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Abstract

Plants acclimate their photosynthetic capacity in response to changing environmental conditions. In Arabidopsis thaliana,

photosynthetic acclimation to cold requires the accumulation of the organic acid fumarate, catalysed by a cytosolic fumarase

FUM2, however the role of this is currently unclear. In this study, we use an integrated experimental and modelling approach

to examine the role of FUM2 and fumarate across the physiological temperature range. Using physiological and biochemical

analyses, we demonstrate that FUM2 is necessary for acclimation not only to low temperatures, as previously shown, but also

to increased temperature. To understand the role of FUM2 activity, we have adapted a reliability engineering technique, Failure

Mode and Effect Analysis (FMEA), to apply it to a biological problem. This allows us to formalize a rigorous approach for

ranking metabolites according to the potential risk they pose to the metabolic system. FMEA identifies fumarate as a low-risk

metabolite. Its precursor, malate, is shown to be high-risk and liable to cause system instability. We conclude that the role of

cytosolic fumarase, FUM2, is to provide a fail-safe, maintaining system stability under changing environmental conditions.
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Summary

Plants acclimate their photosynthetic capacity in response to changing environmental conditions. In Arabi-
dopsis thaliana, photosynthetic acclimation to cold requires the accumulation of the organic acid fumarate,
catalysed by a cytosolic fumarase FUM2, however the role of this is currently unclear.

In this study, we use an integrated experimental and modelling approach to examine the role of FUM2
and fumarate across the physiological temperature range. Using physiological and biochemical analyses, we
demonstrate that FUM2 is necessary for acclimation not only to low temperatures, as previously shown, but
also to increased temperature.
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To understand the role of FUM2 activity, we have adapted a reliability engineering technique, Failure Mode
and Effect Analysis (FMEA), to apply it to a biological problem. This allows us to formalize a rigorous
approach for ranking metabolites according to the potential risk they pose to the metabolic system. FMEA
identifies fumarate as a low-risk metabolite. Its precursor, malate, is shown to be high-risk and liable to
cause system instability. We conclude that the role of cytosolic fumarase, FUM2, is to provide a fail-safe,
maintaining system stability under changing environmental conditions.

Key words

Arabidopsis, carbon metabolism, failure mode and effect analysis (FMEA), metabolic engineering, reliability
engineering, fail-safe

Introduction

Metabolism is the basis of all cellular processes. Metabolic systems must be optimized to maintain function,
regardless of the environmental conditions experienced. Plants are exposed to environments which fluctuate
over timescales varying from seconds to decades, with environmental parameters such as light and tempe-
rature directly impacting metabolism. As such, plants provide an excellent example in which to understand
how metabolic systems can be optimized to tolerate environmental change. To understand such optimization,
we can use approaches taking form systems engineering.

In systems processes, the quality of a function or product is referred to as its reliability. The quantity,
on the other hand, is dependent on the system’s robustness (King and Jewett, 2010). As an analogy, we
can consider a business process where the aim of the process is to produce as many high-quality products
as possible, despite fluctuations in operating conditions. A reliable process ensures that the quality of the
products is consistently high, whereas a robust process ensures that as many products as possible are being
produced. If all low-quality products are discarded then, to make a profit, the system must first be reliable
and then robust (Bakera et al. , 2008; King and Jewett, 2010). This is comparable to plants optimizing
seed production (Sadras 2007). Only viable seeds will germinate. Thus, features of reliability, which ensure
that seeds germinate, are of primary concern. Features of robustness, which ensure that as many seeds as
possible are produced, are secondary. In fact, in the model plant species Arabidopsis thaliana the trade-off
between seed size and number is minimal (Gnanet al. , 2014), suggesting that these traits may be selected
for independently.

This distinction between robustness and reliability is considered crucial in many disciplines, including systems
engineering and product development (Yassine, 2007; King and Jewett, 2010). With regards to metabolism,
the two concepts are rarely distinguished, and the reliability of metabolic networks has not been formally
quantified. However, reliability engineering frameworks exist which can be applied to metabolic networks.

Failure mode and effect analysis (FMEA) is a framework that is commonly applied to study the reliability of
a product of a process, and is considered to be one of the most effective ways of conducting a failure analysis
(i.e. collecting data on why a system might fail). FMEA breaks the system down into individual components
or single processes and quantifies the risk that each of them poses to the system (Stamatis, 1995; Rausanda
and Øienb, 1996). The risk of each component (or process) is assessed by studying the potential causes of
failure and effects that these would have on the system. To quantify this risk, each component is assigned a
probability of failure (P ) and a severity score in the event of failure (S ). The risk (R ) of each component
is then calculated such that R = P × S . Components which are essential for the system to function are
considered high-risk. A well-engineered system has control mechanisms to regulate the functioning of the
high-risk components, to minimize the impact of failures. Such control mechanisms can be inherent features
of the system (e.g. the closing of one valve automatically opens another) or can be sensed and regulated (e.g.
a sensor perceives that one valve is closed and opens another).

