Conventional and sustained-release oral natural micronised progesterone in luteal phase support, threatened miscarriage, preterm birth, and high-risk pregnancy: a review

Girija Wagh¹, Kundavi S², and Sumitra Bachani³

¹Girija Hospital & Fertility Centre ²Madras Medical Mission ³VMMC&Safdarjung Hospital

October 14, 2020

Abstract

Exogenous progesterone is used to manage obstetric indications associated with reduced progesterone activity. This review examined evidence for oral natural micronised progesterone (NMP) and NMP-SR, a sustained-release formulation designed to overcome the limitations of conventional oral NMP. Oral NMP was effective for luteal phase support during assisted reproduction, and prevention of threatened spontaneous miscarriage and preterm delivery. NMP-SR was comparable to dydrogesterone for luteal phase support during assisted reproduction and maintenance of high-risk pregnancies. By releasing progesterone gradually and circumventing first-pass metabolism, NMP-SR elicits the desired therapeutic effect with added benefits of better bioavailability, once-daily dosing, and improved tolerability.

Introduction

Progesterone is essential for the female reproductive cycle, having roles in the menstrual cycle, blastocyst implantation and maintenance of pregnancy.^{1,2} During the luteal phase of the menstrual cycle after ovulation, progesterone is secreted by the corpus luteum and instigates secretory transformation of the endometrium into an implantation-receptive state.² Progesterone continues to be produced during pregnancy, where it is involved in modulating the maternal immune response, reducing uterine contractility and regulating the utero-placental circulation, thus contributing to the maintenance of pregnancy.¹

Insufficient exposure to progesterone to enable normal secretory transformation of the endometrium and implantation (luteal phase deficiency) is associated with infertility and early pregnancy loss.^{2,3} Luteal phase deficiency also occurs following controlled ovarian stimulation used in assisted reproduction, with potentially adverse effects on implantation in this setting.² Later, in established pregnancy, a functional withdrawal of progesterone activity within the uterus is associated with onset of labour, whether at term or preterm.⁴

Exogenous progesterone is used to treat various obstetric conditions associated with reduced progesterone activity. Progestogens widely approved for use in pregnancy include natural progesterone, and the synthetic progestogens 17α -hydroxyprogesterone caproate (17OHP-C) and dydrogesterone. Synthetic progestins mimic some of the effects of progesterone, but have variable affinities for other steroid receptors (androgen, glucocorticoid, and mineralocorticoid receptors) which results in differential progestogen activity and safety profiles.⁵

The most common routes for delivery of progesterone in the obstetric field are intramuscular (IM), vaginal and oral.¹17OHP-C is administered by IM injection⁶ and dydrogesterone is administered orally.⁷ Since the early 1990s, natural progesterone for exogenous administration has been formulated in micronised particles to enhance its bioavailability after oral administration.⁸ Despite this improvement, oral natural micronised progesterone (oral NMP) requires multiple daily doses due to first-pass metabolism and is associated with adverse events (e.g. drowsiness and/or dizziness) due to active metabolites.⁸ A sustained-release formulation of NMP (NMP-SR) has been developed to overcome the limitations of oral NMP. NMP-SR has a better tolerability profile than conventional oral NMP and is more bioavailable, allowing for once-daily dosing.⁹

This narrative review examines available evidence from clinical studies investigating oral NMP and oral NMP-SR in the obstetric indications of luteal phase support during assisted reproduction; prevention of threatened miscarriage; prevention of preterm delivery; and high-risk pregnancy.

Search method to identify studies

Searches were performed in PubMed and Cochrane Register from inception of each database to 17 September 2019 using the words 'micronized progesterone', 'micronised progesterone' and 'oral'. All records (n = 295 for 'micronized progesterone' and 'oral'; n = 29 for 'micronised progesterone' and 'oral') were examined to identify relevant articles for inclusion. Systematic reviews identified in searches were reviewed for additional studies. No restrictions were applied for language or geographical location. The searches identified 17 studies of oral NMP and three studies of NMP-SR in the obstetric indications of interest. Depending on study methodology (e.g. randomised controlled trial [RCT], observational study), oral NMP or NMP-SR were investigated alone or were compared with no treatment, placebo, other progesterone formulations (vaginal, IM) or oral dydrogesterone. The results are tabulated and are reported narratively per obstetric indication.

Natural micronised progesterone

Historically, the oral route of administration was not used for natural progesterone due to poor absorption and a marked first-pass effect which limited its bioavailability.⁸ However, it was discovered that the efficiency of oral delivery could be improved by using a micronised form of the hormone.⁸ Reducing particle sizes of progesterone to $<10 \,\mu$ m increased the available surface area and improved the dissolution rate and intestinal absorption.¹⁰ Suspending NMP in oil within a gelatin capsule further improved intestinal absorption.¹⁰ In pharmacokinetic studies, physiologically relevant plasma progesterone concentrations were achieved, and remained elevated for up to 12 hours, after administration of [?]100 mg oral NMP in three divided doses.⁸

Development of NMP-SR followed soon thereafter. Designed on 'EROMAT technology', the sustained-release formulation utilizes a hydrophilic matrix polymer which releases micron-sized particles of progesterone in a controlled manner over 16 to 24 hours. This gradual release of progesterone, together with a prolonged elimination half-life of 18 hours¹¹ and high protein binding (90-99%), maintains serum progesterone concentrations in the luteal phase range (i.e. [?] 14 ng/mL) with once-daily dosing.⁹ After 7 daily doses of NMP-SR 200, 300, or 400 mg, mean mid-luteal serum progesterone concentrations of 20.6, 36.1 and 46.2 ng/mL, respectively, were measured.^{9,12} The controlled release of drug particles during intestinal transit facilitates lymphatic absorption of intact drug into the systemic circulation from the small intestine and direct entry of the drug into the systemic circulation via the mucosal lining of the colon. By circumventing first-pass metabolism, active circulating drug elicits the desired therapeutic effect while minimizing the risk of metabolite-related adverse effects.⁹ In this manner, NMP-SR overcomes the limitations of conventional oral NMP.

