 1995, Whitfield et
al.2008).

4.2 Species abundance

By 2070, the population size and occupied area for most of the species were predicted to be primarily
controlled by currently positive population growth and gradually increased from the beginning of the current
time to the future (2050 and 2070) across all climate scenarios (A2) and SDM algorithms. Thus, it could be
interpreted that the increasing number of territories over the course of the season might not only be due to
the late arrival of birds from the wintering grounds but also to the abandonment of primary territories after
nest loss at unmonitored sites nearby (Gruebler et al. 2015). Predictions of species abundance from the
current time to the future show that all species except T. tetrix (Black Grouse) have no risk of extinction.

5 Conclusion

This work will ultimately allow us to consider the SD EBV at the regional scale in accordance with model-
based evaluation (SDM) to predict and monitor ongoing and future changes in bird species distributions as
a part of the Switzerland indicator assessment that is occurring in the study area (Guisan et al, 2017) and
to measure and present bird responses to environmental changes for three periods of time (Brummitt et al,
2017; Schmeller et al, 2017; Kissling et al., 2018; Proenca et al, 2017; Jetz et al, 2019; Hardisty et al, 2019,
Zilioli et al, 2019). We now understand how and why species are distributed across space and time and
the relationships between species and their environment in such a heterogeneous study area. Therefore, the
patterns of the spatial distribution of species as a partial SD EBV or the path toward national implementation
can inform us about rarity and potential extinction risk for species and are essential for effective monitoring
(Jetz et al, 2019). This study demonstrates the importance of low temperatures at high elevations and forest
structures for bird species in a mountainous area. The distribution of bird species in this mountain area
seems to be determined by abiotic interactions rather than biotic interactions (Guisan et al, 2017).

Despite years of national coordination to address the loss of bird diversity, losses of species and their habitats
continue to occur. Therefore, to successfully prevent future species distribution loss, urgent progress on
methods for tracking and reporting bird distribution changes is needed. As national and global information on
bird species distributions could be essential, reporting and managing bird species and providing an overview
of bird distribution trends in different time periods can indicate whether suitability obtained through SDMs
on a regional scale can be used as a small part or a spectrum of national to subnational indicators of a spatial
‘species distribution’ EBV (SD EBV) for bird species (Brummitt et al, 2017; Latombe et al, 2017; Jetz et al,
2019). Several challenges remain to be solved when building species distribution EBVs. For example, models
and standards have been developed to predict the distributions of birds across species and scales through the
remote sensing of habitat cover (satellite remote sensing), as such information plays a crucial role in building
species distribution EBVs and is ideal for evaluating biodiversity changes (Schimel et al, 2013; Vihervaara
et al, 2017; Kissling et al., 2018; Proenca et al, 2017; Dantas de Paula et al, 2019). EBV frameworks are
applicable to a broad range of spatial, temporal and taxonomic scales (Zilioli et al, 2019), and we hope that
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our study contributes to fostering further research on EBVs.
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Figure Studied area and sampling points

Table 1: Environmental variables. Description and name of each environmental variable used in the modelling process. The data were either provided by the OFS (Federal Office of Statistics) or OFT (Federal Office of Transports). For more detailed description of the variables, please refer to Supplementary Table 1: Environmental variables. Description and name of each environmental variable used in the modelling process. The data were either provided by the OFS (Federal Office of Statistics) or OFT (Federal Office of Transports). For more detailed description of the variables, please refer to Supplementary Table 1: Environmental variables. Description and name of each environmental variable used in the modelling process. The data were either provided by the OFS (Federal Office of Statistics) or OFT (Federal Office of Transports). For more detailed description of the variables, please refer to Supplementary Table 1: Environmental variables. Description and name of each environmental variable used in the modelling process. The data were either provided by the OFS (Federal Office of Statistics) or OFT (Federal Office of Transports). For more detailed description of the variables, please refer to Supplementary

Category Name Description – Each Layer is at a 100 M Resolution Source
Climatic bio 17 Precipitation of Driest Quarter Swisstopo OFT

bio 7 Temperature Annual Range Swisstopo OFT
Land Cover river Binary map of river area Geostat OFS

arableland Binary map of arable land area Geostat OFS
clearforest Binary map of clear forest land area Geostat OFS
forestedge Binary map of forest edge or tree line area Geostat OFS
lake Binary map of lake area Geostat OFS
meadow Binary map of meadow area Geostat OFS
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Table 1: Environmental variables. Description and name of each environmental variable used in the modelling process. The data were either provided by the OFS (Federal Office of Statistics) or OFT (Federal Office of Transports). For more detailed description of the variables, please refer to Supplementary Table 1: Environmental variables. Description and name of each environmental variable used in the modelling process. The data were either provided by the OFS (Federal Office of Statistics) or OFT (Federal Office of Transports). For more detailed description of the variables, please refer to Supplementary Table 1: Environmental variables. Description and name of each environmental variable used in the modelling process. The data were either provided by the OFS (Federal Office of Statistics) or OFT (Federal Office of Transports). For more detailed description of the variables, please refer to Supplementary Table 1: Environmental variables. Description and name of each environmental variable used in the modelling process. The data were either provided by the OFS (Federal Office of Statistics) or OFT (Federal Office of Transports). For more detailed description of the variables, please refer to Supplementary

swamp forest Binary map of swamp forest area Geostat OFS
coniferous forest Binary map of Coniferous forest area Geostat OFS
vineyard Binary map vineyard area Geostat OFS
broadleaves forest Binary map of broad-leaved forest area Geostat OFS
building area Binary map of building area Geostat OFS

Others NDVI Normalized difference vegetation index at 100 m resolution. Aggregate from 10 m resolution Swisstopo OFT
Topographic Slope Slope inferred from a digital elevation model at a 25 m resolution. Aggregate to 100 m resolution Swisstopo OFT