The benefit of the FMEA framework is that it can be adapted to conduct a failure analysis of any system,
making it also suitable for studies of metabolic systems. We can think of individual metabolites as the
components that constitute a system. The metabolic system may represent the whole of metabolism or a
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subset of metabolites, depending on the processes of interest. The components (i.e. the metabolites) need
to be present within specific concentration ranges, or the system will not function correctly. Failure of the
system might mean a failure to produce certain products at an appropriate rate (e.g. a failure to synthesise
sufficient ATP to support cell maintenance) or the accumulation of metabolites to toxic concentrations. We
would expect the concentration of high-risk metabolites to be tightly regulated to avoid systems failures.
The probability of failure of an individual metabolite, i.e. the probability that its concentration falls outside
an acceptable range, could be considered a function of upstream metabolites and the severity of failure as
a function of downstream metabolites. Thus, the risk score for each metabolite arises from the underlying
metabolic network structure, the highest risk metabolites being those which are heavily dependent on the
production of other metabolites whilst at the same time supporting the production of many others.

Reliability engineering has potential in trying to understand how metabolic systems respond to environmental
stress. For example, it is predicted that, due to anthropogenic climate change, plants will increasingly be
exposed to extreme weather events, including both high and low temperature periods (Changnon et al ., 2000;
Trenberth, 2012). These extreme conditions will affect crops yield, threatening food security for a growing
world population (Lesk et al. , 2016; Powell and Reinhard, 2016). Thus, the identification of traits which
determine the reliability of key acclimation processes becomes a priority. In this context, plant responses to
single temperature stresses have been well characterized (e.g. Hikosaka et al. , 2006; Yamori et al. , 2014;
Ding et al. , 2020). A few studies have also compared the effects of warm and cold temperature stresses on
Arabidopsis leaves, showing that the two processes share common features (Kaplan et al. , 2004; Zhang et al.
, 2019). Nevertheless, how metabolism adjusts across the entire physiological temperature range of a plant
is still largely unknown.

When exposed to short term environmental changes, plants canregulate enzymes to ensure metabolic function
is maintained. Over longer periods, plants acclimate to their environment, altering the concentration of
different enzymes to match the prevailing conditions (Webber, 1994; Stitt and Hurry, 2002). For example,
when a plant is transferred from warm to cold conditions, enzyme activities are slowed, reducing metabolic
activity. This would be reflected, for example, in a reduction in the light-saturated rate of photosynthesis.
Following acclimation, plants transferred to the cold typically increase the concentration of key enzymes,
allowing them to achieve a similar rate of photosynthesis at low temperature to that previously seen in
the warm (Hurry et al. , 2000; Strand et al. , 2003; Dysonet al. , 2016). This results in an increase in the
photosynthetic capacity (Pmax ) (Athanasiou et al. , 2010; Dyson et al. , 2016). Conversely, in response to
increased temperature, plants decrease their Pmax , allowing them to reallocate resources to other processes
(Herrmann et al. , 2019b).

During the day, plants fix atmospheric carbon through photosynthesis. A large proportion of that fixed carbon
is accumulated in the leaf during the photoperiod. Overnight this is then remobilised to support growth and
cell maintenance. Under different environmental conditions, plants vary the form in which photoassimilates
are stored. Arabidopsis stores carbon primarily in the form of the polysaccharide starch and the organic acids
fumarate and malate (Chia et al ., 2000; Smith and Stitt, 2007; Zell et al ., 2010; Pracharoenwattana et al .,
2010). Starch accumulation and degradation have been studied extensively as this is the major non-structural
carbohydrate in plants (Smith and Stitt, 2007; Streb and Zeeman, 2012). Less is known about malate and
fumarate. Both metabolites are intermediates of the tricarboxylic acid cycle in the mitochondria; however,
it has also been shown that they accumulate in the vacuole diurnally (Kovermann et al ., 2007; Fernie and
Martinoia, 2009). In the cytosol, malate is made from or converted to oxaloacetate, citrate, isocitrate, cis-
aconitate, fumarate, α-ketaglutarate, glutamic acid and pyruvate (Arnold and Nikoloski, 2014). It provides
carbon skeletons for various biosynthetic pathways, including amino acid synthesis (Zell et al. , 2010). In the
cytosol, fumarate is synthesised by a cytosolic isoform of the enzyme fumarase, FUM2 (Pracharoenwattana
et al ., 2010). It is made from malate during the day and is assumed to be converted back to malate during
the night (Pracharoenwattana et al ., 2010; Zellet al ., 2010; Dyson et al. , 2016). Fumarate accumulation
in the cytosol has previously been linked to growth on high nitrogen (Pracharoenwattana et al ., 2010) and
photosynthetic acclimation to cold (Dyson et al. , 2016); however, its role in these processes is unclear (Chia
et al. , 2000).
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The fum2 Arabidopsis mutant is a cytosolic fumarase knockout (Pracharoenwattana et al ., 2010). Previ-
ously, we showed that fumarate and malate accumulation increase in response to cold, and that the fum2
knockout mutants, which do not accumulate fumarate, are unable to acclimate photosynthetic capacity in
response to low temperature (Dyson et al ., 2016). The mutant accumulates higher levels of both malate and
starch under cold stress. It has also been shown that plants which accumulate more fumarate accumulate
less starch (Chia et al ., 2000; Pracharoenwattana et al ., 2010; Dysonet al., 2016) and that fumarate accu-
mulation is proportional to biomass production at low temperature (Scott et al., 2014). Therefore, fumarate
accumulation participates in the cold acclimation response, although its specific role in this remains to be
elucidated.