Luteal phase support during assisted reproduction

In vitro fertilization

Progesterone supplementation is used for luteal support after *in vitro* fertilization (IVF).² In this setting, progesterone is predominantly administered as a vaginal preparation, although preference differs by geographical region.^{2,13} A meta-analysis of RCTs found that neither the route of administration of progesterone (IM, vaginal, oral) nor progestogen type (micronised progesterone or synthetic) affected the outcome of luteal phase support for assisted reproduction techniques (ART), including IVF and intracytoplasmic sperm injection (ICSI), with respect to live birth/ongoing pregnancy, clinical pregnancy or miscarriage rates.¹⁴

The results of RCTs evaluating oral NMP after IVF have been mixed (**Table 1**). Supplementation with oral NMP after IVF significantly increased luteal phase serum progesterone levels and prolonged the duration of the luteal phase compared with no supplementation.¹⁵ Two studies comparing oral and vaginal NMP found similar rates of clinical pregnancy and ongoing pregnancy with either approach,^{16,17}, although one study reported a significantly lower implantation rate with oral versus vaginal NMP.¹⁷ Likewise, a prospective randomised study which compared oral NMP and IM progesterone for luteal support in patients undergoing IVF found that, while the implantation rate was lower with oral NMP, the clinical pregnancy rate did not differ significantly.¹⁸ A case-control study reported that a combination of oral plus vaginal NMP provided a similar rate of ongoing pregnancy, but a lower abortion rate, to that seen with vaginal NMP alone.¹⁹

Intrauterine insemination

Intrauterine insemination (IUI) is used in the management of various types of infertility, including mild male infertility, mild endometriosis, and unexplained infertility.²⁰ It is a relatively low-cost treatment and less invasive and psychologically demanding than IVF and ICSI procedures. IUI can be associated with pregnancy rates of 10-20% per cycle.²¹

Use of oral NMP in the IUI setting has been evaluated largely in observational studies (**Table 1**). A prospective observational analysis of 591 IUI cycles in which a single follicle was developed found that the clinical pregnancy rate was improved with oral NMP compared with no luteal support.²² A large retrospective analysis of 1779 patients found no significant difference in pregnancy outcomes (rates of clinical pregnancy, biochemical pregnancy, early miscarriage, and ectopic pregnancy) between recipients of oral NMP, dydrogesterone, or vaginal NMP.²³

Two small, open-label, observational studies compared success rates in the first cycle of IUI with progesterone luteal support using NMP-SR or dydrogesterone in women with unexplained infertility (**Table 1**). Mean serum progesterone levels were maintained at [?] 14 ng/mL during the mid-luteal phase in most patients in both treatment groups in both studies.^{12,20} First-cycle biochemically-confirmed pregnancy rates were 6.7% and 11% per study in patients treated with NMP-SR and 3.3% and 30% per study in patients treated with dydrogesterone. Possible reasons proposed by Gopinath and Desai for low pregnancy rates were monofollicular development in patients undergoing natural IUI cycles, a trend towards a low motility fraction, and evaluation of the first cycle only.²⁰

Recurrent or threatened miscarriage

Inadequate production of progesterone in the early part of pregnancy may be a causative factor in some cases of miscarriage. Progesterone supplementation, starting in the first trimester, is frequently prescribed to prevent spontaneous miscarriage and recurrent miscarriage of unknown etiology.²⁴

A few studies have evaluated the use of oral NMP in the setting of threatened spontaneous miscarriage in the first trimester (**Table 2**). A retrospective cohort study found that 88% of women with a threatened

spontaneous miscarriage treated with oral NMP 200 mg twice daily were discharged home with a healthy pregnancy.²⁵A RCT (n = 60) that evaluated first-trimester placental and foetal volumes showed that oral NMP 400 mg/day had beneficial effects in terms of significantly increasing placental volume compared to no treatment, although no significant difference was seen in the live birth rate or perinatal complications (assessed as secondary endpoints).²⁶ Finally, a recent comparative RCT (n = 118) found that oral NMP 200 mg twice daily was as effective as dydrogesterone 10 mg twice daily at reducing bleeding and rate of miscarriage.²⁷

Preterm birth

Progesterone supplementation is one of the treatment options for prevention of preterm birth. Meta-analyses have confirmed that progesterone is effective at reducing the risk of preterm birth before 34 weeks and before 37 weeks in women with singleton pregnancies and a history of a previous preterm birth, and at reducing the risk of preterm birth before 34 weeks in women with a short cervix.^{28,29} No significant differences were found between natural progesterone (oral/vaginal) and IM 17OHP-C²⁸ or between routes of administration (oral, vaginal and IM).²⁹

Studies evaluating oral NMP for prevention of preterm birth are summarised in **Table 3**. Three RCTs compared oral NMP with placebo for prevention of preterm delivery (PTD) in women with a history of previous spontaneous PTD. Two of these studies (n = 150, and n = 212) found that oral NMP significantly reduced the rate of PTD and increased the mean gestational age at delivery compared with placebo.^{30,31} The third study (n = 33) found numerical improvements in these parameters with oral NMP compared with placebo, but the differences did not achieve statistical significance, probably because the study was underpowered.³² A meta-analysis of these same three studies demonstrated a significantly decreased risk of preterm birth at <37 weeks gestation (relative risk [RR] 0.68; 95% CI 0.55-0.84) and at <34 weeks gestation (RR 0.55; 95% CI 0.43-0.71), and increased gestational age of delivery (mean difference 1.71 weeks; 95% CI 1.11-2.30) with oral NMP compared with placebo.³³ A noncomparative observational study (n = 345) also suggested that oral NMP may be effective at preventing PTD.³⁴ A small retrospective analysis comparing different routes of administration of progesterone in women at high-risk for preterm labour (n = 30) found a numerically lower rate of PTD with vaginal progesterone than with oral NMP, but no statistical comparison was performed.³⁵

