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Abstract

The present work presents a mathematical investigation of a Rabinowitsch suspension fluid through elastic walls with heat

transfer under the effect of electroosmotic forces (EOFs). The governing equations contain empirical stress-strain equations of

Rabinowitsch fluid model, equations of fluid motion along with heat transfer. It is of interest in this work to study the effects

of EOFs, rigid spherical particles which are suspended in the Rabinowitsch fluid, Grashof parameter, heat source and elasticity

on the shear stress of Rabinowitsch fluid model and flow quantities. The solutions are achieved by taking long wavelength

approximation with creeping flow system. A comparison is set between the effect of pseudoplasticity and dilatation on the

behaviour of shear stress, axial velocity and pressure rise. Physical behaviours have been graphically discussed. It was found

that the Rabinowitsch and electroosmotic parameters enhance the shear stress while they reduce the pressure gradient. The

present analysis is particularly important in biomedicine and physiology.
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Abstract: The present work presents a mathematical investigation of a Rabinowitsch suspension fluid
through elastic walls with heat transfer under the effect of electroosmotic forces (EOFs). The governing
equations contain empirical stress-strain equations of Rabinowitsch fluid model, equations of fluid motion
along with heat transfer. It is of interest in this work to study the effects of EOFs, rigid spherical particles
which are suspended in the Rabinowitsch fluid, Grashof parameter, heat source and elasticity on the shear
stress of Rabinowitsch fluid model and flow quantities. The solutions are achieved by taking long wavelength
approximation with creeping flow system. A comparison is set between the effect of pseudoplasticity and
dilatation on the behaviour of shear stress, axial velocity and pressure rise. Physical behaviours have been
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graphically discussed. It was found that the Rabinowitsch and electroosmotic parameters enhance the shear
stress while they reduce the pressure gradient. The present analysis is particularly important in biomedicine
and physiology.

Keywords: Elasticity; electroosmotic forces; heat transfer; Rabinowitsch fluid; suspension

1 Introduction

The movement of blood liquids is an important study for the mathematical simulation of medical applicati-
ons. Rabinowitsch fluid is one of the fluids that simulate blood movement because the Rabinowitsch model
effectively relies on studying the result of lubricant additives, for a wide range of shear rates, and studying
their experimental data. Over the past decades, scientists have made active efforts to increase the ability
of solidifying the features of non-Newtonian lubricants using long-chain quantities by adding a very small
addition of the polymer solution. A very important result from this is that this result reduces the lubricant
sensitivity. Additionally, a non-linear relationship appears between the shear stress rate and shear pressure.
Through those recent actions based on the Rabinowitsch model, Akbar and Butt [1] studied the flow of the
Rabinowitsch model due to the cilia located on the wall. Also, Singh et al . [2] studied the movement of Ra-
binowitsch fluid through peristaltic flow. In addition, Vaidya [3] investigated the movement of Rabinowitsch
fluid through the oblique wall of a channel, while Sadaf and Nadeem [4] studied the Rabinowitsch model
through a non-uniform conduit with peristalsis. Choudhari et al . [5] also studied the effect of slipping on
the oscillating transmission of a Rabinowitsch model in a non-uniform channel.

In recent years, microfluidic systems have been developed through the use of Electric- Double-Layer (EDL).
This increased interest is reflected in references [6–8]. Electrical osmosis is defined as the movement of a
liquid in relation to a fixed surface due to the presence of an externally applied electric field. Among the first
studies that have studied the application of these external forces goes back to Ross [9]. The idea of electrical
ripening comes into contact with the aqueous electrolytic solution with the solids and then generates a
relatively electrical charge. In addition, the opposite ion charge is attracted to that charge on the surface
and the opposite process from the ions on the surface and shows the double layer, and thus the surface
becomes electrically charged. As a result of this phenomenon, a process of acceleration of the liquid by
migrating ions occurs and the resulting flow is called electromagnetic flow.

The study of the movement of suspended impurities inside the fluid is considered the most important medical
application. The movement of the fluid that contains impurities is similar to the movement of the blood
plasma, because the blood consists of solid materials in addition to that it is a liquid in which those substances
swim. In that sense, there are a lot of species studied such as sickle cell (Hb SS), plasma cell dyscrasias,
normal blood, controlled hypertension, uncontrolled hypertension and polycythemia. Each of these types is
known with a specific high order size, i.e. C = 0.248, C = 0.28,C = 0.426, C = 0.4325, C = 0.4331 and C
= 0.632 [10]. In addition, the study of the movement of suspended impurities inside fluids is very interesting
because they resemble white blood cells, red blood cells and/or platelets that move inside the blood. Many
experimental and analytical studies have focused on studying suspended impurities because of their great
importance in improving and understanding the flow of blood flow and the distribution of proteins within it
[11–13].