In this study, we demonstrate that FUM2 activity is essential not only for low temperature acclimation
but also for high temperature responses. Using three genotypes, with varying capacities to accumulate
fumarate, we have examined acclimation across the physiological temperature range. We have measured
photosynthetic and metabolic responses of the Col-0 wild-type, which accumulates high levels of fumarate,
a fum2 knockout, which does not accumulate fumarate (Pracharoenwattana et al ., 2010), and the C24
wild-type, which accumulates intermediate levels of fumarate compared to Col-0 (Riewe et al ., 2016). To
understand their responses to temperature treatment, we combine the novel application of FMEA with a
more widely used kinetic modelling approach (Saa and Nielsen, 2017; Herrmann et al., 2019a), identifying
cytosolic malate as a high-risk component and its metabolic neighbour, cytosolic fumarate, as a low-risk
one. We propose that fumarate synthesis acts as a fail-safe, maintaining malate concentrations within safe
limits and ensuring that metabolic functions continue across a wide range of conditions. We discuss that
FMEA is a valuable approach to understanding metabolic system with possible widespread applications in
biotechnology and systems biology.

Materials and Methods

Plant growth and tissue preparation

A. thaliana Col-0, fum2.2 , and C24 genotypes were grown in a multi-purpose peat-based compost in 3-inch
pots with 8-hour photoperiods at 20 °C and under a 100 μmol m-2s-1 irradiance, as previously described
(Dysonet al ., 2016). Light was provided by warm white LEDs (colour temperature 2800-3200 K). Adult
plants (8-9 weeks) were then either kept at 20 °C for up to another week (control treatment) or transferred
to 5, 10, 15, 25, or 30 °C, under identical irradiance and photoperiod conditions. Fully expanded leaves
were collected at the beginning and at the end of the photoperiod on the 1st and 7th day of the different
treatments, flash-frozen in liquid nitrogen, freeze-dried and stored at -20 oC for metabolite assays. Leaves
were also collected without freezing and their fresh and dry weights per unit area recorded.

Gas exchange

Photosynthesis and respiration were measured under growth conditions in plant growth cabinets, using a
CIRAS 1 infra-red gas analyser fitted with a standard broad leaf chamber (PP systems, Amesbury, USA), as
previously described (Dyson et al ., 2016). Measurements of gas exchange under ambient growth conditions
were taken on the 1st and 7th day for the cold (5 °C) and warm (30 °C) treatment, and under control
conditions. The maximum capacity for photosynthesis (Pmax ) was estimated at 20 °C and under 2000 ppm
CO2 and 2000 μmol m-2 s-1 light, as described previously (Herrmann et al ., 2019b). All measurements were
taken between the 5-7th hour of the photoperiod and on a minimum of 4 biological replicates.

Metabolite assays

Fumarate, malate and starch concentrations were estimated as previously described (Dyson et al ., 2016).
Averages and standard errors of 3-4 replicates were calculated, and an analysis of variance (ANOVA) followed
by a Turkey’s test was performed in R, with a confidence level of 0.95. Where measurements were subtracted
from one another, the uncertainty (μ ) was calculated such thatµX,Y =

√
µ2
X + µ2

Y . Measurements where
the uncertainty ranges do not overlap are considered to be significantly different.

Failure Mode and Effect Analysis (FMEA)
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Metabolism can be represented in the form of a metabolic network (or graph), such that metabolites (nodes)
are connected to one another (i.e. share an edge) if there exists a metabolic reaction that converts one
metabolite to the other (Jeong et al. , 2000). If the graph is undirected, all reactions are considered to
be reversible. If the graph is directed, edges connected nodes only in the direction that the reaction is
presumed to proceed. An existing genome-scale metabolic model of Arabidopsis plant leaf metabolism,
constructed by Arnold and Nikoloski (2014) and updated by Herrmann et al . (2019c) was converted to
a directed metabolite-metabolite graph and analysed using the networkx package (Version 2.2) in Python
(Version 3.6.9). Reversible reactions were accounted for by applying two separate edges between the respec-
tive metabolites, one in either direction. All non-carbon compounds, small molecules and cofactors were
removed from the graph. The model is leaf specific and is compartmentalized to include the chloroplast,
mitochondrion, cytosol and peroxisomes.

We applied the FMEA framework to primary carbon metabolism. We considered metabolites as the compo-
nents of the metabolic system. We calculated the risk of failure for each component considering, for instance,
failure to be that the concentration of a particular metabolite falls outside a concentration range required
to sustain metabolic activity. The FMEA analysis does not presume what the required concentration of a
metabolite should be at a given condition and can therefore be considered an unbiased approach (Lewis et
al. , 2012).

The probability of failure for a given metabolite M downstream of ribulose-1,5-bisphosphate carboxy-
lase/oxygenase (Rubisco) was calculated as:

PM =
LR,M

LR,X
∑

dR,M
,

where LR,M is equal to the shortest path length from Rubisco to metabolite M, LR,X is the longest of all the
shortest paths to metabolites in the network, and

∑
dR,M is the number of alternative paths to metabolite

M having the shortest length. LR,X is a normalization constant and is equal to 14 in all calculation ofPM .
Overall, PM considers the probability of failure of M as a calculation of the number of upstream reactions
and metabolites that are required for the production of M . The severity of failure for each metabolite (SM

) was calculated such that:

SM= NM × CM ,

where NM is the degree of metabolite M (i.e. number of direct neighbours) and CM is the normalized
betweenness centrality of M . The number of neighbours of M indicates the number of reactions that would
fail ifM was not present in the system. Betweenness centrality is defined as the normalized sum of the total
number of shortest paths that pass through a node and can thus be considered a proxy for how important
that metabolite is in the production of other metabolites.SM calculates a severity for M based of the number
of reactions and down-stream metabolites that cannot occur in the absence of M .