Studies investigating oral NMP as maintenance tocolysis are few (**Table 3**). A small RCT from France reported no differences between oral NMP and placebo in terms of pregnancy prolongation; however, adjuvant oral NMP significantly reduced the requirement for intravenous β -mimetic (ritrodrine) and shortened the mean hospital stay by 4.2 days.³⁶ A RCT from India in 90 women with arrested preterm labour found that maintenance tocolysis with oral NMP significantly prolonged the latency period (days gained until delivery) and significantly reduced the number of preterm births compared with placebo.³⁷

High-risk pregnancy

Use of oral NMP-SR has been evaluated across a range of high-risk pregnancies, including but not limited to patients with a poor obstetric history, history of preterm birth, threatened miscarriage or habitual abortion (**Table 4**). A retrospective, multicentre, case-cohort analysis included 185 consecutive women with a high-risk pregnancy who received oral NMP-SR supplementation.³⁸ The most common indications were a history of first (n = 36, 19.5%) or second (n = 37, 20.0%) trimester loss, short/incompetent cervix (n = 22, 11.9%), primary (n = 22, 11.9%) or secondary (n = 12, 5.9%) prophylaxis for preterm birth, and threatened miscarriage with/without spotting (n = 19, 10.3%). Fifty women had a history of [?] 2 pregnancy losses (28 unexplained recurrent pregnancy loss and 22 spontaneous loss). Oral NMP-SR was generally administered at a dose of 300 mg in women with previous pregnancy loss, cervical risk factors, or

threatened miscarriage, and at a dose of 200–300 mg in women with a history of preterm birth or those who had premature contractions. Treatment was usually initiated between 16 and 26 weeks of pregnancy and continued until 34 weeks. Mean treatment duration was 19 ± 1 weeks in patients with cervical risk factors, 18 ± 5 weeks in cases of unexplained recurrent pregnancy loss, and 10 ± 1 weeks in those with threatened miscarriage. In all treated cases, pregnancy continued until 34 weeks, with no adverse outcomes.

Safety

The most common adverse events reported in studies of oral NMP in obstetric indications were drowsiness/somnolence and dizziness.^{16,27,31} In the largest placebo-controlled trial of oral NMP, somnolence occurred in 41.6% of oral NMP recipients versus 19.7% of placebo recipients (p = 0.002), and dizziness in 29.1% versus 9.8% (p = 0.002).³¹ Studies of oral NMP-SR have reported considerably lower rates of adverse events: 4.3%³⁸ and 6.7%¹² for drowsiness, and 3.2% for dizziness.³⁸

The low incidence of adverse events associated with NMP-SR is further supported by a prescription-event monitoring study conducted in India.³⁹ The study evaluated 153 patients with a poor obstetric history (50%), unexplained fertility (43.8%) or secondary amenorrhea (5.9%) who received oral NMP-SR 300 or 400 mg once daily after natural or stimulated ART cycles. Oral NMP-SR was well tolerated. Incidences of adverse effects were low (hyperemesis: 1.3%; drowsiness: 0.6%; giddiness: 0.6%), and events were generally mild and transient.

Only a few direct comparisons of oral NMP with other agents have been published. Oral NMP was associated with more drowsiness and giddiness but less nausea compared with dydrogesterone,²⁷ and with more drowsiness/somnolence but less vaginal irritation compared with vaginal progesterone.^{16,17,19}

In a retrospective analysis, NMP-SR and dydrogesterone were both well tolerated in women who underwent stimulated IUI for unexplained fertility.¹² Among 45 women treated with NMP-SR and 33 women treated with dydrogesterone, three drowsiness events and one nausea event were reported with NMP-SR, compared with four nausea events and one drowsiness event with dydrogesterone.

Recently a positive association was described between dydrogesterone exposure during the first trimester of pregnancy and congenital heart disease in the newborns,⁴⁰ although other authors have argued that weaknesses in the study design preclude ascribing a causal relationship.⁴¹ Natural progesterone may have metabolic advantages compared with synthetic progestogens. Oral NMP in 200, 600 and 1200 mg single doses had no effect on mood/performance compared with placebo.⁴² In contrast to levonorgestrel and medroxyprogesterone acetate which significantly decreased high-density lipoprotein cholesterol subfractions, oral NMP had no apparent effect.⁴³ Oral NMP administered at doses of 50, 100, or 200 mg daily with oral micronised 17β-oestradiol for 4 months in postmenopausal women had no effect on liver enzymes or on circulating levels of lipoprotein A, an independent risk factor for cardiovascular disease in women.⁴⁴

Discussion

Progesterone is essential for the establishment and maintenance of pregnancy. As such, exogenous progesterone is used therapeutically for several obstetric indications associated with low progesterone levels including luteal phase support during ART, management of threatened spontaneous miscarriage, prevention of some cases of PTD, and treatment of patients with high-risk pregnancies (unexplained poor obstetric history or at risk of PTD). In regions without specialist IVF/ICSI facilities, IUI may be a practical approach to enhance fertility. It is a simpler and less intrusive procedure than other ART methods, is widely available, and can be a successful and safe option in selected patients.²¹Studies suggest that oral NMP and NMP-SR may be an effective and feasible option in this setting. Route of administration is an important aspect of any therapy as it may influence treatment adherence and treatment satisfaction. In obstetric indications, natural progesterone can be administered by IM, vaginal, and oral routes. From the patient's perspective, oral administration is less painful than IM injection and may be less embarrassing and messy than intravaginal administration. In some countries, including India, women are notably reluctant to use intravaginal medications, particularly during pregnancy, and prefer to take oral medication [personal communication, Reena J Wani]. A preference for oral progesterone over vaginal suppositories has previously been reported.⁴⁵ Among oral progestogen options for use in pregnancy, NMP-SR represents an important advance, providing improved bioavailability and better tolerability than conventional oral NMP. A once-daily dose of NMP-SR maintains serum progesterone concentrations in the luteal phase range (i.e. [?] 14 ng/mL) in contrast with the multi-dose regimens required with conventional oral NMP and dydrogesterone. A once-daily oral regimen of NMP-SR is convenient for patients, and may enhance treatment efficacy through better adherence.

