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Abstract

Coronavirus disease (COVID-19), caused by SARS-CoV-2, has a higher case fatality rate (CFR) in European ethnic groups
than in others, especially East Asians. One explanation to this phenomenon might be TMPRSS2, a key processing enzyme
essential for viral infection. Here, we analyzed the allele frequencies of two nonsynonymous variants rs12329760 (V197M) and
rs75603675 (G8V) in the TMPRSS2 gene using over 200,000 present-day and ancient genomic samples. We found a significant
association between the CFR of COVID-19 and the allele frequencies of the two variants. Interestingly, they had opposing
effects on the CFR: inverse correlation by V197M, proportional correlation by G8V. East Asians have higher V197M and lower
G8YV allele frequencies than Europeans, possibly endowing resistance against SARS-CoV-2. Structural and energy calculation
analysis of the V197M amino acid change showed that it destabilizes the TMPRSS2 protein, possibly affecting its ACE2 and
viral spike protein processing negatively, ultimately resulting in reduced SARS-CoV-2 infection efficiency and CFR in East

Asian ethnic groups.
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Introduction



Coronavirus disease (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2). Appearing first during late 2019 in Wuhan, China, COVID-19 has spread rapidly
worldwide(1). As of May 23, 2020, SARS-CoV-2 has infected >5 million people in over 200 countries, killing
more than 330,000 people(2). Europe has been particularly affected, with Spain and Italy each reaching over
200,000 cases of infection and more than 27,000 deaths, resulting in a maximum case fatality rate (CFR) of
>10%(2). In contrast, East Asia did not experience such dire effects, with South Korea, for instance, re-
porting a peak CFR of 2.4%(?). Multiple contributing factors could explain this difference, including timing
and severity of lockdown measures® | population age ratiol®), healthcare resource availability(®, smoking
rate(6, 7), and early tuberculosis (Bacillus Calmette-Guérin) vaccination(8-10). In principle, genetic factors
may also underpin differential susceptibility to SARS-CoV-2(11-13).

Genes encoding cellular serine protease (TMPRSS2 ), angiotensin-converting enzyme 2 (ACE2 ), cysteine
proteases cathepsin B and cathepsin L (CatB, CatL ), phosphatidylinositol 3-phosphate 5-kinase (PIKfyve
), and two pore channel subtype 2 (TPC2 ) are notable for their critical roles in SARS-CoV-2 infection(14,
15). Particularly, the virus utilizes TMPRSS2 and CatB/L proteolytic activity for priming the viral spike
protein, whereas ACE2 is the entry receptor for breaking into host cells(14, 15). A study has suggested
TMPRSS2 inhibition as a clinical target because the priming step is a key factor determining successful
entry into target cells(15). Most of the recent publications on the SARS-CoV-2 susceptibility so far focused
on ACE2 and TMPRSS2 as possible genetic determinants by analyzing their associations with sex hormons,
their gene expression in various tissues and cell lines, and interactions with spike protein or inhibitors at a
gene level(15-19).

To understand the genetic background of complex phenotypes in human populations, researchers commonly
assess correlations with allele frequency (AF)(QO’ 21) This approach has identified a correlation between
ancestral genetic composition and the CFR of COVID-1921). However, few have examined specific variants,
their frequencies and individual contributions to SARS-CoV-2 susceptibility. Some reports are also based
only on low-resolution intercontinental comparisons between Europeans and East Asians(2°22). Based on
these studies, not only doTMPRSS2 variants appear to have wide population-specific variation(20), but,
TMPRSS2 also has low mutation burden in certain populations, a characteristic that could partially explain
high TMPRSS2 gene expression. Consequently, the latter is associated with a poor outcome in COVID-19(29),
Moreover, we know little about the evolutionary history of SARS-CoV-2 susceptibility-associated variants,
including when they occurred or how their frequencies might have changed over time.