The risk factor (RM ) was calculated for each metabolite such that

RM= PM × SM .

The risk factor takes into consideration how heavily the production ofM is dependent on other metabolites
and other reactions in the system. It also considers how many other metabolites and reactions in the system
are dependent on the production of M .RM therefore considers how important M is to the overall system
functionality.

Although we could equally well calculate the risk factor of individual reactions in a metabolic system, we have
here chosen to consider metabolites as the individual components of the system. This is because metabolites
are the fundamental building blocks of the metabolic system, whereas reactions are the means to producing
these building blocks. For example, it is possible for one reaction to fail but for all metabolites in the system
to still be produced as required.

Kinetic modelling

5
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Kinetic modelling, unlike FMEA, can be used to describe changes in metabolite concentrations overtime. A
set of mass-balanced reactions can be described by ordinary differential equations which capture the system
dynamics (Saa and Nielsen, 2017; Herrmann et al., 2019a). Here, we used kinetic modelling to assess how
changes in flux correspond to changes in metabolite concentrations. Kinetic modelling is not practical with
large networks so, rather than using a genome-scale model we constructed a minimal model based on a sub-
set of reactions (Fig. 1; Table S1). For simplicity we did not consider compartmentalization in the kinetic
model. Kinetic reactions were set up in COPASI (Version 4.27.217). Rates of photosynthesis and respiration
(Fig. 2b,c; Fig. S1) were set as independent variables for Col-0, fum2 , and C24 plants, after being converted
to μmol CO2 (gDW)-1s-1 (Fig. S2). We initially parametrized the model to fit the measured average diurnal
carbon fluxes to starch, malate, and fumarate for control conditions (Fig. 3) using simple mass action kinetics
(Abegg, 1899). All other metabolites were assumed not to accumulate in the leaf and were constrained to
concentrations between 0-0.0005 μmol CO2 (gDW)1 s-1. The rate of carbon export (Fig.1) was allowed to
adjust freely, accounting for any remaining carbon. Using the Hooke and Jeeves (1961) parameter estimation
algorithm, with an interation limit of 10 000, a tolerance of 10-8 and a rho of 0.2, we found a model solution
for which estimated concentration values fell within the uncertainty ranges of the experimentally measured
values. We used an Arrhenius constant to capture temperature-dependence and allowed the effective Q10 to
vary between 1.0-3.0 in order to fit the model to the measured starch, malate, and fumarate concentrations at
T = 5 °C and T = 30 °C (Fig. 3). The Arrhenius constant describes an exponential increase of reaction rates
with temperature (Arrhenius, 1889); it is most commonly reported for a 10 °C change in temperature, known
as Q10 , with aQ10 = 2 being typical for enzyme catalysed reactions (Elias, 2014). Without implementing
any regulatory mechanisms, we were able to find a solution for which the concentration values estimated by
the model fell within the uncertainty ranges of the experimentally measured values (Fig. S3). It is important
to note that the effective Q10, as represented in our model, quantifies a possible temperature sensitivity of
a reaction rather than the intrinsic properties of enzymes.

Data availability

All experimental data, model parameterizations and network analyses are available on Github (htt-
ps://github.com/HAHerrmann/FMEA KineticModel) and under the following Zenodo DOI: 10.5281/zeno-
do.3596623.

Results

Temperature effects on photosynthetic acclimation and carbon accumulation

Three Arabidopsis genotypes, Col-0, C24, and fum2 were grown at a control temperature of 20 °C for 8
weeks. Plants were then either kept at 20 °C or transferred to 5, 10, 15, 25 or 30 °C for 7 days. Maximum
photosynthetic capacity (Pmax ) was measured at 20 °C and under light- and CO2-saturating conditions on
the 1st (Fig. S4) and 7th (Fig. 2a) day of treatment. Pmax provides an indication of the acclimation state of
the photosynthetic apparatus.Pmax did not change on the 1stday of temperature treatments nor did it vary
significantly between genotypes (Fig. S4). However, after one week of treatment, Col-0 showed a significant
change in Pmax in response to the 5, 10, and 30 °C treatments (Fig. 2a). Similarly, the C24 accession showed a
change in Pmax at 5 and 30 °C . The fum2 mutant, which lacks cytosolic fumarase, does not show a consistent
trend in altering its Pmax in response to the temperature treatments. The 5 °C treatment is hereafter referred
to as cold treatment whilst the 30 °C treatment is referred to as a warm treatment.

CO2 fixation under growth conditions was evaluated on the 1st and 7th day of cold (Fig. 2b) and warm
treatments (Fig. 2c). In plants transferred to cold, CO2 fixation was initially reduced in all three genotypes.
However, in Col-0 and C24 plants, photosynthesis recovered after one week of acclimation, reaching the same
rate of rate as seen in plants maintained at 20 °C. In contrast, the fum2 mutant failed to recover its rate of
photosynthesis in response to cold. Under warm treatment, Col-0 plants showed lower rates of photosynthesis
after one week, whereas C24 and fum2 plants maintain a constant rate of photosynthesis for the duration
of the treatment (Fig. 3c). Rates of respiration show a similar trend to those of photosynthesis in response
to cold (Fig. S1a). In the warm treatment, only the fum2 mutant shows a sustained decrease in respiration
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after one week (Fig. S1b).