In terms of safety and tolerability, oral progestogen preparations avoid the local effects associated with IM injections or intravaginal administration. The sustained-release kinetics of the NMP-SR formulation and absorption of intact progesterone in the distal part of the gastrointestinal tract avoids drug loss through first-pass metabolism and minimizes any central side effects caused by the formation of active metabolites.⁹ Drowsiness, the most frequent adverse event with conventional oral NMP, is much less common with NMP-SR.

NMP-SR has been available in India for more than 7 years and is increasingly becoming physicians' treatment of choice for obstetric indications. A real-world national survey of 925 Indian gynaecologists found that 23% reported oral NMP-SR as their preferred choice for management of luteal phase defects, 11% as their preferred choice for luteal phase support during ART, 10% as their preferred choice for prevention of PTD, while 56% reported that NMP-SR was their preferred choice for all three indications.⁹ In women with a poor obstetric history associated with luteal phase deficiency, 58% of the clinicians preferred to use vaginal progesterone, 36% oral NMP-SR, and 6% dydrogesterone. Thus, oral NMP-SR has an important role in managing obstetric conditions in India. Given the established efficacy of oral NMP during more than 30 years' use, and enhanced pharmacokinetics and safety profile of NMP-SR, global interest in NMP-SR might be expected in the near future.

The review is limited by the relatively small number of studies (especially studies of NMP-SR), modest sample sizes in some studies, and low evidence quality of some studies. Only about half of reviewed studies (55%) were RCTs, although observational studies also have value in terms of reflecting the real-world standard of care. As searches were limited to PubMed and Cochrane Database, it is possible that some studies of oral NMP and NMP-SR were missed. To minimize this possibility, search terms were purposely broad and all retrieved records were checked individually.

Conclusion

In conclusion, this literature review demonstrates that oral NMP and NMP-SR are effective therapeutic options for managing women requiring luteal phase support during ART treatment, for preventing miscarriage; for preventing preterm birth, and for managing high-risk pregnancy. Both conventional oral NMP and NMP-SR have the advantage of being natural progesterone. NMP-SR provides additional benefits in terms of once-daily dosing, which can facilitate patient compliance, and an improved tolerability profile. Oral NMP-SR represents a valuable option in the therapeutic armamentarium for treating obstetric conditions associated with insufficient progesterone exposure.

Disclosure of interests

No potential conflict of interest was reported by the authors.

Contribution to authorship

GNW, KMK and SB contributed to developing the concept and format of the review, and to data interpretation. GNW, KMK and SB reviewed and revised the manuscript at draft stages for intellectual content. All authors provided final approval of the version to be published. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Details of ethics approval

Not applicable.

Funding

None

Acknowledgements

Medical writing and editing support during preparation of this manuscript was provided by Kathy Croom and Kerry Dechant on behalf of Content Ed Net (Mumbai, India), with funding from Sun Pharma (Mumbai, India).

References

- 1. Di Renzo GC, Giardina I, Clerici G, Brillo E, Gerli S. Progesterone in normal and pathological pregnancy. *Horm Mol Biol Clin Investig*2016;27:35-48.
- Mesen TB, Young SL. Progesterone and the luteal phase: a requisite to reproduction. Obstet Gynecol Clin North Am 2015;42:135-51.
- 3. Piette P. The history of natural progesterone, the never-ending story. Climacteric 2018;21:308-14.
- 4. Norwitz ER, Caughey AB. Progesterone supplementation and the prevention of preterm birth. *Rev* Obstet Gynecol 2011;4:60-72.
- 5. Stanczyk FZ, Hapgood JP, Winer S, Mishell DR Jr and clinical effects. Endocr Rev 2013;34:171-208.
- Makena[®] (hydroxyprogesterone 6. Food & Drug Administration. caproate injection) information. for intramuscular use. Prescribing February 2018.Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/021945s012lbl.pdf [Accessed 24 August 2020].
- 7. Health Products Regulatory Authority. Duphaston[®] 10 tablets (dydrogesmg December 2016.Summary of product characteristics. Available httterone). at ps://www.hpra.ie/img/uploaded/swedocuments/LicenseSPC_PA2007-005-001_30062017140055.pdf. [Accessed 24 August 2020].
- 8. Fitzpatrick LA, Good A. Micronized progesterone: clinical indications and comparison with current treatments. *Fertil Steril*1999;72:389-97.
- 9. Malik S, Krishnaprasad K. Natural micronized progesterone sustained release (SR) and luteal phase: role redefined!! J Clin Diagn Res 2016;10:QE01-4.
- 10. Hargrove JT, Maxson WS, Wentz AC. Absorption of oral progesterone is influenced by vehicle and particle size. Am J Obstet Gynecol1989;161:948-51.
- Kirk PE, Serat S, Burrows LJ, Mott LA, Yeo K-TJ, Fitzmaurice T, et al. A pharmacokinetic study of natural micronized progesterone extended release tablets. Available at: https://pharmacysolutionsonline.com/progesterone-even-release-tablets.php. [Accessed 24 August 2020].
- 12. Malhotra J, Krishnaprasad K. Open-label, prospective, investigator initiated study to assess the clinical role of oral natural or synthetic progesterone during stimulated IUI cycles for unexplained infertility. *J Clin Diagn Res* 2016;10:QC08-10.
- 13. Vaisbuch E, de Ziegler D, Leong M, Weissman A, Shoham Z. Luteal-phase support in assisted reproduction treatment: real-life practices reported worldwide by an updated website-based survey. *Reprod*

Biomed Online 2014;28:330-5.