In this study, we investigated intercountry AF differences of TMPRSS2 variants, estimated variant effects on
TMPRSS2 protein structure stability, and linked them to the average of time-adjusted COVID-19 CFR (AT-
CFR). We propose that the structural deviation causes TMPRSS2 to be less stable, resulting in a reduced
overall infection rate that led to reduced CFR in East Asians. We collected and analyzed 221,498 genomes
from public databases(®*3-2%) and 2,262 whole genomes from the Korean Genome Project(%). We also traced
TMPRSS2 AF distribution in ancient populations by region and time period. We aimed to increase the
current understanding of the genetic variation underlying SARS-CoV-2 infections and explain the ethnic
differences in CFR.

Results
Correlation of nonsynonymous TMPRSS2 allele frequencies with COVID-19 AT-CFR

The AFs of two nonsynonymous TMPRSS2 variants (G8V, rs75603675; V197M, rs12329760) were signifi-
cantly correlated with COVID-19 AT-CFR (Spearman’s correlation p = 0.713, P = 0.00183 for G8V andp =
-0.464, P = 0.0157 for V197M, Fig. la and b). The results are based on AF data from 17 and 27 countries,
respectively (see Methods). However, the AFs of the two variants were not significantly correlated with
total COVID-19 cases per million individuals (V197M:P = 0.132, G8V: P = 0.165; Supplementary Fig. 1).
These two nonsynonymous variants were present among 20 TMPRSS2 exonic variants with global AF of
>1% from gnomAD(27). Thirteen of these were in 3> UTR and five were synonymous (Supplementary Fig.
2, Supplementary Data 1). G8V is located in a cytoplasmic domain with an undetermined 3D structure



(Supplementary Fig. 3). V197M is located in a stable beta-sheet of the scavenger receptor cysteine-rich
(SRCR) domain (Supplementary Fig. 3).
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Fig. 1. Correlation plots of COVID-19 average of time-adjusted case fatality rate (AT-CFR) with allele
frequencies of TMPRSS2variants. a) V197M (rs12329760) from 27 countries andb) G8V (rs75603675) from
17 countries. The size of dots indicates the proportion of people who are 70 or older in the countries. The cor-
relations were estimated by Spearman’s correlation test. Allelic odds ratios (ORs) (i.e., alternative/reference
allele counts) of the Y-axis country to the X-axis country are presented in c) for V197M and d) for G8V.
AFR: Africa, CA: Central Asia, EU: Europe, SEA: Southeast Asia, AMR: Americas, EA: East Asia, SA:
South Asia, and WA: West Asia. Full country names and allele frequencies per country are in Supplementary
Data 3.

Correlation between TMPRSS2 V197M allele frequency and COVID-19 AT-CFR

The AF of V197M was negatively correlated with COVID-19 AT-CFR (Spearman’s correlation coefficient,
p =-0.464, P = 0.0157) (Fig. 1a). The AF distribution pattern was consistent with previous reports, with
V197M AF being significantly lower in most Europeans than in East Asians(20) (Fig. la and ¢ Supplementary
Fig. 4a, Supplementary Data 2). In Chinese, Japanese, and Koreans, AF was 34.5%, 38.8%, and 36.8%,
respectively (Supplementary Data 3). Among Europeans, the Finnish were a surprising outlier, with 37.3%
AF (versus 19.9% in Italians, 17.8% in Spanish, and 22.6% in British) that corresponded to a low AT-CFR
(Fig. 1a). Finnish AF differed only from the Chinese population among East Asians (P = 3.61x1073,
Supplementary Fig. 4a, Supplementary Data 2). West Asians have AF that are similar to or lower than
Europeans (Turkey 17.1%, Israel 13.2%). Latin Americans in general exhibited the lowest AFs, ranging from
18.8% in Columbia to 6.5% in Peru (Supplementary Data 3). Peruvian AF differed from all other countries
except Mexico and Algeria (Supplementary Fig. 4a, Supplementary Data 2). We also found that V197TM
occurred in an extremely well-conserved position (phastConsl7way_primate: 0.958, Supplementary Data 4)



of the SRCR domain, suggesting that it is under purifying selection. Moreover, functional prediction tools
SIFT(?®) and PolyPhen2(®?) regarded the variant as “deleterious” and “probably damaging”, respectively
(Supplementary Data 4).