Partitioning of assimilated carbon between alternative sinks changes in response to both high
and low temperature

Measurements of the three major carbon sinks in Arabidopsis leaves - starch, malate, and fumarate - were
taken in control conditions, and on the 1st and the 7th day of cold and warm treatment, respectively (Fig.
3). To measure the carbon accumulated during the photoperiod, the beginning of day concentrations were
subtracted from the end of day concentrations for each carbon sink. Each of these accumulates in an appro-
ximately linear fashion across the 8-hour photoperiod under controlled environment conditions (Dyson et al.,
2016). On the 1st day of treatment, diurnal accumulation of malate was unaffected by either cold or warm
in Col-0 and C24 plants (Fig. 3a,b; Fig. S5a-c). Fumarate accumulation, however, increased in response to
both treatments in these genotypes (Fig. 3c,d; Fig. S5d-f), this response being most pronounced in the cold
and in the Col-0 genotype. Consistent with previous published data (Riewe et al ., 2016), C24 accumulated
less fumarate than Col-0 in all conditions, however it accumulated similar amounts of malate. The fum2
mutant did not accumulate fumarate but increased its malate accumulation on the 1st day of cold and warm
treatment. Organic acid accumulation continued to increase in the cold over the week but not in the warm
(Fig. 3; Fig. S6). All three genotypes increased their diurnal starch production in response to cold on the 1st

day and maintained that increase on the 7th day (Fig. 3e). In the warm, starch accumulation did not change
significantly, except in C24 plants on the 7th day of treatment, where it increased (Fig. 3f).

Reliability engineering identifies cytosolic fumarase as a fail-safe in the metabolic system

The above results and Figures S5 and S6 show that there is not a simple linear relationship between diurnal
leaf carbon accumulation and temperature. Using an existing genome-scale metabolic model of Arabidopsis
carbon metabolism in the leaf, we have taken a network topology approach to understand how organic
acid accumulation changes with temperature treatment. By adapting a Failure Mode and Effect Analysis
(FMEA), as outlined in the Materials and Methods, we were able to identify metabolites that pose a high
risk to the metabolic system.

High-risk metabolites are those which, in the event of failure, will create the greatest disturbance to the
metabolic system. In engineering, the risk factor is calculated based on the probability of failure (PM ) and
the severity of failure (SM ). Here, we estimatedPM based on the length of the shortest path and the number
of paths that lead to a metabolite M .SM can be associated with the number of neighbours of a metabolite
and the number of paths that lead to a metabolite (see Materials and Methods). The latter is calculated as
the betweenness centrality (i.e. the number of shortest paths that pass through that metabolite).

Table 1 shows the metabolites with the 10 highest risk factors. The average risk factor of all metabolites
was 0.005. Malate, oxaloacetate and glucose-6-phosphate stand out as high-risk metabolites in the cytosol
(Table 1). In the chloroplast, α-ketoglutarate, glyceraldehyde 3-phosphate, pyruvate, fructose 6-phosphate,
ribose 5-phosphate, glucose 6-phosphate, and phosphoenolpyruvate have a high factor. Metabolites related
to carbon metabolism and found in the mitochondria have an average or below average risk factor. Only
the chloroplast, mitochrondrion, cytosol and peroxisomes compartments were taken into consideration, as
specified in the Arnold and Nikoloski (2014) model. The full list of risk factor calculations are available on
Zenodo and Github (DOI: 10.5281/zenodo.3596623.

The network structure that connects all high-risk metabolites shows that these are well-connected nodes and
are located only a few reactions upstream of a carbon sink (Table 1, Fig. 4). Carbon sinks are generally low-
risk metabolites (R < 0.001). In particular, fumarate is an endpoint in the system and has a null betweenness
centrality (CM ). Therefore, changing the concentration of fumarate has a negligible effect on the overall
metabolic system. Because changes in the concentration of high-risk metabolites could have a negative effect
on system functionality, we hypothesized that adjusting the flux to the nearest carbon sink could minimize
the overall system disturbance. Thus, for instance, fumarate could act as a fail-safe, buffering changes in
malate, oxaloacetate and other upstream metabolites under different temperature conditions (Fig. 4). To
test this hypothesis, we adopted a kinetic modelling approach.
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Organic acid accumulation across temperatures requires no regulatory mechanisms

To further test whether fumarate acts as a buffer for malate across the physiological temperature range
of Arabidopsis, we constructed a kinetic model of the primary reactions in leaf carbon metabolism (Fig.
1, Table S1). To keep the number of reactions in this model to a minimum, only relevant branch and
end points (as shown in red in Fig. 4) were included in the model. In comparison to starch, malate and
fumarate, neither sugars nor amino acids accumulate substantially in Arabidopsis leaves in our growth
conditions (Dyson et al ., 2016); however, it must be assumed that there is a significant flux through these
pools that constitutes phloem export (marked as C export in Fig. 1; Lalondeet al ., 2003, Ainsworth et al
., 2011). Rates of photosynthesis and respiration (Fig. 2b,c; Fig. S1) were used to constrain the model.
The remaining parameters were estimated to fit the measured malate, fumarate and starch concentrations in
control conditions, and on the first day of cold and warm treatment, respectively. It is assumed that on the
first day of temperature treatment, plants will not yet have significantly acclimated to the stress condition;
thus, observed changes in metabolism would be mainly the result of kinetic or regulatory effects rather than
changes in enzyme concentrations.