- van der Linden M, Buckingham K, Farquhar C, Kremer JA, Metwally M. Luteal phase support for assisted reproduction cycles. *Cochrane Database Syst Rev* 2015;7:CD009154.
- 15. Colwell KA, Tummon IS. Elevation of serum progesterone with oral micronized progesterone after in vitro fertilization. A randomized, controlled trial. J Reprod Med 1991;36:170-2.
- Pouly JL, Bassil S, Frydman R, Hedon B, Nicollet B, Prada Y, et al. Luteal support after in-vitro fertilization: Crinone 8%, a sustained release vaginal progesterone gel, versus Utrogestan, an oral micronized progesterone. *Hum Reprod* 1996;11:2085-9.
- Friedler S, Raziel A, Schachter M, Strassburger D, Bukovsky I, Ron-El R. Luteal support with micronized progesterone following in-vitro fertilization using a down-regulation protocol with gonadotrophin-releasing hormone agonist: a comparative study between vaginal and oral administration. Hum Reprod 1999;14:1944-8.
- Licciardi FL, Kwiatkowski A, Noyes NL, Berkeley AS, Krey LL, Grifo JA. Oral versus intramuscular progesterone for in vitro fertilization: a prospective randomized study. *Fertil Steril* 1999;71:614-8.
- 19. Tomic V, Tomic J, Klaic DZ. Oral micronized progesterone combined with vaginal progesterone gel for luteal support. *Gynecol Endocrinol*2011;27:1010-3.
- Gopinath PM, Desai RR. Open-label observational study to determine the success rate of first cycle intrauterine insemination (IUI) involving luteal phase support with oral natural or synthetic progesterone. Int J Med Res Health Sci 2014;3:933-6.
- Bahadur G, Homburg R, Al-Habib A. A new dawn for intrauterine insemination: efficient and prudent practice will benefit patients, the fertility industry and the healthcare bodies. J Ob Gyn India 2017;67:79-85.
- 22. Guven D, Batioğlu A, Sari S, Bakay K. The impact of progesterone supplementation on pregnancy rates after intrauterine insemination in patients developing a single follicle. *Hum Fertil (Camb)*2016;19:111-3.
- 23. Chi HB, Xin LL, Li R, Li NN. [Study of the effects of three luteal phase supporting strategies on clinical outcomes of intrauterine insemination]. Zhonghua Yi Xue Za Zhi 2016;96:1830-3. Chinese.
- 24. Haas DM, Hathaway TJ, Ramsey PS. Progestogen for preventing miscarriage in women with recurrent miscarriage of unclear etiology. *Cochrane Database Syst Rev* 2018;10:CD003511.
- Marinov B, Petkova S, Dukovski A, Georgiev G, Garnizov T, Manchev V, et al. [Utrogestan and high risk pregnancy]. Akush Ginekol (Sofiia) 2004;43(5):22-4. Bulgarian.
- Turgal M, Aydin E, Ozyuncu O. Effect of micronized progesterone on fetal-placental volume in firsttrimester threatened abortion. J Clin Ultrasound 2017;45:14-9.
- Siew JYS, Allen JC, Hui CYY, Ku CW, Malhotra R, Østbye T, et al. The randomised controlled trial of micronised progesterone and dydrogesterone (TRoMaD) for threatened miscarriage. Eur J Obstet Gynecol Reprod Biol 2018;228:319-24.
- Jarde A, Lutsiv O, Park CK, Beyene J, Dodd JM, Barrett J, et al. Effectiveness of progesterone, cerclage and pessary for preventing preterm birth in singleton pregnancies: a systematic review and network meta-analysis. *BJOG* 2017;124:1176-89.
- Dodd JM, Jones L, Flenady V, Cincotta R, Crowther CA. Prenatal administration of progesterone for preventing preterm birth in women considered to be at risk of preterm birth. *Cochrane Database Syst Rev* 2013;7:CD004947.
- 30. Rai P, Rajaram S, Goel N, Gopalakrishnan RA, Agarwal R, Mehta S. Oral micronized progesterone for prevention of preterm birth. Int J Gynaecol Obstet 2009;104:40-3.
- 31. Ashoush S, El-Kady O, Al-Hawwary G, et al. The value of oral micronized progesterone in the prevention of recurrent spontaneous preterm birth: a randomized controlled trial. Acta Obstet Gynecol Scand 2017;96:1460-6.
- Glover MM, McKenna DS, Downing CM, Smith DB, Croom CS, Sonek JD. A randomized trial of micronized progesterone for the prevention of recurrent preterm birth. Am J Perinatol 2011;28:377-81.
- 33. Boelig RC, Della Corte L, Ashoush S, Othman A. Oral progesterone for the prevention of recurrent preterm birth: systematic review and metaanalysis. *Am J Obstet Gynecol MFM* 2019;1:50-62.

