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Abstract

Admixture is a fundamental evolutionary process that has influenced genetic patterns in numerous species. Maximum-likelihood
approaches based on allele frequencies and linkage-disequilibrium have been extensively used to infer admixture processes
from genome-wide datasets, mostly in human populations. Nevertheless, complex admixture histories, beyond one or two
pulses of admixture, remain methodologically challenging to reconstruct. We develop an Approximate Bayesian Computation
(ABC) framework to reconstruct highly complex admixture histories from independent genetic markers. We built the software
package MetHis to simulate independent SNPs or microsatellites in a two-way admixed population for scenarios with multiple
admixture pulses, monotonically decreasing or increasing recurring admixture, or combinations of these scenarios; and draw
model-parameter values from prior distributions set by the user. For each simulation, MetHis calculates 24 summary-statistics
describing genetic diversity and moments of individual admixture fractions. We coupled MetHis with existing machine-learning
ABC algorithms and investigate the admixture history of hybrid populations. Results show that Random-Forest ABC scenario-
choice can accurately distinguish most complex admixture scenarios and errors are mainly found in regions of the parameter space
where scenarios are highly nested, and, thus, biologically similar. We focus on African American and Barbadian populations as
case studies. We find that Neural-Network ABC posterior parameter estimation is accurate and reasonably conservative under
complex admixture scenarios. For both admixed populations, we find that monotonically decreasing contributions over time,
from Europe and Africa, explain the observed data more accurately than multiple admixture pulses. This approach will allow

for reconstructing detailed admixture histories when maximum-likelihood methods are intractable.

1 | INTRODUCTION

Hybridization between species and admixture between populations are powerful mechanisms influencing
biological evolution. Genetic admixture patterns have thus been extensively studied to reconstruct past
population migrations and understand admixture-related adaptation such as heterosis or post-admixture
selection (Brandenburg et al., 2017; Hellenthal et al., 2014; Skoglund, Ersmark, Palkopoulou, & Dalen,
2015).

A long history of statistical developments in population genetics provided tools to identify and describe
admixture patterns from genetic data (Bernstein, 1931; Cavalli-Sforza & Bodmer, 1971; Chakraborty &
Weiss, 1988; Long 1991; Falush, Stephens, & Pritchard, 2003; Patterson et al., 2012), They enabled inferring
the ancestral origins of admixed populations or investigate adaptive introgression in numerous species (e.g.
Martin et al., 2013; Patin et al., 2017; Stryjewski & Sorenson, 2017).

1.1 | Maximum-likelihood methods to reconstruct admixture histories



Two classes of maximum-likelihood (ML) methods have been extensively deployed to infer admixture histo-
ries from genetic data. They rely on the moments of allelic frequency spectrum divergences among popu-
lations (Lipson et al., 2013; Patterson et al., 2012; Pickrell & Pritchard, 2012), and on admixture Linkage-
Disequilibrium patterns — the distribution of LD within the admixed chunks of DNA inherited from the
source populations in the genomes of admixed individuals (Chimusa et al., 2018; Gravel, 2012; Hellenthal et
al., 2014; Loh et al., 2013; Moorjani et al., 2011). Notably, Gravel (2012) developed an approach to fit the
observed curves of admixture-LD decay to those theoretically expected under admixture models involving
one or two pulses of historical admixture. These approaches significantly improved our understanding of
past admixture histories using genetic data (e.g. Baharian et al., 2016; Martin et al., 2013).

Despite these major achievements, ML admixture history inference methods suffer from inherent limitations
acknowledged by the authors (Gravel, 2012; Hellenthal et al., 2014; Lipson et al., 2013). First, most ML
approaches can only consider one or two pulses of admixture in the history of the hybrid population. Nev-
ertheless, admixture processes are often expected to be much more complex, and it is not yet clear how ML
methods behave when they can consider only simplified versions of the true admixture history underlying the
observed data (Gravel, 2012; Hellenthal et al., 2014; Lipson et al., 2013; Loh et al., 2013; Medina, Thornlow,
Nielsen, & Corbett-Detig, 2018; Ni et al., 2019). Second, it is possible to statistically compare ML values
obtained from fitting models with different parameters to the observed data, as a guideline to find the “best”
model. Nevertheless, formal statistical comparison of the success or failure of competing models to explain
the observed data is often out of reach of ML approaches (Foll, Shim, & Jensen, 2015; Gravel, 2012; Ni et
al., 2019). Finally, admixture-LD methods, in particular, rely on fine mapping of local ancestry segments in
individual genomes and thus require substantial amounts of genomic data, and, sometimes, accurate phasing,
which remain difficult in numerous case-studies.

1.2 | Approximate Bayesian Computation demographic inference

Approximate Bayesian Computation (ABC) approaches (Beaumont, Zhang, & Balding, 2002; Tavaré, Bal-
ding, Griffiths, & Donnelly, 1997), represent a promising alternative to infer complex admixture histories
from genetic data. Indeed, ABC has been successfully used previously to formally test alternative demogra-
phic scenarios hypothesized to be underlying observed genetic patterns, and to estimate, a posterior: , the
parameters of the winning models, when ML methods could not operate (Boitard, Rodriguez, Jay, Mona, &
Austerlitz, 2016; Fraimout et al., 2017; Verdu et al., 2009).

ABC model-choice and posterior-parameter estimation rely on comparing observed summary statistics to
the same set of statistics calculated from simulations produced under competing demographic scenarios
(Beaumont et al., 2002; Blum & Frangois, 2010; Csilléry, Francois, & Blum, 2012; Pudlo et al., 2016; Sisson,
Fan, & Beaumont, 2018; Wegmann, Leuenberger, & Excoffier, 2009). Each simulation, and corresponding
vector of summary statistics, is produced using model-parameters drawn randomly from prior distributions
explicitly specified by the user. This makes ABC a priori particularly well suited to investigate highly complex
historical admixture scenarios for which likelihood functions are very often intractable, but for which genetic
simulations are feasible (Gravel, 2012; Pritchard et al., 1999; Verdu & Rosenberg, 2011; Buzbas & Verdu,
2018).

1.3 | An ABC framework for reconstructing complex admixture histories

In this paper, we show how ABC can be successfully applied to reconstruct, from genetic data, highly complex
admixture histories beyond models with a single or two pulses of admixture classically explored with ML
methods. To do so, we propose a novel forward-in-time genetic data simulator and a set of parameter-
generator and summary-statistics calculation tools, embedded in an open source C software package called
MetHis . It performs independent SNPs or microsatellites simulations under any two-source populations
versions of the Verdu and Rosenberg (2011) general model of admixture; and is adapted to conduct ABC
inferences with existing machine-learning ABC tools implemented in R (R Development Core Team, 2017).

We show that our MetHis -ABC framework can accurately distinguish major classes of complex historical
admixture models, involving multiple admixture-pulses, recurring increasing or decreasing admixture over



time, or combination of these models, and provides conservative posterior parameter inference under cho-
sen models. Furthermore, we introduce the quantiles and higher moments of the distribution of admixture
fractions in the admixed population as highly informative summary-statistics for ABC model-choices and
posterior-parameter estimations.

We exemplify our approach by reconstructing the complex admixture histories underlying observed genetic
patterns separately for the African American (ASW) and Barbadian (ACB) populations. Both populations
are known to be admixed populations of European and African descent in the context of the Transatlantic
Slave Trade, whose histories of admixture remain largely unknown (e.g. Baharian et al., 2016; Martin et al.,
2017). In this case-study, we find that the ACB and ASW populations’ admixture histories are much more
complex than previously inferred, and further reveal the diversity of histories undergone by these admixed
populations during the TAST in the Americas.

2 | MATERIALS AND METHODS

We evaluated how Approximate Bayesian Computation model-choice and posterior parameter estimation
performed for reconstructing highly complex historical admixture processes from genetic data. To do so,
we chose to work under the two source-populations version of the general mechanistic model of Verdu and
Rosenberg (2011) briefly presented inSupplementary Figure S1 . We introduce a novel software, MetHis
, for genetic data simulation and summary-statistics calculation for machine-learning ABC inferences under
this general model (Supplementary Note S1 ).