TMPRSS2 V197M variant in ancient genomes

The V197TM variant is absent in the great apes(30, 31) and in all sequenced archaic hominin genomes
(Denisovan, Neanderthal). However, Tianyuan man’s genotype showed that the variant was already present
in humans 40,000 years ago in East Asia (Supplementary Data 5, Supplementary Data 6). We also found
V197M in ancient genomes 17021 and 113180 from Mongolia, dated 5,211-5,000 BCE and 3,013-2,876 BCE,
respectively (Supplementary Data 7). Starting from the pre-Ice Age (34,000-26,000 years ago), the variant
was present in European inhabitants (37,250 BCE sample GoyetQ116-1 from Belgium(32)) and remained
ever since (Supplementary Data 7, Supplementary Fig. 5). Although small sample sizes precluded statistical
analysis, V197TM AF appeared to be higher in ancient East Asian populations (33.3%) than in ancient
Europeans (16.3%) (Supplementary Data 6, Supplementary Data 7, Supplementary Fig. 5).

Effect of V197M variant on TMPRSS2 protein structure

We used 3D protein models to investigate the effect of V197M on TMPRSS2. V197M increased energy score
more than wild type (Table 1), suggesting reduced stability. Two programs ({DFIRE(33), nDOPE(34)) were
used to measure the effect of V197M on the protein.

We used two homology modeling tools (Robetta(3>), I-TASSER(30)) (Fig. 2) and transmembrane serine
protease hepsin (PDB ID 1Z8G chain A)©37) as the template (Supplementary Fig. 6). The resultant model
contains both SRCR and nearby peptidase S1 domains of TMPRSS2 (Fig. 2) because the former was too small
for modeling. Despite only minor structural changes to the SRCR domain (Fig. 2), V197M had a consistently
destabilizing effect in TMPRSS2 (Table 1). A further indication of reduced stability in mutants was a
decrease in the favored region of the Ramachandran plot. Seven computational protein-stability prediction
tools confirmed the V197M variant as destabilizing (Supplementary Data 8).
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Fig. 2. TMPRSS2 protein structure of both wild type and mutant type (V197M), predicted with homology
modeling using hepsin (1Z8G) template from the PDB database.

Correlation between TMPRSS2 G8V variant AF and COVID-19 CFR

Unlike V197M, G8V was positively correlated with COVID-19 AT-CFR (Fig. 1b, Spearman’s correlation
coefficient, p = 0.713, P = 0.00183), indicating that it is a risk variant, rather than a protective one. Its
frequency distribution formed Asian and non-Asian clusters (Fig. 1d). G8V frequencies were significantly
higher in Europeans (Italians 41.6%, Spanish 31.1%, British 28.1%) than in East Asians (Chinese 9.4%,



Singaporeans 9.1%, South Koreans 1.0%, Japanese 1.4%) or Latin Americans (Mexico 12.9%, Peru 6.5%)
(Fig. 1d, Supplementary Fig. 4b, Supplementary Data 3, Supplementary Data 9). Koreans had the lowest
G8V AF in the whole dataset, differing significantly from all 16 other countries spanning eight different
regions (Fig. 1d). Nigerians had a variant frequency (36.0%) more similar to Europeans, while South Asian
frequency (Pakistan 22.8%, Bangladesh 22.7%) fell between European and East Asian values (Supplementary
Data 3). G8V occurred in a far less conserved region (phastConsl7way_primate: 0.002, Supplementary Data
4) than V197M, and neither SIFT nor PolyPhen2 recognized it as functionally damaging (Supplementary
Data 4). We also found G8V in both Denisovan and Neanderthal samples, but not in extant great apes
(Supplementary Data 5, Supplementary Data 6). For modern humans, the earliest G8V occurrence was in
a 45,000-year-old genome (Ust’Ishim) from Western Siberia®®®) (Supplementary Data 10).