The geometrical shape of fluid flow has an important role in understanding various properties of different
fluid flows such as blood flow and other important applications. Most studies that have discussed fluid
movement have relied on solid ducts and tubes [14–20]. Because biological flows depend on their flexible
flow fields, and this appears through their flexible nature, so the flow and the movement of Newtonian and
non-Newtonian fluids through walls of a flexible nature carry many important medical applications such as
blood flow through the arteries, small blood vessels, heart systems and others which, according to some
studies, revealed that the velocity of the blood is greatly affected by the elastic placement of the walls. Some
of the work that have been interested in discussing the flow rate through elastic nature can be found in the
refs. [21–24].

Accordingly, this work attempts to fill the void of the movement of the particulate suspension under the

2
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effects of electroosmotic forces using Rabinowitsch fluid. Analytical solution is used to obtain the physical
parameters of the problem subjected to appropriate boundary conditions. The impact of relevant parameters
is discussed graphically.

2 Non-Newtonian Rabinowitsch fluid equation

The isotropic rheological equation of a Rabinowitsch fluid takes the following form:

τ
XY

+ µoτXY
3

= µS(C)
∂U

∂Y
, (1)

where the coefficient µo represents pseudo-plasticity of the fluid which takes a fundamental role in determining
the nature of fluids, and C is the volume fraction. The model represents a pseudoplastic state for µo > 0,
a Newtonian state forµo = 0 and an expanded fluid model for µS < 1.

3 Mathematical model

Consider a particulate suspension swimming in a Rabinowitsch fluid through elastic peristaltic walls of a
channel of which amplitudea and half width b . In addition, consider that the deformation on the wall is α
as shown inFig 1 . Also, the inlet pressure is defined as piand the outlet pressure is defined as po are shown
in Fig 1 . The effect of the electroosmotic forces on the Rabinowitsch fluid through the elastic peristaltic
walls is taken into account. The velocity of the particulate suspension and Rabinowitsch fluid are denoted

by
−→
V
(
Up, V p

)
,
−→
V
(
Uf , V f

)
. The mathematical geometry of the channel wall is given by

H(X, t) = ±
(
d+ a sin 2π

λ

(
X − c t

))
, (2)

Here, d is the radius of the artery channel, a is the amplitude of the wall, λ is the amplitude of the peristaltic
wave and c be the blood velocity.

(a) (b)

Figure 1 : Physical modeling of problem

The momentum and continuity equations for the problem of both particle and fluid phases are given in the
following form [25]:

3
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Model of Fluid Phase

∂Uf

∂X
+
∂V f

∂Y
= 0, (3)

ρf CPH

(
∂Uf
∂t

+ Uf
∂Uf

∂ X
+ V f

∂Uf

∂Y

)

= −CPH
∂P

∂X
+ CPH

[
∂τ

XX

∂X
+

∂τ
XY

∂Y

]
+ ρeEx + ργg (T − T0)− C S

(
Uf − UP

)
, (4)

ρf CPH

(
∂V f
∂t

+ Uf
∂V f

∂ X
+ V f

∂V f

∂Y

)
= −CPH

∂P

∂Y
+CPH

[
∂τ
Y X

∂X
+
∂τ
Y Y

∂Y

]
−C S

(
V f − V P

)
, (5)

(ρ῝) f

(
∂Tf
∂t

+ Uf
∂Tf

∂X
+ V f

∂Tf

∂Y

)
= k

(
∂2T

∂X
2 +

∂2T

∂Y
2

)
+HS , (6)

Model of Particle Phase

∂UP

∂X
+
∂V P

∂Y
= 0, (7)

ρP CPH

(
∂UP
∂t

+ UP
∂UP

∂ X
+ V P

∂UP

∂Y

)
= −CPH

∂P

∂X
+ C S

(
Uf − UP

)
, (8)

ρf CPH

(
∂V P
∂t

+ UP
∂V P

∂ X
+ V P

∂V P

∂Y

)
= −CPH

∂P

∂Y
+ C S

(
V f − V P

)
, (9)

where CPH = 1−C, S is the drag coefficient andµS (C) is the viscosity of suspension. The empirical relation
for S and µS (C) can be described as

µS =
1

(1−m C)
, m=0.07 ∗ Exp

[
2.49 ∗ C − 1107

273
∗ Exp [−1.69 ∗ C]

]
,

S =
9µ0

2 ∈2
γ (C) , γ (C) =

4 + 3
√

8C − 3C2 + 3C

(2− 3C)
2 . (10)

Here, µ0 is the viscosity of fluid for suspending medium,∈ is the radius of a particle.