We conduct our proof of concept considering nine competing scenarios of complex admixture histories in-
volving multiple admixture pulses, recurring decreasing or increasing admixture, and combinations of these
processes (Figure 1 , Table 1 ). We explore the recent admixture history of two enslaved-African descen-
ding populations in the Americas with genome-wide independent SNPs. Beyond this work, the MetHis -ABC
framework can readily be used to study numerous histories of complex admixture using independent SNP
or microsatellite markers (Supplementary Note S1 ).

2.1 | Nine competing complex admixture scenarios
2.1.1 | Founding of the admixed population H

For all scenarios (Figure 1, Table 1 ), we chose a fixed time for the founding (generation 0, forward-in-time)
of the target admixed population H occurring 21 generations before present, with admixture proportions s
Afr,0 ands gyur,o from either source population S respectively, African and European in our case, withs ag o
+ 8 Buro = 1, ands ag o in [0,1]. This corresponds to the first arrival of European permanent settlers in the
Americas in the late 15*" century, considering 20 or 25 years per generation and the sampled generation born
in the 1980s. Note that simulations considering a parameter s as o close to 0, or alternatively 1, correspond
to founding of the population H from either one source population, therefore delaying the first “real” genetic
admixture event to the next admixture event. Following founding, we consider three alternative scenarios
for the admixture contribution of each source population S separately.

2.1.2 | Admixture-pulse(s) scenarios

For a given source population S, African or European, scenariosS-2P consider two possible pulses of ad-
mixture into population H occurring respectively at time ¢ g1 andt g po distributed in [1,20] witht g 1
[?] t gp2, with associated admixture proportion s gisp1 ands sispe in [0,1] satisfying, at all timest
,ESG(AfTQEW) ss1< 1(Figure 1, Table 1 ). Note that for one of eithers g values close to 0, the two-pulse
scenarios are equivalent to single pulse scenarios after the founding of H. Furthermore, for both s g values
close to 0, scenarios S-2P are nested with scenarios where only the founding admixture pulse 21 generations
ago is the source of genetic admixture. Alternatively, s g parameter values close to 1 consider a virtual
complete replacement of population H by population S at that time, thus obliterating all previous admixture
event.

2.1.3 | Recurring decreasing admixture scenarios



For a given source population S, scenarios S-DFE consider a recurring monotonically decreasing admixture
from population S at each generation between generation 1 (after founding at generation 0) and generation
20 (sampled population) (Figure 1 , Table 1 ). In these scenario, s g4, with g in [1..20], are the discrete
numerical solutions of a rectangular hyperbola function over the 20 generations of the admixture process until
present as described in Supplementary Note S2 . In brief, this function is determined by parameter u g,
the “steepness” of the curvature of the decrease, in [0,1/2],s g1, the admixture proportion from population
S at generation 1 (after founding), in [0,1], ands g 20, the last admixture proportion in the present, in [0,s
s,1/3]. Note that we chose the boundaries for s g 90 in order to reduce the parameter space and nestedness
among competing scenarios, by explicitly forcing scenarios S-DE into a substantially decreasing admixture
process. Furthermore, note that parameter u gvalues close to 0 create pulse-like scenarios of intensitys g1
occurring immediately after founding, followed by constant recurring admixture of intensitys g 20 at each
generation until present. Alternatively, parameter u g values close to 1/2 create scenarios with a linearly
decreasing admixture betweens g and s g 29 from population S at each generation after founding.

2.1.4 | Recurring increasing admixture scenarios

For a given source population S, scenarios S-IN mirrors theS-DF scenarios by considering instead a recurring
monotonically increasing admixture from population S (Figure 1 , Table 1 ). Here, s g, with g in [1..20],
are the discrete numerical solutions of the same function as in the S-DE decreasing scenarios (see above),
flipped over time between generation 1 and 20. In these scenarios, s g 20 is defined in [0,1] and s g1 in [0,s
s,20/3], and w in [0,1/2] parametrizes the “steepness” of the curvature of the increase. Note the analogous
nestedness of recurring and pulse-like scenarios over the parameter space of u values as previously.

2.1.5 | Combining admixture scenarios from either source populations

We combine these three scenarios to obtain nine alternative scenarios for the admixture history of population
H (Figure 1 ,Table 1 ), with the only condition that, at each generationg in [1..20], parameters satisfys
Afr,g T S Burg +h g = 1, with h 4, in [0,1] being the remaining contribution of the admixed population H to
itself at generation g .

Four scenarios (Afr2P-EurDE, Afr2P-EurIN, AfrDE-Eur2P, and AfrIN-Eur2P) consider a mixture of pulse-
like and recurring admixture from each source. Three scenarios (Afr2P-Eur2P, AfrDE-EurDE, and AfrIN-
EurIN), consider symmetrical classes of admixture scenarios from either source. Two scenarios (AfrIN-
EwDE and AfrDE-EurIN) consider mirroring recurring admixture processes. Importantly, this scenario
design considers nested historical scenarios in specific parts of the parameter space.

2.2 | Forward-in-time simulations with MetHis

Simulation of independent genetic markers under highly complex admixture histories is often not trivial under
the coalescent and using classical existing software, as the coalescent generally assumes a different pedigree for
each independent locus instead of a single pedigree having, in reality, produced all observed gene genealogies
(see Wakeley, King, Low, & Ramachandran, 2012). In this context, and because pedigrees are rarely known
a priori , we developed MetHis , a C open-source software package available athttps://github.com/romain-
laurent/MetHis. MetHis simulates independent SNPs or microsatellite markers in an admixed population
H under any version of the two-source populations general model from Verdu and Rosenberg (2011), and
calculates summary-statistics of interest to the study of complex admixture processes (Supplementary
Note S1 ).

2.2.1 | Simulating the admixed population, Effective population size and sampling individuals

At each generation, MetHis performs simple Wright-Fisher (Fisher, 1922; Wright, 1931) forward-in-time
simulations, individual-centered, in a panmictic population of diploid effective size N, . For a given individual
in the population H at the following generation (g + 1), MetHisindependently draws each parent from the
source populations with probability sg, (Figure 1, Table 1 ), or from population H with probabilityh, =
1->5 (Afr,Eur) 559> randomly builds a haploid gamete of independent markers for each parent, and pairs
the two constructed gametes to create the new individual.



Here, we decided to neglect mutation over the 21 generations of admixture considered. This is reasonable
when studying relatively recent admixture histories and considering independent genotyped SNP markers.
Nevertheless, for users interested in microsatellite variation and longer admixture histories, MetHis readily
implements a standard General Stepwise Mutation Model allowing for insertion or deletion (Estoup, Jarne,
& Cornuet, 2002), with parameters set by the user (Supplementary Note S1 ).

To focus on the admixture process itself without excessively inflating the parameter space, we consider, for
each nine-competing model, the admixed population H with constant effective population sizeN, = 1000
diploid individuals. Nevertheless, note that MetHis readily allows the user parametrization of stepwise or
continuous changes in Ne (Supplementary Note S1 ).

After each simulation, we randomly draw individual samples matching sample-sizes in our observed dataset
(see 2.4.3). We sample individuals until our sample set contains no individuals related at the 15° degree
cousin within each population and between population H and either source populations, based on explicit
parental flagging during the last 2 generations of the simulations. Note that this is done to best mimic, a
priori , the observed case-studies dataset, but excluding related individuals is an option set by the user in
MetHis (Supplementary Note S1 ).

2.2.2 | Simulating source populations

MetHis , in its current form, does not allow simulating the source populations for the admixture process
modeled in Verdu and Rosenberg (2011). Simulating source populations can be done separately using
existing genetic data simulation software such as fastsimcoal2sequential coalescent (Excoffier, Dupanloup,
Huerta-Sanchez, Sousa, & Foll, 2013; Excoffier & Foll, 2011).