When fitting separate models for Col-0, fum2 and C24 plants, the models predict the same kinetic parameters
for all reactions except for the conversion of fumarate to malate and that of triose phosphate to starch (Table
2). C24 has significantly lower cytosolic fumarase activity than Col-0 and accumulates only about three
quarters of the amount of fumarate accumulated in Col-0 leaves (Riewe et al ., 2016). The models predict
no cytosolic fumarase activity in fum2 and a reduced activity in C24 compared to Col-0 plants, confirming
experimental evidence. The results obtained show that increased fumarate production in response to both
warm and cold treatment can result of temperature-dependent enzyme kinetics rather than post-translational
regulation of enzyme activity. While we cannot exclude that these regulatory effects are occurring, the model
simply shows that a solution for organic acid production without temperature-dependent regulatory effects
is possible.

In the solutions to the models, most effective Q10 values are estimated to be around 2.0 (Table 2), as is
typical for temperature-dependence of biological reactions (Elias, 2014). The cytosolic fumarase reaction,
however, shows no apparent temperature-dependence, effective Q10 = 1.0. Although we are aware that
all enzymatic reactions are affected by temperature, we note that an effective Q10 = 1.0 does not mean
that the reaction is not temperature-sensitive but rather that the corresponding enzyme is not limiting.
Thus, our model results merely demonstrate that differences in the rate constants are enough to explain
the observed difference between genotypes. The conversion of malate to pyruvate is, according to the
models, the most temperature-sensitive reaction; however, it carries little overall flux. The conversions of
phosphoenolpyruvate to malate and pyruvate, on the other hand, carry a substantial flux and show a strong
temperature-dependence. The counter-play of these two reactions, along with the observed changes in rates
of photosynthesis and respiration, are sufficient to account for the experimentally observed changes in organic
acid concentrations under warm and cold temperature treatments.

The rate of export was allowed to adjust freely when fitting the model. This rate accounts for the total
remaining carbon, which is assumed to be exported from the leaves, primarily in the form of sugars, but
will include other forms of fixed carbon retained in the leaf (Wilkinson and Douglas, 2003). All genotypes
are predicted to decrease their diurnal rates of export on the first day of cold treatment (Fig. 5). On the
first day of warm treatment, Col-0 and fum2 plants show little change in the rate of export, compared
to control conditions (Fig. 5). C24 plants, however, are predicted to increase their rates of export under
warm treatment. This is the result of decreased starch accumulation (Fig. 3f) as well as decreased rates of
respiration (Fig. S1) in response to warm treatment.

Discussion

Understanding plant responses to short-term changes in the environment is of considerable importance if we
wish to improve crop yields in the light of changing climates. The relationship between these environmental
changes and the signal transduction pathways which promote cellular adjustment is still poorly understood.
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Because all of metabolism is affected by temperature, it is difficult to pinpoint an obvious temperature-sensor
or to assess the direct effect that metabolic changes have on gene expression (Herrmann et al ., 2019a). For
this reason, rather than looking at individual components of a system, it is important to look at the entire
system and consider the role that individual components play within it (Kitano, 2002). In this sense, formal
frameworks, which conceptualize, rather than merely describe, the functioning of its components, are required
(Lazebnik, 2003).

Robustness can be used to assess how well a system maintains function across changing environmental
conditions. Robustness, however, does not capture the likelihood that the system will be able to perform its
function independently of the environmental conditions. This is captured by measures of reliability.

Here, we have adapted the failure mode and effect analysis (FMEA) framework used in reliability engineering
and applied it to plant carbon metabolism. We used a metabolic graph of carbon metabolism to identify
metabolites which can be considered of high risk to the system, due to their high probability of failure and
severity of impact on the rest of the system. From an engineering perspective, high-risk components should
be carefully controlled and regulated such that they can maintain their functionality in the event of failure.
A fail-safe, for example, can be used to ensure that perturbations are mitigated effectively. Such a fail-safe
increases the overall reliability of a system by increasing its likelihood of correct functioning. A good fail-safe
is able to mitigate many different types of system failure, and fail-safes are of particular importance under
abrupt and unexpected changes.

Diurnal fumarate accumulation increases in response to both cold and warm treatment (Fig’s 3, S5). This
surprising observation is consistent with flux to fumarate acting as an inherent fail-safe to the metabolic
system. Our FMEA analysis identifies malate and oxaloacetate, the immediate precursors of fumarate, as
high-risk components. Fumarate itself is of low risk to the metabolic system and changing its concentration
has negligible effect on overall system functionality. An influx of carbon can be re-directed to fumarate
without disturbing the system. Our results show that, unlike fumarate, the amount of malate accumulating
through the day in both wild type accessions is surprisingly constant in response to initial warm and cold
treatment and only changes following acclimation. Mathematical modelling confirms that an increased
accumulation of fumarate and a constant accumulation of malate are metabolically plausible under the
Arrhenius law (Arrhenius, 1889), and that no regulatory mechanisms are required for fumarate accumulation
to increase at both high and low temperatures. Nevertheless, active regulation of fumarate accumulation
under these conditions cannot be excluded.