- Tariq M, Naeem F, Rasheed S. Efficacy of oral progesterone in preterm births at a tertiary care hospital. J Med Physiol Biophysics 2017;37:44-8.
- 35. Natu N, Sonker S, Chandwaskar N, Agrawal S. Role of micronized progesterone versus vaginal progesterone for prevention of preterm labour. Int J Repro Contracep Obs Gyn 2017;6:1797-9.
- 36. Noblot G, Audra P, Dargent D, Faguer B, Mellier G. The use of micronized progesterone in the treatment of menace of preterm delivery. *Eur J Obstet Gynecol Reprod Biol* 1991;40:203-9.
- Choudhary M, Suneja A, Vaid NB, Guleria K, Faridi MMA. Maintenance tocolysis with oral micronized progesterone for prevention of preterm birth after arrested preterm labor. Int J Gynaecol Obstet2014;126:60-3.
- Prabhat P, Krishnaprasad K. A drug utilization surveillance study to assess the clinical utility and safety of oral natural micronized progesterone SR in high risk pregnancies: NAP-DELAY study. J Clin Diag Res 2018;12:QC04-6.
- Purandare AC, Hajare A, Krishnaprasad K, Bhargava A. Prescription event monitoring study to assess the safety profile of oral natural micronized progesterone sustained release in India. Int J Med Res Health Sci 2014;3:975-6.
- Zaqout M, Aslem E, Abuqamar O, Abughazza O, Panzer J, De Wolf D. Association between oral intake of dydrogesterone during early pregnancy and congenital heart disease: a case-control study. *Lancet* 2017;390(S*):Abstract.
- Griesinger G, Tournaye H, Macklon N, Petraglia F, Arck P, Blockeel C, et al. Dydrogesterone: pharmacological profile and mechanism of action as luteal phase support in assisted reproduction. *Reprod Biomed Online* 2019;38:249-59.
- Freeman EW, Weinstock L, Rickels K, Sondheimer SJ, Coutifaris C. A placebo-controlled study of effects of oral progesterone on performance and mood. Br J Clin Pharmacol 1992;33:293-8.
- 43. Ottosson UB, Johansson BG, von Schoultz B. Subfractions of high-density lipoprotein cholesterol during estrogen replacement therapy: a comparison between progestogens and natural progesterone. Am J Obstet Gynecol 1985;151:746-50.
- 44. Darj E, Axelsson O, Carlstrom K, Nilsson S, von Schoultz B. Liver metabolism during treatment with estradiol and natural progesterone. *Gynecol Endocrinol* 1993;7:111-4.
- 45. Frishman GN, Klock SC, Luciano AA, Nulsen JC. Efficacy of oral micronized progesterone in the treatment of luteal phase defects. *J Reprod Med* 1995;40:521-4.

Tables

Table 1. Studies evaluating oral natural micronised progesterone and oral natural micronised progesterone sustained-release for luteal support during assisted reproduction.

Study	Study design / N	Ovarian stimulation ^a	Luteal support	Results
In vitro	In vitro	In vitro	In vitro	In vitro
fertilization	fertilization	fertilization	fertilization	fertilization

Study	$\begin{array}{l} {\rm Study \ design} \ / \\ {\rm N} \end{array}$	Ovarian stimulation ^a	Luteal support	Results
Colwell & Tummon 1991 ¹⁵	RCT / 39	CC + hMG	Oral NMP 200 mg qds <i>vs</i> No luteal support	Serum P levels higher in oral NMH group vs no-luteal-support group on days 2, 4 and 11 (all $p <$ 0.001). Mean \pm SI duration of luteal phase longer after oral NMP (17.0 \pm 1.3 vs 13.7 \pm 3.0 days, $p <$ 0.05). No significant difference in ongoing pregnancy rates (20% vs 0%).
Pouly et al. 1996 ¹⁶	RCT / 283	hMG	Oral NMP (100 mg in am, 200 mg in pm) vs Vaginal NMP 8% (90 mg/day)	(20% vs 0%). Mean ± SD blood level higher in oral NMP group vs vaginal NMP group on day 8 (50.9 ± 81.9 vs 29.9 ± 56.4 ng/mL, $p < 0.001$) No differences between oral NMP and vaginal NMP groups for rates of implantation (29.9' vs 35.3%), clinical pregnancy on day 30 (25.0% vs 28.8%), ongoing pregnancy on day 90 (22.9% vs 25.9%), abortion after day 90 (3.0% vs 11.1%), delivering per patient (22.2% vs 23.0%) or deliveries per embryo transferred (11.1% vs 11.7%).

Study	Study design / N	Ovarian stimulation ^a	Luteal support	Results
Friedler et al. 1999 ¹⁷	RCT / 64	GnRH + hMG	Oral NMP 200 mg qds <i>vs</i> Vaginal NMP 100 mg bd	No difference in serum P levels between groups in conception cycles. Higher serum P levels on days 11 and 15 in oral NMF group vs vaginal NMP in non-conception cycles ($p = 0.032$). Lower implantation rate with oral NMP (10.7% vs 30.7%, p < 0.01), but no significant differences in rates of pregnancy (33.0% vs 47.0%), miscarriage (40.0% vs 12.5%), or ongoing pregnancy (20.0% vs 41.1%).
Licciardi et al. 1999 ¹⁸	RCT / 43	GnRH down-regulation, FSH or hMG or FSH + hMG	Oral NMP 200 mg tds vs IM P 50 mg/day	No difference in serum P levels between groups. Lower implantation rate with oral NMP vs IM P (18.1% $vs40.9%, p = 0.004).No difference inclinical pregnancyrates (45.8% vs57.9%).$
Tomic et al. 2011 ¹⁹	Case–control / 370	GnRH agonist, FSH	Oral NMP 100 mg tds + Vaginal NMP 8% (90 mg/day) vs Vaginal NMP 8% (90 mg/day)	No difference in ongoing pregnancy rate between combination of oral + vaginal NMP vs vaginal NMP alone (39.5% vs 33.5%, p = .48), but lower abortion rate with combination therapy vs monotherapy (6.4% vs 15.6%, $p < 0.05$)