Now, we use the convenient transformation to convert from fixed frame to wave frame as follows:

x = X − ct, y = Y , u = U − c, p = P. (11)

Then, the mathematical formulation and Rabinowitsch fluid equations (2–9) take the following form:

Rabinowitsch fluid equations

τxy + µoτxy
3

= µs(C)
∂uf

∂y
, (12)

4



P
os

te
d

on
A

u
th

or
ea

5
O

ct
20

20
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

g
h
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

19
31

86
.6

12
35

96
6/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Model of fluid phase

ρf CPH

(
uf
∂uf

∂ x
+ vf

∂uf

∂y

)

= −CPH
∂p

∂x
+ CPH

[
∂τ

xx

∂x
+

∂τ
xy

∂y

]
+ ρeEx + ργg (T − T0)− C S

(
uf − uP

)
, (13)

ρf CPH

(
uf
∂V f

∂ x
+ vf

∂vf

∂y

)
= −CPH

∂p

∂y
+ CPH

[
∂τyx

∂x
2 +

∂τyy

∂y
2

]
− C S

(
vf − vP

)
, (14)

(ρ῝) f

(
∂Tf
∂t

+ uf
∂Tf

∂x
+ vf

∂Tf

∂y

)
= k

(
∂2T

∂x
2 +

∂2T

∂y
2

)
+HS , (15)

Model of particle phase

ρP CPH

(
uP

∂uP

∂ x
+ vP

∂uP

∂y

)
= −CPH

∂p

∂x
+ C S

(
uf − uP

)
, (16)

ρf CPH

(
uP

∂vP

∂ x
+ vP

∂vP

∂y

)
= −CPH

∂p

∂y
+ C S

(
vf − vP

)
, (17)

4 Electroosmotic flow

the Poisson-Boltzmann equation:

∇2ϕ =
ρe
ε
, (18)

where ρe be a charge density, ε is the electric permittivity and ϕ is the electroosmotic potential function.

The charge density ρe of the fluid in a unit volume is given by:

ρe = ε e (n+ − n−) = −2ε e n0 sinh
{
ε εϕ

englishkBTav, (19)

n− = n0selectlanguagegreeke
eϕ

kBTav , n+ = n0 e
− ε eϕ
kBTav

,
, (20)

whereε, n+, n−, e, kB , and Tav are the valence of ions, the number densities of positive and negative ions,
electric charge, Boltzmann’s constant, local absolute temperature of the electrolytic solution and bulk volume
concentration of positive or negative ions, respectively. In addition, using the Debye-Huckel linearization

principle
{
ε ε ϕ

′

englishkBTav � 1. Eq. (19) reduces to

ρe =
−ε
Γ2

ϕ, (21)

5
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. whereΓ = (ε ε)−1
√

kBTαv
2 n0

is the Debye-Huckel parameter which describes the properties of the EDL thick-

ness. The solution for the distribution of the electroosmotic potential can easily be achieved using the
Poisson-Boltzmann equation:

∂2ϕ

∂x
2 +

∂2ϕ

∂y
2 =

1

Γ2
ϕ, (22)

5 Non-dimensional physical parameters

The non dimensionless quantities are introduced in the following expression

uP,f =
uP,f
c
, y =

y

a
, vP,f =

vP,f
δς

, p =
a2

λ ς µo
p, δ =

a

λ
, ϑ =

ϕ

ζ
, Re =

ρf c a

µ0
,

Gr =
ρfγγ a

2 T0

englishµo c, θ = T−T0

T0
, µ = µs(C)

µ0
, τ = a

cµ0
τ , UHS = −Ex

µ0 c ,

K =
µS (C) c2µ0

2

a2
, m =

a

k2
, M =

Sa2

µS (C) (1− C)
, Q =

Hsa
2

µ0 To
, pr =

µoCf
k

,

h =
H

d
, φ =

a

d
(23)

where K, m, Q, pr, UHS, Gr, Re are, respectively, the Rabinowitsch fluid parameter, electroosmotic
parameter, heat source, Prandtl number, electroosmotic velocity, Grashof number and Reynolds number.
The non-dimensional formulation of mathematical geometry for the channel wall is given by

h (x) = ± (1 + φ sin 2π x) ,

where φ is the amplitude ratio.