To date, there is little direct experimental evidence for the presence of a cytosolic fumarase enzyme in
plant species other thanArabidopsis thaliana (Chia et al. 2000). However, a recent phylogenetic study
demonstrated that several close relatives of A. thaliana possess orthologues of the fum2 gene (Zubimendiet
al ., 2018). This study also shows that other plant species obtained the gene through parallel evolution.
Because fumarate has recently evolved in Arabidopsis species and relatives (Zubimendiet al ., 2018), it is likely
that other mechanisms regulate the concentration of high-risk metabolites (like malate) in other species. For
instance, phosphoenolpyruvate carboxylase (PEPC), which produces malate from oxaloacetate, is inhibited
by malate across many plant species (O’Leary et al ., 2011). This negative feedback loop could have the
same effect as a fumarate sink, in that it maintains a constant accumulation of malate, even when the carbon
influx is changing. This regulatory mechanism, however, is intricately dependent on phosphorylation and
cellular pH (O’Leary et al ., 2011), both of which may also be affected by changing environmental conditions.
Thus, the evolution of a cytosolic fumarase fail-safe provides an alternative control mechanism regulating
the malate concentration, while at the same time maintaining metabolic fluxes and allowing efficient storage
of fixed carbon.

Photosynthetic acclimation to cold is dependent on the presence of FUM2 activity or protein (Dyson et al .,
2016). Here, we have shown that C24, which has reduced FUM2 content has an attenuated the acclimation
response. Furthermore, we show that FUM2 is also essential for acclimation of photosynthetic capacity
to high temperatures. Photosynthetic capacity, measured under control temperature and CO2 and light-
saturating conditions, provides a readily measurable indicator of the acclimation state of the photosynthetic

9



P
os

te
d

on
A

u
th

or
ea

8
O

ct
20

20
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

g
h
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

21
82

80
.0

85
62

48
7/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

apparatus (Herrmann et al ., 2019b). Mutant fum2 plants are unable to accumulate fumarate and do not
show a consistent adjustment ofPmaxin response to temperature. C24 plants accumulate intermediate levels
of fumarate and attenuated temperature acclimation ofPmax , compared with Col-0. ThePmax acclimation
responses of Col-0 and C24 highlight that, although the changes in CO2 assimilation in growth conditions
may be modest, there is a significant metabolic response associated with these changes.

Although malate accumulation is buffered on the first day of temperature treatment, it does increase in
response to sustained temperature treatment, as part of the acclimation response. Our FMEA analysis
suggests that malate concentration should be tightly regulated to support a specific system functionality.
This functionality may change in response to cold conditions, at which point a different rate of malate
accumulation may be required. Either way, the required concentration is likely to be controlled by adjusting
the flux to the low-risk metabolite fumarate.

The functionality of a metabolic system may vary under changing environmental conditions and the ability
to achieve function should be maximised. Thus, finding reliable rather than robust traits, should be of equal
if not of higher priority in optimizing a metabolic system. Methods for capturing system reliability currently
remain underutilized in biology.

While we have focused here on malate as a high-risk metabolite, our analysis has identified other high-risk
candidates. Interestingly, some of them have previously been noted as critical components of acclimation
(Timm et al ., 2012; Dyson et al ., 2015; Weise et al ., 2019). For example, it was shown that expression of
GTP2, a chloroplast glucose 6-phosphate/phosphate translocator, is required for acclimation to high light in
the Arabidopsis accession Wassilewskija-4 (Dyson et al ., 2015). Our FMEA highlights glucose 6-phosphate
in the chloroplast and in the cytosol as high-risk components, which are upstream of the starch and su-
crose carbon sinks in the metabolic network. GPT2 allows for appropriate distribution of carbon between
these two sinks. When this control mechanism is broken, the two glucose 6-phosphate metabolite concen-
trations cannot be regulated and acclimation to high light is affected (Dyson et al ., 2015). Other high-risk
metabolites identified by our FMEA, such as glyceraldehyde 3-phosphate, pyruvate, phosphoenolpyruvate,
and α-ketoglutarate, may also play important roles in maintaining system reliability under changing envi-
ronmental conditions.

In conclusion, we were able to show that cytosolic fumarase, an enzyme promoting the accumulation of fu-
marate, a metabolite with few known metabolic functions, can act as a fail-safe, preventing over-accumulation
of the high-risk metabolite malate. We have used FMEA to discuss alterations in plant carbon metabolism
under different temperature conditions, and we propose FMEA as a tool to assess the reliability of biological
systems.

Our proposed FMEA framework is computationally inexpensive and can be applied to all of metabolism
in order to identify pathways that are especially important for maintaining system reliability. As we have
shown FMEA allows for the quantification of high-risk and low-risk components in existing systems. However,
FMEA could also be used to quantify the risk associated with metabolic alterations that are the result of
gene deletions or insertions. For this we would recommend a gene-centric rather than a reaction-centric view
of the network that underlies the metabolic system of interest. This approach holds the potential to be used
in metabolic engineering, for the study of synthetic pathways and the impact of pathways alterations on
system reliability.
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Figure Legends

Figure 1: Illustration of the reactions used to set up the kinetic model. Reactions include the metabolites
triose phosphate (TP), phosphoenolpyruvate (PEP), pyruvate (Pyr), malate (Mal), fumarate (Fum) and
starch. The rate of photosynthesis (CO2 uptake) and respiration were constrained using experimentally
measured values as outline in the Material and Methods. Model parameters were fitted to match the observed
malate, fumarate and starch concentrations over an 8 h photoperiod on the first day of temperature treatment.
All other metabolites were not allowed to accumulate in the leaf and all remaining carbon was assumed to
be exported from the leaf (C export).