Another possibility to simulate source populations emerges if genetic data is already available for the known
source populations, as it is the case in our case studies of enslaved-African descendants in the Americas (see
2.4.3). We cousider here that the African and European source populations are very large populations at the
drift-mutation equilibrium, accurately represented by the Yoruban YRI and British GBR datasets here inves-
tigated (see 2.4.3). Therefore, we first build two separate datasets each comprising 20,000 haploid genomes of
100,000 independent SNPs, each SNP being randomly drawn in the site frequency spectrum (SFS) observed
for the YRI and GBR datasets respectively. These two datasets are used as fixed gamete reservoirs for the
African and European sources separately, at each generation of the forward-in-time admixture process. From
these reservoirs, we build an effective individual gene-pool of diploid size N 4, by randomly pairing gametes
avoiding selfing. These virtual source populations provide the parental pool for simulating individuals in the
admixed population H with MetHis , at each generation. Thus, while our gamete reservoirs are fixed, the
parental genetic pools are randomly built anew at each generation. Again, note that this is not necessary
to the implementation of MetHis for investigating complex admixture histories; source populations can be
simulated separately by the user at will.

2.3 | Summary Statistics

MetHis is designed to work in an ABC inference framework and, thus, can calculate numerous summary-
statistics. A complete list of summary-statistics can be found in Supplementary note S1 . Below are
the summary-statistics considered in our case-study, in particular introducing the distribution of admixture
fractions in population H, as summary-statistics for ABC inference.

2.3.1 | Distribution of admixture fractions as a set of summary-statistics

Most methods developed to estimate individual admixture fractions from genetic data (e.g. Alexander et al.,
2009), are computationally intensive, which is out-of-reach when iterated for large sets of simulated genetic
data. This explains why they are not routinely used in ABC inferences, despite being theoretically highly
informative (Gravel, 2012; Verdu & Rosenberg, 2011).

Here, we propose, and implement in MetHis , an efficient way to use estimated individual admixture frac-
tions as summary statistics for ABC inferences, based on allele-sharing-dissimilarity (ASD) (Bowcock et



al., 1994) and multidimensional scaling (MDS). For each simulated dataset, we first calculated a pairwise
inter-individual ASD matrix using asdsoftware (https://github.com/szpiech/asd) using all pairs of sampled
individuals and all markers. Then we projected in two dimensions this pairwise ASD matrix with classical
unsupervised metric MDS using the c¢mdscale function in R . We expect individuals in population H to be
dispersed along an axis joining the centroids of the proxy source populations on the two-dimensional MDS
plot. We projected population H individuals orthogonally onto this axis, and calculate each individual’s
relative distance to each centroid. We considered this measure as an estimate of individual average admix-
ture level from either source. Note that by doing so, some individuals might show “admixture fractions”
higher than one, or lower than zero, as they might be projected on the other side of the centroid when being
genetically close to 100% from one source population or the other. Under an ABC framework, this is not a
difficulty since this may happen also with the real data a priori , and ABC goal is to use summary statistics
that mimic the observed ones.

This individual admixture estimation method has been shown to be highly concordant with cluster mem-
bership fractions as estimated with STRUCTURE or ADMIXTURE (Falush, Stephens, & Pritchard, 2003;
Alexander, Novembre, & Lange, 2009) in real data analyses (e.g. Verdu et al., 2017). We confirm these
previous findings since we obtain a Spearman correlation (calculated using the cor.test function in R ), of
rho = 0.950 (p-value < 2.107'6) and rho= 0.977 (p-value < 2.1071¢) between admixture estimates based on
ASD-MDS and on ADMIXTURE, for the two case-study datasets here explored (Supplementary Figure
S2).

We used the mean, mode, variance, skewness, kurtosis, minimum, maximum, and all 10%-quantiles of the
admixture distribution in population H, as 16 separate summary statistics for ABC inference.

2.3.2 |Within population summary statistics

We calculated marker by marker heterozygosities (Nei, 1978), and we considered the mean and variance
of this quantity across markers in the admixed population as two separate summary statistics for ABC
inference. In addition, we considered the mean and variance of ASD values across pairs of individuals within
population H.

2.3.3 | Between populations summary statistics

We calculated multilocus pairwise Fspr(Weir & Cockerham, 1984) between population H and each source
population respectively. Furthermore, we calculated the mean ASD between individuals in population H
and, separately, individuals in either source population. Finally, we calculated thefsstatistics (Patterson et
al., 2012).

2.4 | Approximate Bayesian Computation

MetHis provides, as outputs, scenarios-parameter vectors and corresponding summary-statistics vectors in
reference tables ready to be used with the machine-learning ABC abc(Csilléry et al., 2012), and aberf (Pudlo
et al., 2016; Raynal et al., 2019) R packages.

2.4.1 | Simulating by randomly drawing parameter values from prior distributions

We performed MetHis simulations under each nine competing scenarios (Figure 1 ), drawing the correspon-
ding model-parameters in prior-distributions detailed in Table 1 and automatically generated by MetHis
parameter-generator tools.

2.4.2 | Complex admixture model-choice with Random-Forest ABC

For ABC model-choice, we performed 10,000 independent MetHissimulations for each nine competing-
scenarios. To mimic our case study datasets (see 2.4.3), we simulated 100,000 SNPs and sampled 50 in-
dividuals in population H, and 90 and 89 individuals respectively in the African and European source
populations. Using 27 cores and the above design, we performed the 90,000 simulations with MetHis in four
days, with 2/3 of that time for summary-statistics calculation only (Supplementary Note S1 ).



We used Random-Forest ABC for model-choice implemented in theabcrf function of the aberf package to
obtain the cross-validation table and associated prior error rate using an out-of-bag approach (Figure 2 ).
We considered a uniform prior probability for the nine competing models. We considered 1,000 decision trees
in the forest after visually checking that error-rates converged appropriately (Supplementary Figure S3 ),
using theerr.aberf function. RF-ABC cross-validation procedures using groups of scenarios were conducted
using the group definition option in the aberf function (Estoup, Raynal, Verdu, & Marin, 2018). Finally,
each summary statistics relative importance to the model-choice cross-validation was computed using theabcrf
function (Supplementary Figure S4 ).

We explore model-choice erroneous assignation due to model nestedness in the parameter space, by consi-
dering 1,000 randomly chosen simulation per model as pseudo-observed data (Supplementary Figure S5
). We train the RF algorithm based on the 9000 remaining simulations per model using the aberf function
similarly as above, which provides highly similar results as when considering 10,000 simulations per model
(results not shown). We then use the predict.aberf function to perform model choice independently for each
1000 simulated pseudo-observed data with known parameter vectors.

To empirically evaluate the power of the RF-ABC model-choice to distinguish complex admixture processes,
we conducted similar cross-validations procedures based on additional 10,000 per scenario for 50,000 and,
separately, 10,000 SNPs, instead of 100,000 SNPs (180,000 simulations in total, Supplementary Figure
S6A-B ).

Furthermore, using 100,000 SNPs, we produced 90,000 simulations and performed cross-validations
(Supplementary Figure S6C ), considering a five-times smaller sample set, with 10 sampled individuals
in population H (instead of 50 as previously) and 18 individuals in each source population (instead of 90
and 89).

2.4.3 | Case-study population genetics datasets

We investigate, as two separate case studies, the admixture histories of the African American (ASW) and
Barbadian (ACB) population samples from the 1000 Genomes Project Phase 3 (1000 Genomes Project
Consortium, 2015). Previous studies identified, within the same database, the West European Great-Britain
(GBR) and the West African Yoruba (YRI) populations as reasonable proxies for the sources of both ACB
and ASW, consistently with the macro-history of the Transatlantic Slave-Trade (Baharian et al., 2016; Martin
et al., 2017; Verdu et al. 2017).