After using the non-dimensional physical parameters given by Eq. (23) in the governing Eqs. (12–17) and
in Eq. (22), we find

Non-dimensional Rabinowitsch fluid equations

τxy +K τxy
3 = µ

∂uf
∂y

, (24)

Non-dimensional model of fluid phase

Re δ CPH

(
uf
∂uf
∂ x

+ vf
∂uf
∂y

)
= −CPH

∂p

∂x
+CPH

[
δ
∂τxx
∂x

+
∂τxy
∂y

]
+m2UHS cosh my+Gr (T − T0)−C CPH µ M (uf − uP ) , (25)

Re δ CPH

(
uf
∂vf
∂ x

+ vf
∂vf
∂y

)
= −CPH

∂p

∂y
+CPH

[
∂τyx
∂x

+
∂τyy
∂y

]
−C CPH µ M (vf − vP ) , (26)

6
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Reprδ

(
uf
∂θ

∂x
+ vf

∂θ

∂y

)
=

(
∂2θ

∂x2
+
∂2θ

∂y2

)
+Q, (27)

Non-dimensional model of particle phase

ρP
ρf

CReδ

(
uP

∂uP

∂ x
+ vP

∂uP

∂y

)
= −C ∂p

∂x
+ C CPH µ M (uf − uP ) , (28)

ρP
ρf

CReδ

(
uP

∂vP
∂ x

+ vP
∂vP
∂y

)
= −C ∂p

∂y
+ C CPH µ Μ δ (vf − vP ) , (29)

with dimensionless boundary conditions

u = −1, θ = 0, ϑ = 1 at y = h (x),

u = −1, θ = 0, ϑ = 1 at y = −h (x) (30)

τxy = 0 at y = 0.

6 Methodology

Taking a long wavelength approximation and a creeping flow system, i.e.δ � 1, the solution of Eqs. (24–29)
takes the following form

θ (y) = 1
2Q (h− y) (h+ y) , (31)

τxy =
6 ∂p∂xy +Gr Q y

(
−3h2 + y2

)
− 6 m UHS

sinh (my)
cosh(mh)

6 CPH
, (32)

u (y) =
1

8640 µ m6C3
PH

{
m6

{
−8640 µ C3

PH + 4K Q3 y10 G3
r + 1080 y2

(
−3Km2UHs

2Sech2 (h (x)m) + 2C2
PH

)(
2

dp

dx
− h2QGr

)
− 45KQ2y8G2

r

(
−2

dp

dx
+ h2QGr

)
+ 180KQy6Gr

(
−2

dp

dx
+ h2QGr

)2

+ h2
(

540Km2UHs
2Sech2(hm)

(
12

dp

dx
− 5h2QGr

)
+ 360C2

PH

(
−12

dp

dx
+ 5h2QGr

)
+ h2K

(
−2160

dp3

dx3 + 2520h2QGr
dp2

dx2 − 990h4Q2G2
r

dp

dx
+ 131h6Q3G3

r

))
+ 90y4

(
4QC2

PHGr + 3K

(
−2m2QUhs2Sech2(hm)Gr +

(
2

dp

dx
− h2QGr

)3
))}

+ 90UHSSech(hm)

(
−8Km8UHS

2Cosh (3my) Sech2 (hm) + 6Km5UHS y Sech (hm) Sinh (2my) 3QGr + 2m2

(
6

dp

dx
+Q(−3h2 + y2)Gr)

)
− 9Km4UHSCosh(2my) Sech(hm)

(
QGr + 2m2

(
2

dp

dx
+Q(−h2 + y2)Gr

))
+ 48K m y Sinh(my)

(
120Q2G2

r +m4

(
6

dp

dx
+Q(−3h2 + y2)Gr

)(
2

dp

dx
+Q(−h2 + y2)Gr

)
+ 4m2QGr

(
12

dp

dx
+Q(−6h2 + 5y2)Gr

))
− 8Cosh(hm)