Figure 2: Effect of temperature on carbon assimilation in Col-0, C24 and fum2.2 accessions of Arabidopsis.
(a) Maximum capacity for CO2 assimilation (Pmax ) was measured at 20 °C and under light- and CO2-
saturating conditions on adult plants grown and at 20 °C and then exposed to 5, 10, 15, 20 25, or 30 °C
treatments for one week. (b-c) In-cabinet measurements of CO2 assimilation of plants grown in control
conditions (white), and after one day (cyan or orange) or 7 days (blue or red) of cold (b) or warm (c)
treatment. Mean standard errors of 4 biological replicates are shown. Different letters above the error bars
indicate statistically different values (Analysis of variance, Turkey’s test with a confidence level of 0.95).

Figure 3: Diurnal accumulation of malate (a-b), fumarate (c-d) and starch shown in hexose equivalents (e-f)
in Col-0, C24, andfum2.2 plants under control conditions (white) or after one day (cyan or orange) and seven
days (blue or red) of cold (a,c,e) warm (b,d,f) treatments, respectively. Diurnal accumulation was calculated
by subtracting the beginning of day concentrations from the end of day concentrations. The uncertainties of
3-4 end of day and beginning of day measurements are shown as mean error bars.

Figure 4: A simplified engineering system of plant primary metabolism connecting high-risk metabolites and
their carbon sinks. All high-risk metabolites, as identified in Table 1 were included: R5P (ribose-5-phosphate),
TP (glyceraldehyde 3-phosphate), PEP (phosphoenolpyruvate), Pyr (pyruvate), KG (α-ketoglutarate), F6P
(fructose 6-phosphate), G6P (glucose 6-phosphate), OAA (Oxaloacetate) and Malate. Only branch and end
point metabolites were included in the kinetic model and are shown in red.

Figure 5 : Diurnal export rates as predicted from kinetic modelling. Rates of photosynthesis and respiration
were used to constrain the model and the remaining model parameters were estimated to fit the measured
metabolite concentrations (Table S1, Fig’s. 1, 2, S1). Export rates estimated for control conditions (white),
the first day of cold (cyan) and the first day of warm (orange) treatment, represent the remaining carbon
not stored in the leaf.

Table 1: The ten most high-risk metabolites as identified by the Failure Mode and Effect Analysis (FMEA).
An existing metabolic model (Arnold and Nikoloski, 2014; Herrmann et al ., 2019c) was converted to a graph
of carbon metabolism as outlined in the methods. Metabolites with the highest risk factors (R ) and their
cellular locations are shown. Possible cellular locations, as written in the genome-scale metabolic model,
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include the chloroplast, mitochondrion, cytosol and peroxisomes. R = SM ×PM , whereSM= CM ×NM , was
calculated such that the severity is equal to the normalized number of neighbours (NM ) times the normalized
betweenness centrality (CM ). PM is based on the length of the shortest path and the number of shortest
paths that lead to a metaboliteM .

Metabolite Location NM CM PM R (x 10-2)
Malate Cytosol 1.00 0.0374 0.500 1.87
Oxaloacetate Cytosol 1.00 0.0564 0.429 1.42
α-Ketoglutarate Chloroplast 0.944 0.124 0.357 4.19
Glyceraldehyde 3-phosphate Chloroplast 0.833 0.134 0.286 3.24
Pyruvate Chloroplast 0.778 0.206 0.357 5.71
Fructose 6-phosphate Chloroplast 0.667 0.0685 0.357 1.63
Glucose 6-phosphate Cytosol 0.500 0.0695 0.500 1.74
Ribose 5-phosphate Chloroplast 0.500 0.0976 0.357 1.74
Glucose 6-phosphate Chloroplast 0.389 0.0727 0.429 1.21
Phosphoenolpyruvate Chloroplast 0.389 0.129 0.286 5.71

Table 2: Parameters for a kinetic model of carbon metabolism. The metabolites malate (Mal), fumarate
(Fum), pyruvate (Pyr), phosphoenolpyruvate (PEP), triose phosphate

(TP) were used to construct the model. The full table including the rates of photosynthesis and respiration
set as model constraints are shown in the Supplementary Materials (Table S1 ).

Reaction k ( 1
s) Q10 Genotype

Mal - Fum 4.07 x 10-3 1.00 Col-0
Mal - Fum 0.00 1.00 fum2
Mal - Fum 2.15 x 10-3 1.00 C24
Mal - Pyr 2.72 x 10-3 2.98 Col-0, fum2, C24
PEP - Mal 209 1.72 Col-0, fum2, C24
PEP - Pyr 602 1.97 Col-0, fum2, C24
TP - PEP 34.5 1.66 Col-0, fum2, C24
TP - Starch 6.50 x 10-1 1.43 Col-0
TP - Starch 7.14 x 10-1 1.43 fum2
TP - Starch 7.72 x 10-1 1.43 C24
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