Topo Topography inferred from a digital elevation model at a 25 m resolution. Aggregate to 100 m resolution Swisstopo OFT

Hosted file

image4.emf available at https://authorea.com/users/361270/articles/482723-spatial-
predictions-of-regional-species-distribution-essential-biodiversity-variables-sd-ebvs-a-
bird-perspective-in-the-swiss-alps
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Appendix S1

Species names Common names Number RL Habitat order

Alauda arvensis Eurasian Skylark 13 NT farmland Passeriformes
Alectoris graeca Rock Partridge 22 NT alpine habitats Galliformes
Apus apus Common Swift 27 NT settlements Apodiformes
Carduelis cannabina Linaria cannabina 228 NT alpine habitats, farmland, gravel pits, settlements Passeriformes
Cuculus canorus Cuculus canorus 99 NT alpine habitats, forest, farmland, wetlands Cuculiformes
Delichon urbicum House Martin 70 NT settlements, rocky terrain Passeriformes
Emberiza cirlus Emberiza cirlus 25 NT vineries, gravel pits, farmland Passeriformes
Falco tinnunculus Common Kestrel 86 NT farmland, settlements, alpine habitats Falconidae
Luscinia megarhynchos Luscinia megarhynchos 34 NT bush Passeriformes
Saxicola rubetra Whinchat 105 VU meadows and pasture Passeriformes
Sylvia borin Garden Warbler 44 NT settlements, forest, hedges, wetlands Passeriformes
Tetrao tetrix Black Grouse 39 NT forest, alpine habitats Galliformes
Turdus pilaris Fieldfare 132 VU farmland, settlements, edge of the forest, alpine habitats Passeriformes
Turdus torquatus Ring Ouzel 319 VU forest, alpine habitats Passeriformes
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Appendix S1 Details on environmental predictors

Temperature [°C]

The temperature data are derived from daily MeteoSwiss Grid-Data Products at 1 km resolution for 1981-
2010. Maps were downscaled from 1 km to 25 m using local linear regressions with elevation T1km = a1km
+ b1km * Elevation1km in a moving window of 5 km radius. Intercepts a1km and slopes b1km are then
disaggregated at 25 m and smoothed spatially with conic density. T25m = a25m + b25m * Elevation25m
is then applied. (Broennimann, comm. pers.). The minimal temperatures were averaged daily between 1981
and 2010, and temperature from May to August were averaged. Final temperature map was aggregate to
100 m resolution by mean.

Precipitation – preci [mm/period]

The sums of precipitation data are derived from daily MeteoSwiss Grid-Data Products at 1 km resolution
for 1981-2010. Maps were downscaled from 1 km to 25 m using local linear regressions with elevation P1km
= a1km + b1km * Elevation1km in a moving window of 5 km radius. Intercepts a1km and slopes b1km are then
disaggregated at 25 m and smoothed spatially with conic density. P25m = a25m + b25m * var(Elevation25m)
is then applied. (Broennimann, comm. pers.). The sums of precipitation were averaged daily between 1981
and 2010, and the precipitation from May to August were summed. Final precipitation map was aggregate
to 100 m resolution by mean.

Slope [°]

Slope was calculated from a digital terrain model (DTM) at a 25 m resolution (Swisstopo OFT) by a moving
window. Slope at 25 m was furtherly aggregated to 100 m resolution by mean.”

Building area [0; 1]

The proportion of building area over the area calculated with a land-cover layer (Geostat 2013/2018, OFS)
reclassified into two classes (Building area or not).

River [0; 1]

The proportion of river area over the area calculated with a land-cover layer (Geostat 2013/2018, OFS)
reclassified into two classes (river area or not).

Lake [0; 1]
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The proportion of lake area over the area calculated with a land-cover layer (Geostat 2013/2018, OFS)
reclassified into two classes (lake area or not).

Forest [0; 1]

The proportion of forest area over the area calculated with a land-cover layer (Geostat 2013/2018, OFS)
reclassified into two classes (forest area or not).

Clear Forest [0; 1]

The proportion of clear forest area over the area calculated with a land-cover layer (Geostat 2013/2018,
OFS) reclassified into two classes (forest area or not).

Forest Edge [0; 1]

The proportion of forest edge area over the area calculated with a land-cover layer (Geostat 2013/2018, OFS)
reclassified into two classes (forest edge area or not).

Vineyard [0; 1]

The proportion of vineyard area over the area calculated with a land-cover layer (Geostat 2013/2018, OFS)
reclassified into two classes (vineyard area or not).

Arable land [0; 1]

The proportion of Arable land area over the area calculated with a land-cover layer (Geostat 2013/2018,
OFS) reclassified into two classes (Arable land area or not).

“Topo [°]

Topography was calculated from a digital terrain model (DTM) at a 25 m resolution (Swisstopo OFT) by a
moving window. Topo at 25 m was furtherly aggregated to 100 m resolution by mean.”

Swamp Forest [0; 1]

The proportion of swamp forest area over the area calculated with a land-cover layer (Geostat 2013/2018,
OFS) reclassified into two classes (forest area or not).

Normalized difference vegetation index – NDVI [-1; 1]

Normalized difference vegetation index, calculated with an image of the area at 10 m resolution rescaled to
100 m by mean in ArcGIS 10.2 (www.esri.com). The images were taken in September and were provided by
Swisstopo, OFT. A mean was calculated with a moving window of different radius to create ndvi_focal.”

Meadow [0; 1]

The proportion of meadow area over the area calculated with a land-cover layer (Geostat 2013/2018, OFS)
reclassified into two classes (vineyard area or not).
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