(
9Km8UHS

2Sech2(hm) + 4

(
−9Km4

(
2 + h2m2

)(dp

dx

)2

− 3m6C2
PH + 6Km2

(
−12− 3h2m2 + h4m4

)
QGr

dp

dx
−K(180 + 54h2m2 − 6h4m4 + h6m6)Q2G2

r

))
+ 8Cosh(my)

(
9Km8UHS

2Sech2(hm)− 720KQ2G2
r + 72Km2QGr

(
−4

dp

dx
+Q

(
2h2 − 5y2

)
Gr

)
+ 6Km4

(
−5Q2y4G2

r + 12Qy2Gr(−
2dp

dx
+ h2QGr)− 3

(
−2dp

dx
+ h2QGr

)2
)

+m6

(
−12C2

PH −Ky2
(

6
dp

dx
+Q

(
−3h2 + y2

)
Gr

)2
))

+Km

(
8m7UHS

2Cosh (3hm) Sech2 (hm) + 9m3UHS Cosh(2hm)Sech(hm)

(
4m2 dp

dx
+QGr

)
+ 6h

(
m4UHS Sech (hm) Sinh(2hm)

(
−12 m2 dp

dx
+ (−3 + 4h2m2)QGr

)
+ 32 sinh (hm)

(
−3m4 dp2

dx2 +m2
(
−12 + h2m2

)
QGr

dp

dx
+
(
−30 + h2m2

)
Q2G2

r

))))}
. (33)

7 Theoretical determination of pressure gradient and pressure rise
application in blood flows

In this section, the deformation in the walls, that is defined by elasticity in the channel walls, is taken into
account which appears from the pressure shown in Fig. 1 . According to Rubinow and Keller [22], the flow
rate and pressure gradient are related by the following expression:

Q = −σ (pi − po) ∂p∂x , (34)

The flow rate is defined as

Q =
∫ h
0
u (y) dy, (35)

Following the hypothesis of elastic walls, according to Rubinow and Keller [24], and using Eqs. (33–35), it
is found that the flow rate takes the following form as follows

Q = σ1 (pi − po)
(
− ∂p
∂x

)3
+ σ2 (pi − po)

(
− ∂p
∂x

)2
+ σ3 (pi − po)

(
− ∂p
∂x

)
+constant (36)

7
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whereσ1 (pi − po) = α(x)5k
5A M3 ,(37)

σ2 (pi − po) = 1
8640µ m6M3

(
13824

7 Gr α (x)
7

K m6Q+ 103680 α (x) K m4 UHS + 25920 α (x) K m4
(

2 + α (x)
2
m2
)
Uhs − 155520 K m3 UHS tanh (α (x)m)− 77760 α (x)

2
K m5 UHS tanh (α (x)m)

)
,(38)

σ3 (pi − po) = 1
8640µ m6M3

(
−2880selectlanguagegreek (x)3m6M2 − 5312

7 Gr
2
α (x)9Km6Q2 + 4320 (x)3Km8UHS

2 (α (x)m) + 414720 Gr α (x) K Q UHS − 17280 Grselectlanguagegreek (x)3K m4Q UHS + 17280 Gr α (x) K m2
(
24− α (x)2m2

)
Χ UΗΣ − 17280 Gr α (x) Km2

(
−12− 3 α (x)2m2 + (x)4m4

)
Χ UΗΣ + 6480 α (x) K m6 UHS

2 sech (α (x)m) sinh (α (x)m)− 622080 Gr K m Q UHS tanh (α (x)m)− 103680 Grselectlanguagegreek (x)2K m3 Q UHS tanh (α (x)m) + 17280 Grselectlanguagegreek (x)4 K m5 Q UHS tanh (α (x)m) + 17280 Grselectlanguagegreek (x)2K m3
(
−12 + α (x)2m2

)
Χ UΗΣ τανη (α (x)m)− 51840 Gr Κ μ

(
8 + α (x)2m2

)
Χ UΗΣ τανη (α (x)m)− 3240 K m5 UΗΣ

2 sech (α (x)m) sinh (α (x)m)− 6480selectlanguagegreek α (x)2 K m7UHS sech (α (x)m) sinh (α (x)m)
)
,(39)

Constant = 1
8640µm6M3

{
−8640 µ h (x)m6M3 + 1152 Gr h (x)