Study	Study design / N	Ovarian stimulation ^a	Luteal support	Results
Intrauterine insemination Güven et al. 2016 ²²	Intrauterine insemination OL, OB / 591	Intrauterine insemination FSH	Intrauterine insemination Oral NMP 100 mg bd vs No luteal support	Intrauterine insemination All patients had unexplained infertility. Evaluation of IUI cycles that developed a single follicle. Higher clinical pregnancy rate in oral NMP group vs no-luteal-support group (24.3% versus 15.0%, $p = 0.021$). Higher live-birth rate in oral NMP group vs control group vs control group $(19.8\% vs)$ 9.8%, p = 0.004).
Chi et al. 2016 ²³	RET, OB / 1779	Not available ^b	Oral NMP vs Vaginal NMP vs DYD ^b	No difference in rates of biochemical pregnancy, clinical pregnancy, early miscarriage, or ectopic pregnancy between recipients of oral NMP vs vaginal NMP vs DYD.
Malhotra & Krishnaprasad 2016 ¹²	OL, OB / 78	$\rm CC + hMG$	Oral NMP-SR 200 or 300 mg od <i>vs</i> Oral DYD 10 mg bd	All patients had unexplained infertility. In the first cycle, mid-luteal serum P levels of [?] 14 ng/mL were achieved in 82.2% of oral NMP-SR recipients vs 78.8% of DYD recipients. Biochemically- confirmed pregnancy rate in the first cycle was 11% in oral NMP-SR group vs 30% in DYD group.

Study	Study design / N	Ovarian stimulation ^a	Luteal support	Results
Gopinath & Desai 2014 ²⁰	OL, OB / 60	Natural or stimulated (CC ± hMG)	Oral NMP-SR 400 mg/day vs Oral DYD 10 mg bd	All patients had unexplained infertility. In the first cycle, mean serum P levels were maintained at [?] 14 ng/mL in the mid-luteal phase in 93.3% of patients (oral NMP-SR 90.0% vs DYD 96.7%). Overall first-cycle biochemically- confirmed pregnancy rate 5% (oral NMP-SR 6.7% vs DYD 3.3%). Possible reasons for the low pregnancy rate were monofollicular development in patients undergoing natural IUI cycles, a trend towards a low motility fraction, and evaluation of the first cycle only.

^a Subsequent ovulation induction was achieved using administration of human chorionic gonadotropin.

^b Publication in Chinese; additional details not available in English abstract.

bd = twice daily; CC= clomiphene citrate; DYD = dydrogesterone; FSH = follicle-stimulating hormone; GnRH = gonadotropin-releasing hormone; hMG = human menopausal gonadotropin; IM = intramuscular; IUI = intrauterine insemination; NMP = natural micronised progesterone; N = number of subjects; OB = observational study; OL = open-label; P = progesterone; qds = four times daily; RCT = randomised controlled trial; RET = retrospective; SR = sustained release; tds = three times daily.

Table 2. Studies evaluating oral natural micronised progesterone for prevention of threatened miscarriage.

Study	Study design / N	Treatment	Results
Marinov et al. 2004^{25}	RET / 68 ^a	Oral NMP 200 mg bd for [?] 14 days	Oral NMP administered for average of 21 days. Overall, 88% of patients were discharged from hospital with a healthy pregnancy.

Study	Study design $/ N$	Treatment	Results
Turgal et al. 2017 ²⁶	OL, RCT / 60 ^b	Oral NMP 400 mg/day for 4 weeks vs No treatment	Mean placental volume increased more in oral NMP group vs control group: 336% (67–1077) vs 141% (29–900), $p =$ 0.007. No between-group differences in mean change for gestational sac, amniotic sac, or embryonic volumes. No difference between oral NMP vs control for secondary endpoints including live birth rate (92.9% vs 96.4%, $p =$ 0.55) and mean gestational age at delivery (38.0 ± 2.8 vs 38.5 ± 1.6 weeks, $p =$ 0.46).
Siew et al. 2018 ²⁷	OL, RCT / 118 ^c	Oral NMP 200 mg bd vs Oral DYD 10 mg bd, both for 2 weeks	No difference between oral NMP and oral DYD groups for miscarriage rate at [?]16 weeks (10.2% vs 15.2%, p = 0.581). No difference in extent of bleeding at day 4–10: 89.7% of oral NMI recipient vs 96.6% of DYD recipients reported similar/less/resolved bleeding vs baseline, $p =$ 0.272.

^a Women with first or second consecutive threatened spontaneous abortion in the first trimester. Published in Bulgarian; additional details not available in English abstract.

^b Women with single intrauterine pregnancy with live embryo at 6 to <9 weeks' gestation and vaginal bleeding, with/without abdominal pain, with closed cervix, and no history of recurrent miscarriage.

^c Women with single intrauterine pregnancy at 6-10 weeks' gestational age and vaginal bleeding, and no history of recurrent miscarriage ([?] 3 consecutive miscarriages).

bd = twice daily; DYD = dydrogesterone; N = number; NMP = natural micronised progesterone; OL = open-label; N = number of subjects; RCT = randomised controlled trial; RET = retrospective.

Table 3. Studies evaluating oral natural micronised progesterone for prevention of preterm birth.

Prevention of preterm birth Rai et al. 200930Prevention preterm bir DB, RCT / 1	n preterm birth	Prevention of preterm birth	Prevention of
	0 History of sPTD 20-<37 weeks Singleton pregnancy	preterm birth Oral NMP 100 mg bd <i>vs</i> Placebo From 18–24 to 36 weeks or delivery	preterm birth Rate of PTD (<3 7 weeks) lower with oral NMP vs placebo (39.2% vs 59.5%, $p = 0.002$). Mean \pm SD gestational age at delivery greater with oral NMP vs placebo (36.1 \pm 2.66 vs 34.0 \pm 3.25 weeks, $p < 0.001$). Oral NMP prevented sPTD between 28–<32 weeks (2.7% vs 20.3%; RR 0.20, 95% CI 0.05–0.73, $p = 0.001$) but not between 32–<34 weeks (RR 0.86, 95% CI 0.60–1.22, $p = 0.85$) or between 34–<37 weeks (RR 0.86, 95% CI 0.48–1.45, $p = 1.00$ [RR of PTD with oral NMP vs placebo with gestational age [?] 37 weeks as reference]. Among patients requiring tocolysis, mean tocolysis-to-delivery interval longer with oral NMP vs placebo (49.7 vs 26.8 hours, $p = 0.058$).