Samples in the 1000 Genomes Project were a priori sampled to be family unrelated. To avoid confounding
factors due to cryptic relatedness in our sample compared to MetHis simulations, we excluded individuals
more closely related than first-degree cousins in the four populations separately using RELPAIR (Epstein,
Duren, & Boehnke, 2002), as previously done (Verdu et al. 2017). We also excluded the three ASW individuals
showing traces of Native American or East-Asian admixture, as reported in previous studies (Martin et al.,
2017). Among the remaining individuals we randomly drew 50 individuals in the targeted admixed ACB and
ASW, respectively, and included the remaining 90 YRI individuals and 89 GBR individuals.

We extracted biallelic polymorphic sites (SNPs as defined by the 1000 Genomes Project Phase 3) from the
merged ACB+ASW+GBR+YRI data set, excluding singletons. Since MetHis only simulates independent
markers, we LD-pruned the ACB and ASW SNP-sets using the PLINK (Purcell et al., 2007) —indep-pairwise
option with a sliding window of 100 SNPs, moving in increments of 10 SNPs, and r? threshold of 0.1. Finally,
we randomly drew 100,000 SNPs from the remaining SNP-set.

2.4.4 | Prior-checking of simulations’ fit to the ACB and ASW data

We plotted each prior summary statistics distributions and visually verified that the observed summary sta-
tistics for the ACB and ASW respectively fell within the simulated distributions (Supplementary Figure
S7 ). Then, we explored the first four PCA axes computed with the princomp function in R , based on the 24
summary statistics and all 90,000 simulations, and visually checked that observed summary statistics were



within the cloud of simulated statistics (Supplementary Figure S8 ). Finally, we performed a goodness-
of-fit approach using the gfit function from the abc package in R , with 1,000 replicates and tolerance level
0.01 (Supplementary Figure S9 ).

2.4.5 | RF-ABC model-choice for the admixture history of ACB and ASW populations

For the ACB and ASW observed data separately, we performed model-choice prediction and estimation of
posterior probabilities of the winning model using the predict.aberf function in the aberfpackage, using the
complete simulated reference table for training the Random-Forest algorithm (100,000 SNPs, 50 individuals
in population H, 90 and 89 individuals in the African and European sources respectively) (Figure 3 |
Supplementary Table S1 ).

2.4.6 | Posterior parameter estimation with Neural-Network ABC

It is difficult to estimate jointly the posterior distribution of all model parameters with RF-ABC (Raynal et
al., 2019). Furthermore, although RF-ABC performs satisfactorily well with an overall limited number of si-
mulations under each model (Pudlo et al., 2016), posterior parameter estimation with other ABC approaches,
such as simple rejection (Pritchard et al., 1999), regression (Beaumont et al., 2002; Blum & Francois, 2010)
or Neural-Network (NN) (Csilléry et al., 2012), require substantially more simulations a priori . Therefore,
we performed, for posterior parameter estimations, 90,000 additional simulations, for a total of 100,000 simu-
lations under the best scenarios identified with RF-ABC for the ACB and ASW separately. For comparison
purposes, we performed 100,000 simulations under the loosing scenario Afr2P-Eur2P (see Results ), and
conducted anew the below parameter estimation and error evaluation procedures for this scenario.

2.4.7 | Neural-Network tolerance level and number of neurons in the hidden layer

We determined empirically the NN tolerance level (i.e. the number of simulations to be included in the NN
training), and number of neurons in the hidden layer. Indeed, while the NN needs a substantial amount of
simulations for training, there is also a risk of overfitting posterior parameter estimations when considering
too large a number of neurons in the hidden layer. However, there are no absolute rules for choosing both
numbers (Csilléry et al., 2012; Jay, Boitard, & Austerlitz, 2019).

Therefore, we tested four different tolerance levels to train the NN for parameter estimation (0.01, 0.05,
0.1, and 0.2), and a number of neurons ranging between four and seven (the number of free parameters
in the winning scenarios, see Results ). For each pair of tolerance level and number of neurons, we con-
ducted cross-validation with 1,000 randomly chosen simulated datasets in turn used as pseudo-observed
data with the “cvfabc ” function in the package abc . We considered the median point-estimate of each

posterior parameter (91) to be compared with the true parameter value used for simulation (6;). The cross-

validation parameter prediction error was then calculated across the 1,000 separate posterior estimations

for pseudo-observed datasets for each pair of tolerance level and number of neurons, and for each para-
Zioon(éi_ei 2

(1000x Variance(0;))’

showed that, a priori , all numbers of neurons considered performed very similarly for a given tolerance level

(Supplementary Table S2 ). Furthermore, results showed that considering 1% closest simulations to the
pseudo-observed ones reduced the average error for each tested number of neurons. Thus, we decided to opt
for four neurons in the hidden layer and a 1% tolerance level for training the NN in all subsequent parameter
inference, in order to avoid overfitting.

meter 6;, as using the summary.cvjabe function in abe(Csilléry et al., 2012). Results

2.4.8 | Estimation of model-parameters posterior distributions for ACB and ASW

We jointly estimated model-parameters posterior distributions for the ACB and ASW admixed population
separately, using NN-ABC neuralnetmethods’ option in the package abc , based on the logit-transformed
(“logit ” transformation option) summary statistics using a 1% tolerance level and four neurons in the hidden
layer (Figure 4 , Table 2 ).

2.4.9 | Posterior parameter estimation error



We wanted to evaluate the posterior error performed by the NN-ABC approach in the vicinity of our observed
data rather than randomly on the entire parameter space. To do so, we first identified the 1,000 simulations
closest to the real data with a tolerance level of 1%, for the ACB and ASW respectively. Then, we performed
1,000 separate NN-ABC parameter estimations similarly parameterized as above, using in turn the other
99,999 simulations as reference table, and recorded the median point estimate for each parameter. We then
compared each parameter estimate with the true parameter used for each 1,000 pseudo-observed target and

provide three types of error measurements in Table 3 . The mean-squared error scaled by the variance of the
21000(91'*91')2 1000(91-701-)2
(10001><Variance(9i))as previously (Csilléry et al. 2012); the mean-squared error =*—55—",

to compare errors for a given scenario-parameter between the ACB and ASW analyses; and the mean
21000 b._0.
absolute error== 1000 , which provides a more intuitive parameter estimation error. For comparison, we

conducted the above analysis using instead parameters estimated under the loosing scenario Afr2P-Eur2P
(Supplementary Table S3 ).

true parameter

2.4.10 | 95% credibility interval accuracy

We evaluated a posteriori if, in the vicinity of the two observed datasets respectively, the lengths of the
estimated 95% credibility intervals (CI) for each parameter was accurately estimated or not (e.g. Jay et
al., 2019). To do so, we calculated how many times the true parameter(6;) was found inside the estimated

95% CI [2.5%quantile (9}) : 97.5%quantile (él>], among the 1,000 out-of-bag NN-ABC posterior parameter

estimations (Supplementary Table S4 ). For each parameter, if less than 95% of the true parameter values
are found inside the 95% CI estimated for the observed data, we consider the length of this credibility interval
as underestimated indicative of a non-conservative behavior of the parameter estimation. Alternatively, if
more than 95% of the true parameter-values are found inside the estimated 95% CI, we consider its length as
overestimated, indicative of an excessively conservative behavior of parameter estimation. For comparison,
we conducted the above analysis using instead parameters estimated under the loosing scenario Afr2P-Eur2P
(Supplementary Table S5 ).

2.4.11 | Comparing the accuracy of posterior parameters estimations using NN, RF, or Rejec-
tion ABC

We compared four ABC posterior parameter estimation methods: NN-ABC estimation of the parameters
taken jointly as a vector (similarly as in the above procedures), NN-ABC estimation of the parameters
taken in turn separately, RF-ABC estimation of the parameters which also considers parameters in turn
and separately (Raynal et al., 2019), and simple Rejection ABC estimation for each parameter separately
(Pritchard et al., 1999). For each method, we used in turn the 1,000 simulations closest to the real data
as pseudo-observed data and the 99,999 remaining simulations as reference table. We consider the same
parameters for the NN, and we 500 decision trees for the RF to limit the computational cost at little
accuracy cost a priori (Supplementary Figure S3 ). We computed the three types of errors and the
accuracies of the 95% CI for each ABC method similarly as previously (Table 4 ).