5
m6M2Q+ 7552

77 Gr
3h (x)

11
K m6 Q3 − 1728c12Gr h (x)

5
K m8 Q UHS

2 + 8640 h (x) m6M2UHS + 1555200 Gr
2h (x) K Q2UHS − 34560Gr

2h (x)
3
Km2Q2UHS − 34560Gr

2h (x) K
(
−45 + h2m2

)
Q2UHS + 2880 Gr

2h (x) K
(

180 + 54h (x)
2
m2 − 6h (x)

4
m4 + h (x)

6
m6
)
Q2UHS − 6480h (x) K m8UHS

3 (h (x) m) + 3240Grh (x)Km4QUHS
2 cosh (2h (x)m) (h (x)m)− 1080Grh (x)

3
Km6QUHS

2 cosh (2h (x)m) (hm) + 720 h (x)Km8UHS
3 cosh (3h (x)m) (h (x)m)− 8640 m5M2UHS tanh (h (x)m)− 2073600 Gr

2KQ2Uhs tanh(h(x)m)
m − 466560 Gr

2h (x)
2
KmQ2UHS tanh (h (x)m) +Gr

2h (x)
4
Km3Q2UHS tanh (h (x)m)

(
34560 − 2880Gr

2h (x)
2
m2
)

+ 17280 Gr
2h (x)

2
Km

(
−30 + h (x)

2
m2
)
Q2UHS tanh (h (x)m)− 17280 Gr

2K(90+18h(x)2m2−h(x)4m4)Q2UHS tanh(h(x)m)

m + 6480 Km7UHS
3 tanh (h (x)m) (h (x)m)− 1620 GrKm

3QUHS
2 tanh (h (x)m)− 1620 Grh (x)

2
Km5QUHS

2 tanh (h (x)m) + 2160 Grh (x)
4
Km7QUHS

2 tanh (h (x)m)− 240 Km7UHS
3 sinh (3h (x)m) (h (x)m)

}
,

(40)

Here, α (x) = h (x) + α′, whereh (x) and α
′

are the radii of the channel for peristalsis and elasticity,
respectively. Also, the pressure rise is defined as

p =
∫ 1

0

(
dp
dx

)
dx.(41)

8 Graphical results and discussion

The goal of this section is to study the effect of the pertinent parameters on the resulted physical expression.
In doing so, the Mathematica program is used in order to investigate the impact of Rabinowitsch parameter
K , Prandlt number Pr , heat sourceQ , electroosmotic parameter m , volume fraction C , Grashof number
Gr , maximum electroosmotic velocityUHS and radius of the channel for elasticity α

′
on the shear stressτxy,

axial velocity U(y) , pressure gradient dp
dx and pressure rise p. A graphical comparison is also set to compare

between pseudoplastic and dilatant fluids.

Figures 2–9 are plotted to investigate the impact ofUHS, C , Gr , m ,K and α
′

onτxy for sundry values
of the parameters of interest. It is observed from Figs. 2–7 that the Rabinowitsch shear stress improves
prominently with increasing all the parameters even with increasing the curviness of the conduit in both the
lower and upper halves of the channel. Figures 8 and 9 demonstrate a comparison between the impact of
pseudoplasticity and dilatation on the shear stress profile through x and y axes, respectively. It is notable
form the latter figures that for pseudoplastic fluid,τxy is enhanced along the conduit through the x -axis,
whereas for the case of dilatant fluids, a reverse effect is observed. It is also seen thatτxy behaves differently
along they -axis where it is seen that for the pseudoplastic fluids,τxy decays near the lower wall of the
channel and improves with an increase in the curviness of the channel. An exact opposite behaviour is seen
for dilatant fluids as seen in Fig. 9.

Figures 10–16 illustrate the impact of K ,UHS, Gr , C , m andα
′

on U(y) for various values of the pertinent
parameters. It is noticed thatK , UHS andα

′
play a distinguished role in lessening the fluid velocity as seen

in Figs. 10, 11 and 15. It is also depicted that Gr , C and m disturb the velocity profile significantly as
observed in Figs. 12–14. It is noticed that the latter parameters have barely an effect on U(y) near the walls
of the channel, whereas they enhance the flow in the centre part of the channel. It is generally noticed that
U(y) has a parabolic shape along the conduit for all the parameters under consideration. Figure 16 is plotted
to spot the difference in the behaviour of U(y) for pseudoplastic and dilated fluids. It is demonstrated that
for pseudoplastic fluids, U(y) is not disturbed at all near the walls of the conduit, whereas it is noticed that
for dilated fluids, the flow is decelerated at the centre of the channel.

