Computational study of the Dehydrogenation Effect of Dopant Ti on Nanostructured NaAlH4 Cluster

Xiaogang Tong^1 and Hongshan Chen^1

¹Northwest Normal University

September 28, 2020

Abstract

Employing the evolutionary algorithm combined with density functional theory and perturbation theory model, we investigate the geometric and electronic structures of pure and Titanium-doped Na4Al4H16 cluster to demonstrate the effect of dopant Ti on the dehydrogenation properties of the nanostructured NaAlH4. The result shows the Ti-doped Na4Al4H16 clusters are more stable thermodynamically, but the average dehydrogenation enthalpies and the energy barriers for H2 desorption are significantly decreased. Doping of Ti weakens the Al-H bond, reduces the dehydrogenation temperatures, and the dehydrogenation performance of the NaAlH4 nanocluster is conspicuously promoted.

Hosted file

manuscript-submission.pdf available at https://authorea.com/users/362299/articles/483514computational-study-of-the-dehydrogenation-effect-of-dopant-ti-on-nanostructured-naalh4cluster