3 | RESULTS
3.1 | Complex admixture scenarios cross-validation with RF-ABC

We trained the RF-ABC model-choice algorithm using 1,000 trees, which guaranteed the convergence of
the model-choice prior error rates (Supplementary Figure S3 ). Based on this training, the complete
out-of-bag cross-validation matrix showed that the nine competing scenarios of complex historical admix-
ture could be relatively reasonably distinguished despite the high level of nestedness of the scenarios here
considered (Figure 2 ). Indeed, we calculated an out-of-bag prior error rate of 32.41%, considering each
90,000 simulation, in turn, as out-of-bag pseudo-observed target dataset, compared to a prior probability
of 88.89% to erroneously select a scenario. Furthermore, we found the posterior probabilities of identifying
the correct scenario ranging from 55.17% (prior probability = 11.11% for each competing scenario), for the
two-pulses scenarios from both the African and European sources (Afr2P-Eur2P), to 77.71% for the scenarios
considering monotonically decreasing recurring admixture from both sources (AfrDE-EurDE).



Importantly, the average probability, for a given admixture scenario, of choosing any one alternative (wrong)
scenario were on average 4.05% across the eight alternative scenarios, ranging from 2.79% for the AfrDE-
EurDE scenario, to 5.60% for the Afr2P-Eur2P scenario (Figure 2 ). This shows that our approach did
not systematically favor one or the other competing scenario when wrongly choosing a scenario instead
of the true one. Furthermore, note that Afr-DE-EurDE scenarios were rarely confused (3.8%) with other
recurring admixture scenarios containing at least one recurring admixture increase (AfrIN-EurDE, AfrDE-
EwrIN, AfrIN-EurIN), which shows a strong discriminatory power of RF-ABC model-choice a priori , even
among complex recurring admixture scenarios.

In cross-validation analyses of groups of scenarios (Estoup et al., 2018), monotonically recurring admixture
scenarios (AfrDE-EurDE; AfrDE-EurIN, AfrIN-EurDE, AfrIN-EurIN) can be well distinguished from sce-
narios considering two possible pulses after the founding event (Afr2P-Eur2P, Afr2P-EurDE, Afr2P-EurIN,
AfrDE-Eur2P, AfrIN-Eur2P). Indeed, we found an out-of-bag prior error rate of 13.85%, and posterior cross-
validation probabilities of identifying the correct group of scenarios of 86.08% and 86.23% respectively for
the two groups.

Detailed investigation of cross-validation results shows that inaccuracies of RF-ABC model-choices occur
mainly in parameter-spaces where scenarios are highly nested and, in fact, close biologically (Figure 2 ).
As expected, model-choice increasingly mistakes the AfrDE-EurDE scenarios for scenarios containing two
admixture pulses (Afr2P-Eur2P, Afr2P-EurIN, AfrIN-Eur2P) as values ofu af and u gy are closer to 0,
regardless of introgression rates values (Supplementary Figure S5A ). Intuitively, the closer these para-
meter values are to 0, the more peaked the decrease of recurring admixture are, which increases model-choice
confusion with pulse-like scenarios. Instead,u -values closer to 0.5 correspond to linearly decreasing admixture
over time which are hardly confounded with pulse-like scenarios. Furthermore, the model-choice increasingly
confuses, as expected regardless of introgression values, Afr2P-Eur2P scenarios with recurring increasing ad-
mixture scenarios (AfrIN-EurIN, AfrDE-EurIN, AfrIN-EurDE), as the time of the second admixture pulses
from Europe or Africa are recent (Supplementary Figure S5B ).

Most importantly, RF-ABC model-choice power to discriminate among complex admixture processes a priori
was not strongly affected by the numbers of markers considered. Indeed, we found an out-of-bag prior
error of 33.53% and 37.93% (instead of 32.41%), considering respectively 50,000 and 10,000 SNPs, instead
of 100,000, together with a very similar distribution of correct and mistaken predictions among scenarios
(Supplementary Figure S6A-B ). Finally, dividing by five the sample sizes in population H and each
source populations increased, as expected, the cross-validation error rate (48.39%). Nevertheless, all scenarios
continue to be correctly identified three to six times more often than expected a priori , and the distribution
of erroneous predictions remained similar to previously (Supplementary Figure S6C ). Altogether, these
results showed that RF-ABC model-choice can be successfully used to distinguish highly complex admixture
models even when substantially less genetic and sample data are considered.

3.2 | Simulating the observed data with MetHis

Using MetHis , we produced 90,000 vectors of 24 summary statistics each, overall highly consistent with the
observed ones for the ACB and the ASW populations respectively. First, each observed statistic is visually
reasonably well simulated under the nine competing scenarios here considered (Supplementary Figure
S7 ). Second, the observed data each fell into the simulated sets of 24 summary statistics projected in
the first four PCA dimensions (Supplementary Figure S8 ). Finally, the observed summary statistics
vectors were not significantly different (p-value = 0.468 and 0.710, for the ACB and ASW respectively)
from the simulated ones using a goodness-of-fit approach (Supplementary Figure S9 ). Therefore, we
successfully simulated datasets producing sets of summary statistics reasonably close to the observed ones,
despite considering constant effective population sizes, fixed virtual source population genetic pool-sets, and
neglecting mutation during the admixture process.

3.3 | Random-Forest ABC scenario-choice for the history of ACB and ASW populations
We performed RF-ABC model-choice separately for the admixture history of the Barbadian (ACB) and the
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African American (ASW) populations, to evaluate whether our MetHis -ABC method could identify subtle
differences in the history of both populations having experienced the TAST under the British colonial empire
(Martin et al. 2017; Baharian et al. 2016). For the ACB, Figure 3 shows that the majority of votes (53.1%)
went to an admixture scenario AfrDE-EurDE with a posterior probability of the winning scenario of 60.28%.
This posterior probability is above the mean posterior-probability obtained when the wrong scenario is chosen
for the 1000 AfrDE-EurDE simulations closest to the observed one (56.8%, SD=11.6%, for 37 simulations
wrongly assigned in total). The second most chosen scenario was the AfrDE-Eur2P scenario. However, this
scenario is voted for 3.5 times less often than the winning scenario AfrDE-EurDE, gathering 15.1% of the
1,000 votes, only slightly above the 11.11% prior probability for each nine-competing scenario (Figure 3 ;
Supplementary Table S1 ).

RF-ABC scenario-choice results were less segregating for the ASW.Figure 3 shows that the AfrDE-EurDE
scenario also gathered the majority of votes, albeit with lower posterior probability than for the ACB (33.5%
of 1,000 votes, with posterior probability = 48.0%). This posterior-probability is slightly below the average
posterior-probability obtained when the wrong scenario is chosen for the 1000 AfrDE-EurDE simulations
closest to the ASW (50.7%, SD = 7.9%, for 192 simulations wrongly assigned). The second most chosen
scenario, AfrDE-Eur2P, was only slightly less chosen with 31.7% of the votes (Figure 3 , Supplementary
Table S1 ). Altogether these results denote an ambiguity of the RF-model choice in the part of the parameter-
space occupied by the ASW.

Considering only these two best scenarios to train the RF and re-conducting scenario-choice improved the
scenario discrimination in favor of the AfrDE-EurDE scenario. While we found, again, only a slight majority of
votes (51.8%) in favor of the AfrDE-EurDE scenario, the posterior probability for this model was substantially
increased to 57.9%, thus above the average posterior-probability threshold calculated above (50.7%). This
indicated that the AfrDE-EurDE scenario best explained the ASW observed genetic patterns, despite overall
limited discriminatory power of our approach in the ambiguous part of the summary-statistics space occupied
by this population.