Figures 17–22 are prepared in order to see the behaviour ofdpdx along the axis of the conduit under the effect

of K , C ,UHS, Gr , m andα
′
. It is seen that K , C ,m and α

′
serve to reducedp

dx for all values of the

pertinent parameters as noticed in Figs. 17, 18, 21 and 22. It is also noticed from Figs. 19 and 20 thatdp
dx

grows for greater values of UHS and Gr . It is also observed that for x [?] [0, 2] and [3.9, 6] the pressure
gradient is small and that the large pressure gradient occurs forx [?] [2.1, 4].

Figures 23–28 are prepared in order to spot the variation ofp that is portrayed against the dimensionless
time-averaged flux across one wavelength, Q , for several values of the parameters under consideration. The
contributions of K , Grand m for p are displayed in Figs. 23, 25 and 26 where it is noticed that p decays
near the lower wall of the channel and grows afterwards with an increase in the channel curviness. It is

8



P
os

te
d

on
A

u
th

or
ea

5
O

ct
20

20
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

g
h
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

19
31

86
.6

12
35

96
6/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

also shown from Figs. 24 and 27 that pattains smaller values as the channel curviness increases away from
the wall of the conduit. Last but not least, Fig. 28 displays the behaviour of p in case of dilatation and
pseudoplasticity of fluids. It is seen that p is generally higher for dilated fluids than that of pseudoplastic
ones. It is also observed that pdecreases for dilated fluids all way long, whereas it decreases for pseudoplastic
fluids only until a specific value (Q = 1) away from the wall from which the behaviour is reversed.

9 Biomedical application of the problem

Shear stress of fluid circulation is an important diagnostic aspect for evaluating the properties of blood
supply through the arteries. The evolution of shear stress in the stenosis system, combined with the dynamic
rheology of the blood, describes the reduction of the circular region of the system over time. Wall shear stress
plays a significant part in reshaping the arterial wall which can contribute to arterial thickening. Table 1
illustrates the non-dimensional shear stresses of Rabinowitsch fluid, τ , through artery for various values of
the hematocrit, C , for diseased blood. It is noticed that the as C increases, τ increases.

x

Shear stress
of Rabinow-
itsch fluid
τ

Shear stress
of Rabinow-
itsch fluid
τ

Shear stress
of Rabinow-
itsch fluid
τ

Shear stress
of Rabinow-
itsch fluid
τ

Shear stress
of Rabinow-
itsch fluid
τ

Shear stress
of Rabinow-
itsch fluid
τ

C = 0.248 C = 0.28 C = 0.426 C = 0.4325 C = 0.4331 C = 0.632
Hb SS (Sickle
Cell)

Plasma Cell
dyscrasias

Normal blood Hypertension
(controlled)

Hypertension
(uncontrolled)

Polycythemia

0. 0.508917 0.538364 0.707973 0.717319 0.718192 1.15146
0.2 0.505563 0.534945 0.704064 0.713379 0.714249 1.14586
0.4 0.495578 0.524771 0.69247 0.701695 0.702557 1.12931
0.6 0.479179 0.508091 0.673581 0.682663 0.683511 1.10248
0.8 0.456697 0.485281 0.64801 0.656909 0.657739 1.0665
1. 0.428523 0.456801 0.616547 0.625236 0.626047 1.02282
1.2 0.395056 0.423142 0.580099 0.588575 0.589366 0.973144
1.4 0.35665 0.384766 0.539639 0.54792 0.548692 0.919356
1.6 0.313594 0.34209 0.496165 0.504294 0.505052 0.86342
1.8 0.266209 0.295542 0.450704 0.458753 0.459502 0.807327
2. 0.215192 0.245805 0.404386 0.41245 0.4132 0.753059
2.2 0.162415 0.194396 0.358613 0.3668 0.367561 0.702604
2.4 0.111854 0.144497 0.315318 0.323729 0.324509 0.657972
2.6 0.0690173 0.101038 0.277209 0.285898 0.286704 0.621209
2.8 0.038254 0.0688821 0.24769 0.256637 0.257466 0.594302
3. 0.0213037 0.0508044 0.23019 0.2393 0.240144 0.578956
3.2 0.0183903 0.0476728 0.227071 0.236211 0.237058 0.576266
3.4 0.029497 0.0595737 0.238779 0.247809 0.248646 0.586434
3.6 0.0546015 0.0860756 0.26368 0.272484 0.2733 0.608713
3.8 0.0927918 0.125329 0.298654 0.307178 0.307969 0.641609
4. 0.140811 0.173205 0.340168 0.348438 0.349206 0.683216
4.2 0.19328 0.22449 0.385186 0.393288 0.394041 0.731496
4.4 0.245362 0.275183 0.431472 0.439514 0.440263 0.78442
4.6 0.294386 0.323171 0.477437 0.485523 0.486276 0.839995
4.8 0.339291 0.367516 0.521865 0.530076 0.530841 0.896238
5. 0.379664 0.407729 0.563701 0.572092 0.572875 0.95116