Study	Design / N	Type of patients	Treatment / Timing	Results
Ashoush et al. 2017 ³¹	DB, RCT / 212	History sPTD <37 weeks Singleton pregnancy	Oral NMP 100 mg qds vs Placebo From 14–18 to 37 weeks or delivery	Risk of sPTD (<37 weeks) lower with oral NMP vs placebo (44.7% vs 63.7%; RR 0.7, 95% CI 054–0.92, $p =$ 0.01). Mean \pm SD gestational age at delivery greater with oral NMP vs placebo (35.4 \pm 2.7 vs 33.9 \pm 2.9 weeks, p = 0.01). Patients who required tocolysis had a longer mean tocolysis-to-delivery interval (87 \pm 45.5 vs 36 \pm 14.2 hours, p < 0.001).
Glover et al. 2011 ³²	DB, RCT / 33	History sPTD >20-<37 weeks Singleton pregnancy	Oral NMP 400 mg/day vs Placebo From 16–19 to 33 weeks	Rate of sPTD (<37 weeks) numerically lower with oral NMP vs placebo, but statistical significance not achieved (26.3% [5/19] vs 57.1% [8/14]; RR 0.55, 95% CI 0.26–1.16, $p = 0.15$). Mean \pm SD gestational age at delivery not significantly longer with oral NMP vs placebo (37.0 \pm 2.7 vs 35.9 \pm 3.8 weeks, p = 0.3).

Study	Design / N	Type of patients	Treatment / Timing	Results
Boelig et al. 2019 ³³	Meta-analysis ³⁰⁻³² / 386	History of sPTD <37 weeks Singleton pregnancy	Oral NMP <i>vs</i> Placebo	Risk of preterm birth decreased at <37 weeks gestation (relative risk [RR] 0.68; 95% CI 0.55- 0.84) and at <34 weeks gestation (RR 0.55 ; 95% CI 0.43- 0.71) with oral NMP vs placebo. Increased gestational age of delivery (mean difference 1.71 weeks; 95% CI 1.11- 2.30) with oral NMP vs placebo.
Tariq et al. 2017 ³⁴	OB / 345	History of PTD Singleton (95%) or multiple pregnancy	Oral NMP 400 mg/day From 15–20 weeks to delivery	Oral NMP prevented PTD (<37 weeks) in 67% of patients, and PTD occurred in 33% of patients despite treatment. Mean gestational age at time of delivery 37.51 ± 1.34 weeks.
Natu et al. 2017 ³⁵	RET / 30	High-risk for preterm labour (history of preterm labour or abortion; infection or multiple gestation in current pregnancy) Singleton or multiple pregnancy	Oral NMP vs Vaginal progesterone suppository From first trimester ^a	PTD rate was 40% (6/15) with oral NMP vs 26.7% (4/15) with vaginal progesterone. Statistical analysis was not performed.
Maintenance tocolysis	Maintenance tocolysis	Maintenance tocolysis	Maintenance tocolysis	Maintenance tocolysis

Study	Design / N	Type of patients	Treatment / Timing	Results
Noblot et al. 1991 ³⁶	DB, RCT / 44	Arrested preterm labour (tocolysis with ritrodrine)	Oral NMP 400 mg qds \times 24 h then tds vs Placebo From start of tocolysis to 35 weeks or delivery	Pregnancy prolongation (6.0 vs 6.4 weeks) or number of deliveries before 37 weeks (6 vs 8) not different between oral NMP and placebo. Total ritrodrine dose (863 vs 1370 mg; $p <$ 0.05) and number of days of hospitalization (13.6 vs 17.8; $p < 0.05$) lower with oral NMP vs placebo.
Choudhary et al. 2014 ³⁷	DB, RCT / 90	Arrested preterm labour (successful tocolysis with nifedipine) Singleton pregnancy	Oral NMP 200 mg/day vs Placebo From 48 hours after tocolysis to 37 weeks or delivery	Mean \pm SD latency period (days gained until delivery) longer with oral NMP vs placebo (33.29 \pm 22.16 vs 23.07 \pm 15.42 days, p = 0.013). Rate of PTD lower with oral NMP vs placebo (33% vs 58%, $p = 0.034$).

^a Dosing regimens and duration not specified further.

bd = twice daily; CI = confidence interval; DB = double-blind; N = number; NMP = natural micronised progesterone; OB = observational; PTD = preterm delivery; qds = four times daily; RCT = randomised controlled trial; RET = retrospective; RR = relative risk; SD = standard deviation; sPTD = spontaneous PTD; tds = three times daily.

Table 4. Studies evaluating natural micronised progesterone sustained-release for high-risk pregnancy.

Study	Study design / N	Treatment	Results
Prahbat & Korukonda 2018 ³⁸	RET/ 185 ^a	Mean oral NMP-SR dose: 271.4 mg for mean 18 weeks for unexplained RPL 262.5 mg for mean 19 weeks for cervical factor 311.1 mg for mean 10 weeks for threatened miscarriage (spotting or prior history)	In all 185 cases, pregnancy was maintained to week 34 with no adverse outcomes. Two cases o spotting were managed symptomatically.

^a Women with first (n = 36) or second (n = 37) trimester loss, cervical factor (n = 22), still birth (n = 15), threatened PTB \pm spotting (n = 19), placenta previa (n = 5), PTB primary prophylaxis (n = 22), PTB secondary prophylaxis (n = 12), elderly primi (n = 2), polyhydramnios (n = 3), uterine fibroid (n = 3), twin (n = 7), septate uterus (n = 2).

NMP-SR = natural micronised progesterone sustained release; N = number of subjects; PTB = preterm birth; RET = retrospective; RPL = recurrent pregnancy loss.