3.4 | Neural-Network ABC parameter inference accuracy for the ACB and ASW populations

For the ACB under the AfrDE-EurDE scenario (Figure 4A ,Table 2 ), we found that the two recent
admixture intensities from Africa and Europe (s af,20 ands gur,20, respectively) and the steepness of the
European recurring introgression decrease (u gy,) had sharp posterior densities clearly distinct from their
respective priors. Note that the cross-validation error on these parameters in the vicinity of our real data
were low (average absolute error 0.02744, 0.0044, and 0.1084, respectively for s asr 20,5 Eur,20, and % gur)
(Table 3 ), and lengths of 95% CI reasonably accurate (96.4%, 94.4%, 94.1% of 1,000 cross-validation true
parameter values fell into estimated 95% CI, Supplementary Table S4 ).

Furthermore, the two ancient admixture intensities from Africa and Europe at generation 1 (s af,1 ands
Eur,1, Tespectively), also had posterior densities apparently distinguished from their prior distributions, but
both had much wider 95% CI (Figure 4A , Table 2 ). Consistently, we found a slightly increased posterior
parameter error in this part of the parameter space for both parameters, with average absolute error equal
to 0.121 and 0.095 respectively fors ap,1 and s gur,1(Table 3 ). Nevertheless, note that 95.8% and 94.7% of
1,000 cross-validation true values for those two parameters fell into the estimated 95% CI (Supplementary
Table S4) . This shows a reasonably conservative behavior of our method for these estimations, albeit
indicating that information is lacking in our data or set of summary statistics for a more accurate estimation
of these parameters, rather than an inherent inaccuracy of our approach.

Interestingly (Figure 4A | Table 2 ), we found that accurate posterior estimation of the steepness of the
African recurring introgression decrease (u af) is difficult. Indeed, the posterior density of this parameter
showed a tendency towards small values only slightly departing from the prior, indicative of a limit of our
method to estimate this parameter (Figure 4A Table 2 ). Finally (Figure 4A , Table 2 ), we found that
we had virtually no information to estimate the founding admixture proportions from Africa and Europe at
generation 0, as our posterior estimates barely departed from the prior and associated mean absolute error
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was high (0.2530, Table 3 ). Nevertheless, our method seemed to be performing reasonably conservatively
for these two latter parameters (95.6% and 95.3% of 1,000 cross-validation true parameter values fell into
estimated 95% CI, Supplementary Table S4 ). This indicates that information is strongly lacking in our
data or summary statistics for successfully capturing these parameters, rather than inherent inaccuracy of
our approach.

For the ASW under the AfrDE-EurDE model, our posterior parameter estimation results were overall less
accurate compared to those obtained for the ACB population, as indicated by overall larger CI and cross-
validation errors (Figure 4B | Table 2 /Table 3 , Supplementary Table S4 ). This was consistent with
the more ambiguous RF-ABC model-choice results obtained for this population (Figure 3 ).

Note that, we conducted the above analyses under the loosing scenario Afr2P-Eur2P instead, for comparison.
We find, as expected, that parameters and 95% CI are very poorly estimated for all parameters under this
model (Supplementary Table S3 and S5 ). This indicates, consistently, that no information is available
in the ACB or ASW data for accurate and conservative estimation of the loosing scenario Afr2P-Eur2P
parameters using ABC.

3.5 | Comparing NN, RF, and Rejection ABC posterior parameter estimation accuracy

The three types of posterior parameter estimation errors (scaled mean-square error, mean-square error, ab-
solute error) were systematically lower for the two NN methods (joint or independent posterior parameter
estimations) than for the RF and Rejection independent posterior parameter estimations (Table 4 ). Alto-
gether, these results showed that considering the NN estimation for parameters taken jointly as a vector is
overall preferable, since it further allowed the joint interpretation of parameter values estimateda posteriori
, with little accuracy loss.

The lengths of 95% CI estimated with NN joint parameter estimation were, across all parameters, more
accurate than those obtained with all other methods with, on average, 95.1% and 95.2% of true parameter
values falling within the estimated 95% CI, for the ACB and ASW respectively (Supplementary Table
S3 ). Furthermore, the lengths of 95% CI estimated with NN and RF independent posterior parameter
estimations were systematically under-estimated, with less than 94% of the true parameter values falling
into the estimated 95% CI. Finally, the lengths of 95% CI estimated with the Rejection method were also
rather accurately estimated, although on average slightly over-estimated compared to the NN joint estimation
with, on average, 95.5% of the 1,000 cross-validation true parameter values within the estimated 95% CI for
the ACB, and 95.8% for the ASW.

3.6 | Admixture histories of the African American ASW and Barbadian ACB

Figure 5 visually synthesized the estimated posterior parameters of the complex admixture scenarios re-
constructed with theMetHis — ABC framework, and associated 95% CI (Table 2 ).

We found a virtual complete replacement of the ACB and ASW populations at generation 1, thus con-
sistent with our inability to accurately estimate the founding proportions from the African and European
sources at generation 0. Furthermore, we found an increasingly precise posterior estimation of introgression
rates forward-in-time. This is also consistent with the nature of recurrent admixture processes, where older
information may be lost or replaced when more recent admixture events occur.

Interestingly, we found that the recurring introgression from the European gene pool rapidly decreases after
generation 1, for both the ACB and ASW, albeit with substantial differences (Figure 5 ). Indeed, we found
that, for the ACB, European introgression falls below 10% at generation 9 until no more than 1% in the
present. Comparatively, the European contribution diminished substantially less rapidly for the ASW, going
below 10% only after generation 12 until roughly 2% in the present. Therefore, it seems that neither sustained
European migrations, nor the relaxation of social and legal constraints on admixture between descendant
communities subsequent to the abolition of slavery and the end of segregation, have translated into increased
European genetic contribution to the gene-pool of admixed populations in the Americas.
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Finally, we found substantial recurring contributions from the African source for both admixed populations
(Figure 5 ). For the ACB, we found a progressive decrease of the African recurring introgression until a
virtually constant recurring admixture close to 28% from generation 10 and onward. For the ASW, our results
showed a sharper decrease of the African contribution after founding until a virtually constant recurring
admixture process close to 24% from generation 5 until present. Nevertheless, the ACB occupy an ambiguous
region of the parameter-space, and results should be considered cautiously, as another complex admixture
model might more accurately explain this data. Altogether, the signal of substantial ongoing admixture from
Africa could stem from the known importance of African recurring forced migrations during the TAST into
the Americas; further prompts the influence of African slave descendants migrations within the Americas
before and after the end of slavery (Baharian et al., 2016).

4 | DISCUSSION

Our novel MetHis forward-in-time simulator and summary-statistics calculator coupled with RF-ABC
scenario-choice can distinguish among highly complex admixture histories using genetic data. As expec-
ted, scenario-choice errors are particularly made in regions of the parameter space for which models are
highly nested (Robert, Mengersen, & Chen, 2010), and, thus, biologically similar. Furthermore, we found
that NN-ABC provided accurate and reasonably conservative posterior parameter estimation for numerous
parameters of the winning scenario, using human population data as a case-study. Finally, we empirically
demonstrated that the moments of the distribution of admixture fractions in the admixed population were
highly informative for ABC inference, as expected theoretically (Gravel, 2012; Verdu & Rosenberg, 2011).

Altogether, our results for the two recently-admixed human populations illustrate how our MetHis — ABC
framework can bring fundamental new insights into the complex demographic history of admixed populations;
a framework that can easily be adapted, using MetHis(Supplementary Note S1 ), for investigating complex
admixture histories when maximum-likelihood methods are intractable.

We considered nine competing scenarios all deriving from the general mechanistic admixture model of Verdu
and Rosenberg (2011). While the two-source version of this model can readily be simulated withMetHis ,
it considers 2¢g -1 model parameters (with g the duration of the admixture process), plus effective popula-
tion sizes parameters and mutation parameters. Estimating jointly all these parameters is out of reach of
ML methods, and further likely out of reach of ABC posterior-parameter estimation procedures. However,
conducting ABC model-choice for disentangling major classes of relatively simplified admixture processes
followed by ABC parameter estimation under the winning model, is flexible enough to bring new insights into
the evolutionary history of admixed populations, far beyond all admixture scenarios that can be explored
with existing ML methods (Gravel 2012; Hellenthal et al. 2014).

