Species and spatial differences of vegetation rainfall interception capacity - a synthesis and meta-analysis in China

Qiufen Zhang¹, Xizhi Lv¹, Xinxiao Yu², Guodong Jia², and Ziqiang Liu³

¹Yellow River Institute of Hydraulic Research ²Beijing Forestry University ³Nanjing Forestry University

October 10, 2020

Abstract

China has carried out many ecological restoration projects in the past. At present, there are large spatial differences in the hydrological effects of forest ecosystems in different regions of the country under heterogeneous conditions, which is not conducive to the macro guidance of ecological restoration projects. Canopy interception is an important link in the water cycle of the ecosystem. This paper attempts to use this index as a bridge to connect the research literature of existing ecological sites, so as to evaluate the differences in water resources distribution in different regions and vegetation ecosystems and analyze the main reasons for the differences. We combined canopy interception rate (I0) and canopy water storage ability (I) to interpret canopy interception, and collected site related geographic, meteorological and ecosystem structure information simultaneously in the literature to build up an original dataset. Analysis on the database showed that the comprehensive interception capacity of vegetation in the south was generally higher than that in the north, which was dominated by shrubs, and that the tree species had interception advantages. Mixed forest showed the best comprehensive interception capacity, while pure tree forest had better interception potential than shrubbery due to its biomass advantage. The actual interception capacity of shrubbery was better than pure tree forest due to the advantages of stand density and the dry climate. Results from the evaluation of canopy interception ability using different indexes were not consistent, meaning that evaluating canopy interception with multiple indexes may be more objective. The study also highlights that the current structural characteristics of shrubby forests in northern China may be counterproductive to mitigating drought, reducing the structural density of a given stand will increase the opportunity for precipitation to reach the surface, thereby increasing the amount of water available to ecosystems in arid areas. Maintaining the healthy growth of mixed forests is still the right choice for humid areas in the south.

Hosted file

manuscript20201009.pdf available at https://authorea.com/users/366162/articles/485961species-and-spatial-differences-of-vegetation-rainfall-interception-capacity-asynthesis-and-meta-analysis-in-china

Table 1. Major afforestation programs in China.

Six key afforestation projects	Region	Project	Project goals	Planted area
		dates		(million ha)
Three Norths Shelter Forest	Northern and western	2001-2010	Desertification control	27.5
SystemProject (Phase IV)	provinces			
Natural Forest Conservation	Northern and central China;	2000-2010	Soil and water conservation	4.4
Program	17 provinces			
Sand Control Program	Northern China; 5 provinces	2001-2010	Desertification control	5.2
Grain for Green Project	All of China except the	2001-2010	Soil and water conservation	32
	southeastern provinces			
Forest Industrial Base	Areas of eastern China where	2001-2015	Wood production	13.3
Development Program	precipitation is more than 400			
	mm; 17 provinces			
Wildlife Conservation and	All of China	2001-2010	Wildlife conservation and the	_
Nature Reserves Development			development of nature	
Program			reserves	

Sourece: Wang et al., 2007;Cao et al., 2011.

Hosted file

Table 2.pdf available at https://authorea.com/users/366162/articles/485961-species-and-spatial-differences-of-vegetation-rainfall-interception-capacity-a-synthesis-and-meta-analysis-in-china

Table 3. Stand characteristics

Variables	Number of	Percentage	Range		
	studies	of studies	Minimum	Maximum	
Density (trees	62	38.75	209 (Diao et al, 2016; Song et al.,	17900 (He et al., 2008)	
ha-1)			2016)		
Age (years)	59	36.88	10 (Pei and Zheng, 1996)	170 (Diao et al, 2016)	
Height (m)	93	58.13	0.6 (Liu et al., 2012; Ma et al.,	39.49 (Hao, 2007)	
			2017)		
DBH (cm)	81	50.63	0.19 (Peng et al., 2014)	50.78 (Diao et al, 2016)	
Canopy density	120	75.00	0.2 (Hao et al., 2009)	0.95 (Song, 2015; Wang,	
				2008)	
LAI (m ² m ⁻²)	31	19.38	0.67 (Liu et al., 2012)	7 (Sun et al., 2011b)	
Variables included: density, age, height, DBH (diameter at breast height and LAI (leaf area index), the number					
and percentage of studies, minima and maxima of these variables for all the studies reviewed.					