Table 1 : Rabinowitsch shear stress through an artery for various values C .

10 Deductions
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In this article, the impact of Rabinowitsch suspension fluid through elastic walls with heat transfer under
the effect of the electroosmotic forces is investigated. The solutions of the fluid model are achieved by taking
a long wavelength approximation. A comparison is set between the effect of pseudoplasticity and dilatation
on the behaviour of shear stress, axial velocity and pressure rise. The impact of all the pertinent parameters
are discussed graphically. The main observations are as follows:

1. Unlike the effect of the radius of the channel for elasticity on the shear stress, it tends to reduce the
axial velocity, pressure gradient and pressure rise.

2. The volume fraction boosts the shear stress and the axial velocity, whereas the effect is totally reversed
with the pressure gradient and pressure rise.

3. Grashof number accelerates the flow and increases shear stresses along with the pressure gradient.
4. The maximum axial velocity takes place at the centre of the conduit.
5. The maximum electroosmotic velocity boosts the shear stress and pressure gradient but reduces the

axial velocity.
6. The influence of the Rabinowitsch and electroosmotic parameters is to enhance the shear stress, whereas

their effect is totally reversed for the pressure gradient.
7. The current model reduces to the case of dilatant fluid for K < 0, pseudoplastic fluid for K > 0 .
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Figure 2: Display of shear stress profile for different values ofUHS.
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Figure 3: Display of shear stress profile for different values ofC .
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Figure 4: Display of shear stress profile for different values ofGr .
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Figure 5: Display of shear stress profile for different values ofm .
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Figure 6: Display of shear stress profile for different values ofK .

Hosted file

image8.emf available at https://authorea.com/users/364006/articles/484593-leveraging-

elasticity-to-uncover-the-role-of-rabinowitsch-suspension-through-a-wavelike-conduit

Figure 7: Display of shear stress profile for different values ofα
′
.
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Figure 8: Display of shear stress profile via x for pseudoplastic and dilatant fluids.
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Figure 9: Display of shear stress profile via y for pseudoplastic and dilatant fluids.
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Figure 10: Display of axial velocity for different values of K .
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Figure 11: Display of axial velocity for different values ofUHS.
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Figure 12: Display of axial velocity for different values of Gr .
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Figure 13: Display of axial velocity for different values of C .

Hosted file

image15.emf available at https://authorea.com/users/364006/articles/484593-leveraging-

elasticity-to-uncover-the-role-of-rabinowitsch-suspension-through-a-wavelike-conduit

Figure 14: Display of axial velocity for different values of m .
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Figure 15: Display of axial velocity for different values ofα
′
.
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Figure 16: Display of axial velocity for pseudoplastic and dilatant fluids.
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Figure 17: Display of pressure gradient for different values ofK .
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Figure 18: Display of pressure gradient for different values ofC .
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Figure 19: Display of pressure gradient for different values ofUHS.
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Figure 20: Display of pressure gradient for different values ofGr .

Hosted file
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image22.emf available at https://authorea.com/users/364006/articles/484593-leveraging-

elasticity-to-uncover-the-role-of-rabinowitsch-suspension-through-a-wavelike-conduit

Figure 21: Display of pressure gradient for different values ofm .
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Figure 22: Display of pressure gradient for different values ofα
′
.
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Figure 23: Display of pressure rise vs volume flow rate for different values of K .
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Figure 24: Display of pressure rise vs volume flow rate for different values of C .
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Figure 25: Display of pressure rise vs volume flow rate for different values of Gr .
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Figure 26: Display of pressure rise vs volume flow rate for different values of m .
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Figure 27: Display of pressure rise vs volume flow rate for different values of α
′
.
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Figure 28: Display of pressure rise vs volume flow rate for pseudoplastic and dilatant fluids.
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