The sample and SNP-set explored here is often out of reach in non-model species. Nevertheless, our results
considering vastly reduced SNP or sample sets demonstrate that ABC can remain remarkably accurate to
disentangle highly complex admixture processes with much less genetic or sample data. This is due to the
fact that ABC relies on the amount of information carried by summary-statistics about model parameters,
rather than the absolute amount of genetic data investigated. Therefore, theMetHis -ABC framework re-
mains promising to reconstruct complex admixture histories, provided that summary-statistics considered
by the user are, a priori , informative about model parameters, and that summary-statistics are reasonably
well estimated with the observed data. Altogether, large parameter and summary-statistics spaces, lack of
information from summary statistics, and scenario nestedness, are well known to affect ABC performances
and, thus, imperatively need to be thoroughly evaluated case by case (Csilléry, Blum, Gaggiotti, & Francois,
2010; Robert et al., 2010; Sisson et al., 2018).

To further increase the range of applicability of our MetHis -ABC framework, our software readily implements
microsatellite markers together with a general stepwise mutation model (Estoup, Jane, & Cornuet, 2002),
fully parameterizable by the user (Supplementary Note S1 ). This will allow investigating numerous
complex admixture histories, much older than the one here explored, and from non-model species. Even if
prior knowledge of the founding date is lacking, MetHis users can simply set the founding of the population
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in a remote past and implement a second founding event with variable date to be estimated, together with
later additional admixture events and other parameters of interest, in the ABC inference. Nevertheless, it is
not trivial to predict how old an admixture processes should be to be successfully investigated with ABC
(Buzbas and Verdu 2018). Indeed, ancient admixture processes can leave scarcely identifiable signatures in
the observed data, if obliterated by more recent admixture events. This was theoretically expected (Buzbas, &
Verdu, 2018), and future studies combining ancient and modern DNA samples may bring further information
into the ancient admixture history reconstruction.

Importantly, the computational cost of our study depends, for 2/3, on summary statistics calculation at the
end of the admixture process, as is often the case in ABC. Considering much longer admixture processes
than the ones here investigated will mechanically increase computation time but will not increase summary-
statistics calculation time. Furthermore, note that the computational cost of simulating data with MetHis
does not rely excessively on the number of generations considered (within reason), nor on the absolute
number of markers used, but rather on the effective population size in the admixed population set by the
user.

Although MetHis readily allows considering changes of effective population size in the admixed population
at each generation as a parameter of interest to ABC inference (Supplementary Note S1 ), we did not, for
simplicity, investigate here how such changes affected our results. Future work using MetHis will specifically
investigate how effective size changes may influence genetic patterns in admixed populations, a question
of major interest as numerous admixed populations have experienced founding events and/or bottlenecks
during their genetic history (e.g. Browning et al., 2018).

The current MetHis — ABC approach does not make use of admixture linkage-disequilibrium patterns in the
admixed population, and only relies on independent SNP or microsatellite markers. Nevertheless, admixture
LD has consistently proved to bring massive information about complex admixture histories in populations
where large genomic datasets are available (Gravel, 2012; Hellenthal et al., 2014; Malinsky et al., 2018;
Medina et al., 2018; Ni et al., 2019; Stryjewski & Sorenson, 2017). However, existing methods to calculate
admixture LD patterns remain computationally intensive and require both dense marker-sets and accurate
phasing, which is difficult under ABC where such statistics have to be calculated for each one of the numerous
simulated datasets. In this context, RF-ABC (Pudlo et al., 2016; Raynal et al., 2019), or AABC (Buzbas &
Rosenberg, 2015), methods allow substantially diminishing the number of simulations required for satisfactory
ABC inference. This makes both approaches promising tools for using, in the future, admixture-LD patterns
to reconstruct complex admixture processes from genomic data.

Finally, future developments of the MetHis -ABC framework will focus on implementing sex-specific ad-
mixture models, as these processes are known to affect genetic diversity patterns in a specific way, and
are of interest to numerous study-cases (Goldberg, Verdu, & Rosenberg, 2014). Furthermore, the MetHis
forward-in-time simulator represents an ideal tool to further investigate admixture-related selection forces,
and admixture-specific assortative matting processes, as these processes can simply be modeled by specifi-
cally parameterizing individual reproduction and survival in the simulations, unlike most coalescent-based
simulators.
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Table 1 . Parameter prior distributions for simulation with MetHis and Approximate Bayesian Computation
historical inference. Parameter list correspond to the nine competing historical admixture models described
in Figure 1 and Materials and Methods .
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Parameter Parameter Prior
names description distribution Condition Models
SAfr,0 SEur,0 = Afr. source Uniform [0,1] - all models

1-8Afr,0

tAfr,pl tAfr,p2

SAfr | tAfr,pl
SAfr , tAfr,p2

tEur,pl tEur,p2

SEur , tEur,pl
SEur , tEur,p2

SAfr,1

SAfr,20

UAfr

SEur,1

SEur,20

UBur

SAfr,1

SAfr,20

introgression rate at
founding of H
Times of the Afr.
source introgression
pulses pl and p2
Afr. source
introgression rates
of pulses Afr,pl and
Afr p2

Times of the Eur.
source introgression
pulses pl and p2
Eur. source
introgression rates
of pulses Eur,pl
and Eur,p2

Afr. source
introgression rate
at the first
generation after
founding

Afr. source
introgression rate
in the present
Steepness of the
decrease in Afr.
source
introgression rates
Eur. source
introgression rate
at the first
generation after
founding

Eur. source
introgression rate
in the present
Steepness of the
decrease in Eur.
source
introgression rates
Afr. source
introgression rate
at the first
generation after
founding

Afr. source
introgression rate
in the present

Uniform [0,20]

Uniform [0,1]

Uniform [0,20]

Uniform [0,1]

Uniform [0,1]

Uniform [0, saf1

/3

Uniform [0,0.5]

Uniform [0,1]

Uniform [0, Sgur1

/3l

Uniform [0,0.5]

Uniform |0,
Sam,20 / 3]

Uniform [0,1]
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tAfr,pl [?} tAfr,p2

For all g, hg =1 -
SAfr,g = SEur,g in

[0,1]

tEur,pl [7] tEur,p2

For all g, hg =1 -

SAfr,g = SEur,g in
[0,1]

For all g, hg =1 -
SAfr,g = SEur,g in

[0,1]

For all g, hg =1 -
SAfr,g = SEur,g in

[0,1]

For all g, hg =1 -

SAfr,g = SEur,g in
[0,1]

For all g, hg =1 -
SAfr,g = SEur,g in
[0,1]

For all g, hg = 1 -
SAfr,g = SEur,g in

[0,1]

For all g, hg = 1 -

SAfr,g = SEur,g in
[0,1]

Afr2P models

Afr2P models

Eur2P models

Eur2P models

AfrDE models

AfrDE models

AfrDE models

EurDE models

EurDE models

EurDE models

AfrIN models

AfrIN models



Parameter Parameter Prior
names description distribution Condition Models

UAfr Steepness of the Uniform [0,0.5] - AfrIN models
increase in Afr.
source
introgression rates

SEur,1 Eur. source Uniform [0, For all g, hg = 1 - EurIN models
introgression rate SBur,20 / 3] SAfrg - SEur,g il
at the first [0,1]
generation after
founding

SEur,20 Eur. source Uniform [0,1] For all g, hg =1 - EurIN models
introgression rate SAfr,g = SEur,g Il
in the present [0,1]

UBur Steepness of the Uniform [0,0.5] - EurIN models
increase in Eur.
source
introgression rates

Table 2 . Neural-Network Approximate Bayesian Computation posterior parameter weighted distributions
under the winning scenario AfrDE-EurDE, for the ACB and ASW populations. All posterior parameter
estimations were conducted using 100,000 simulations under scenario AfrDE-EurDE (Figure 1 , Table 1 ),
a 1% tolerance rate (1,000 simulations), 24 summary statistics, logit transformation of all parameters, and
4 neurons in the hidden layer (see Materials and Methods ).

Admixed population AfrDE-EurDE parameters Median Mean Mode  95% Credibility Interval

ACB SAfr,0 0.3097  0.3747 0.1121 [0.0116 ; 0.9347]
SAfr,1 0.6797  0.6769 0.6813 [0.4577 ; 0.8880]
S Afr,20 0.2707  0.2655 0.2788 [0.1985 ; 0.2967]
UAfr 0.1409  0.1684 0.0508 [0.0041 ; 0.4507]
SEur,1 0.1807  0.2160 0.1158 [0.0542 ; 0.5525]
SBur,20 0.0100  0.0102 0.0093 [0.0018 ; 0.0200]
UEur 0.4858  0.4627 0.4929 [0.1886 ; 0.4992]
ASW SAfr,0 0.5258  0.5124 0.7015 [0.0262 ; 0.9758]
SAfr1 0.6006  0.6026 0.6081 [0.3506 ; 0.8581]
SAfr,20 0.2352  0.2286 0.2385 [0.1222; 0.2714]
UAfr 0.0662  0.1105 0.0253 [0.0025 ; 0.4393]
SEur,1 0.2917  0.3080 0.2203 [0.1048 ; 0.5951]
SEur,20 0.0180  0.0189 0.0157 [0.0022 ; 0.0389]
UEur 0.4250  0.3966 0.4567 [0.1077 ; 0.4950]

Table 3. Neural-Network Approximate Bayesian Computation posterior parameter errors under the winning
scenario AfrDE-EurDE, for the ACB and ASW populations. For each target population separately, we
conducted cross-validation by considering in turn 1,000 separate NN-ABC parameter inferences each using
in turn one of the 1,000 closest simulations to the observed ACB (or ASW) data as the target pseudo-observed
simulation. All posterior parameter estimations were conducted using 100,000 simulations under scenario
AfrDE-EurDE (Figure 1 , Table 1 ), a 1% tolerance rate (1,000 simulations), 24 summary statistics,
logit transformation of all parameters, and four neurons in the hidden layer (see Materials and Methods
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). Median was considered as the point posterior parameter estimation for all parameters. First column
provides the average absolute error; second column shows the mean-squared error; third column shows the
mean-squared error scaled by the parameter’s observed variance (see Materials and Methods for error
formulas).

AfrDE-EurDE parameters ACB ACB ACB ASW

Av. absolute Error Mean-square Error Mean-square Error / Var.  Av. absolute Error

SAfr,0 0.2530 0.0857 1.0070 0.2444
SAfr,1 0.1206 0.0216 0.8533 0.1158
SAfr,20 0.02744 0.0012 0.4162 0.0219
UAFr 0.1166 0.0198 0.9974 0.1254
SEur,1 0.0952 0.0164 1.0526 0.1001
SEur,20 0.0044 0.0001 0.6452 0.0069
UEur 0.1084 0.0174 0.9431 0.1021

coococococo=|w

Table 4. Approximate Bayesian Computation mean posterior parameter errors under the winning Scenario
AfrDE-EurDE, for the ACB and ASW populations separately, using four different methods: NN estimation of
the parameters taken jointly as a vector, NN estimation of the parameters taken separately, Random Forest
(parameters taken separately), and Rejection (parameters taken separately). For each target population
separately and for each method, we conducted an out-of-bag cross validation by considering in turn 1,000
separate parameter inferences each using one of the 1,000 closest simulation to the observed ACB (or ASW)
data as the target pseudo-observed dataset. All posterior parameter estimations were conducted using the
other 99,999 simulations under the AfrDE-EurDE scenario (Figure 1 ,Table 1 ), a 1% tolerance rate
(i.e. 1,000 simulations), 24 summary statistics, logit transformation of all parameters, four neurons in the
hidden layer per neural network and 500 trees per random forest. Median was considered as the point
posterior parameter estimation for all parameters. First column provides the average absolute error; second
column shows the mean-squared error; third column shows the mean-squared error scaled by the parameter’s
observed variance (see Materials and Methods for error formulas).

Posterior parameter estimation ABC method ACB ACB ACB

Av. absolute Error Mean-squared Error  Mean-squared Error / Var.

NN joint 0.1037 0.0232 0.8450
NN independent 0.1032 0.0236 0.8294
RF independent 0.1042 0.0246 0.8534
Rejection independent 0.1071 0.0238 0.9299

SO OO

11 | FIGURES

Figure 1 . Nine competing scenarios for reconstructing the admixture history of African American ASW or
Barbadian ACB populations descending from West European and West sub-Saharan African source popula-
tions during the Transatlantic Slave Trade. “EUR” represents the Western European and “AFR” represents
the West Sub-Saharan African source populations for the admixed population H. See Table 1and Materials
and Methods for model parameter descriptions.
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Figure 2 : Random-Forest Approximate Bayesian Computation model-choice cross-validation. Heat map of
the out-of-bag cross-validation results considering each 10,000 simulations per each nine competing models
(Figure 1 , Table 1 ) in turn as pseudo-observed target for RF-ABC model-choice. Prior probability of
correctly choosing a given scenario is 11%. Out-of-bag prior error rate is 32.41%. RF-ABC model-choice
performed using 1,000 decision trees and 24 summary-statistics (see Materials and Methods ).
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Figure 3 : Random-Forest Approximate Bayesian Computation model-choice predictions for the ACB
(left panel) and ASW (right panel) populations. Nine competing models were compared, each with 10,000
simulations (Figure 1 , Table 1 ). 1,000 decision trees were considered in the model-choice prediction,
respectively for each population.

Figure 3

ACB ASW Admixture models

Post prob. AfrDE-EurDE = 0.603 Post prob. AfrDE-EurDE = 0.480
2 o o | [l Afr2P - Eur2P
§ [ Afr2P - EurDE
[on
£ 3 34 Afr2P - EurlN
)
e AfrDE - Eur2P
8 - | [

o o

° [l AfrDE - EurDE
[&)
T o o I AfrDE - EuriN
3 S S
€ [l AfrIN - Eur2p
&}
o - -
E S ST [l AfriN - EurDE
[i4

I I Il [l AfrIN - EuriN

g_ p— | . - g_ el | — —_

Figure 4 : Neural-Network Approximate Bayesian Computation posterior parameters estimated densities
under the winning scenario AfrDE-EurDE, for (A) the ACB and (B) the ASW populations. Median posterior
point estimates are indicated by the red vertical line, 95% credibility intervals are indicated by the colored
area under the posterior curve (Table 2 ). All posterior parameter estimations were conducted using 100,000
simulations under scenario AfrDE-EurDE, a 1% tolerance rate (1,000 simulations), 24 summary statistics,
logit transformation of all parameters, and four neurons in the hidden layer (see Materials and Methods ).
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For all parameters separately, densities are plotted with 1,000 points, a Gaussian kernel, and are constrained
to the prior limits. Posterior parameter densities are indicated by a solid line; prior parameter densities are
indicated by black dotted lines.

Figure 4
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Figure 5 : Approximate Bayesian Computation inference of the admixture history of the ACB and ASW
populations respectively. Top panels are based on median point-estimates of intensity parameters at each
generation. Bottom panels show 95% credibility intervals for each inferred parameter around the median
point-estimates. The African introgression is plotted in orange, the European introgression in blue, and in
green the remaining contribution of the admixed population to itself at the following generation. (A) Results
for the ACB under the AfrDE-EurDE winning scenario; (B) Results for the ASW under the AfrDE-EurDE
winning scenario.
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Figure 5
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Figure 4

SOURCE SOURCE SOURCE SOURCE
A) AFRICA ACB EUROPE B) AFRICA Asw EUROPE
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Figure 5

ACB

Historical Median Admixture Proportions Historical Median Admixture Proportions
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