Discussion

This study has limitations. First, we only used public genome databases and variant frequency data that
are not directly linked to COVID-19 patients and CFR. Furthermore, we could not completely normalize
AT-CFR with relevant covariates, such as lockdown measures, mask availability, medical care standards,
within-population or within-fatal-case age ratios, and SARS-CoV-2 test availability. However, we tested the
Spearman’s correlation between AT-CFR and thirteen socio-economic variables such as population density
and Gross Domestic Product (GDP) per capita in a pairwise manner and found that only the proportion of
the elderly (65 years and older) and the proportion of female smokers had significantly positive correlations
(Supplementary Fig. 7). Another limitation is the lack of variant frequency data on chromosome X, absent
from many public databases such as PGG.SNV, even though the X chromosome contains a key player,
ACE2 (14, 15). Notably, our protein structure modeling showed that TMPRSS2 and the template had a
low sequence identity (32.49%). However, we confirmed that the VI97M variant region of SRCR remained
extremely consistent (Supplementary Fig. 6). Furthermore, ancient G8V data relied on sparse whole-genome-
sequencing resources originating mainly from Europe and Russia, dated 2,000-1 BCE (Supplementary Data
9); these turned out too small to be conclusive. Finally, base-calling processing biases (e.g., haplodized
ancient genome sequences) are a distinct possibility.

A previous report has noted that Europeans have significantly lower V197M AF than East Asians, a pat-
tern speculated to be associated with COVID-19 CFR(20). Although we observed a significant correlation
between the AFs of these two TMPRSS2 variants and AT-CFR (Fig. 1), correlations between AFs and in-
fection cases (per million) were non-significant (Spearman’s correlation V197M: P = 0.132; G8V:P = 0.165)
(Supplementary Fig. 1). One likely explanation is that infection cases are a more complex parameter than
CFR. Factors such as high altitude had been reported to affect infection rate while not affecting CFR. in
COVID-19(39). Alternatively, CFR in infectious diseases reflects the importance of genetic factors more than
infection rate(40). One example could be a study that evaluated incidence and CFR in sixteen yellow fever
epidemics and found no significant differences between the infection rates of Caucasians and non-Caucasians
while CFR differed significantly. Moreover, the study was unable to explain the differences observed by
socioeconomic or demographic factors, or acquired immunity(41). To verify such trends in COVID-19, we
require further studies investigating genomes, infection, treatment, and CFR data of COVID-19 patients.

Our evaluation of protein structural stability predicted that V197M destabilizes TMPRSS2 (Table 1, Sup-
plementary Data 8). Unfortunately, we could not perform the same analysis on G8V because we lacked
a homology modeling template. Our evidence (evolutionary conservation, protein domains) is insufficient
to ascertain that G8V significantly affects TMPRSS2 protein structure and overall SARS-CoV-2 infection.
However, one report has indicated that G8V affects residue torsion angles(42). The resultant flexibility
reduction is more likely to affect TMPRSS2 interactions with ACE2 and the SARS-CoV-2 spike protein(42).
We suspect V197M and G8V variants to be related to the overall TMPRSS2 gene expression, however, we
could not validate it.

In line with previous reports, we suggest that V197M acts to indirectly compromise the binding affinity of
TMPRSS2 to SARS-CoV-2 spike protein and ACE235-37. This implies a protective role of the V197M variant
against SARS-CoV-2 infections, but neither we nor previous researchers(42-44) have uncovered any clear



evidence or explanation for causation. Interestingly, the change from valine to methionine has a Grantham
distance matrix value of only 22, the shortest distance from valine to any amino acid. Thus, V197M may
lie on a thin boundary of extreme conservation versus functional benefit that may have arisen through viral
invasion and polymorphisms in different ethnic groups that caused 3D structural deviation. We speculate
that East Asians have already experienced similar viral infections in the past, leading to natural selection
on V197M and G8V in TMPRSS2 . Since V197M could have a synergistic or antagonistic effect with G8V
and variants in other proteins, it perhaps accounts for only a fraction of resistance against SARS-CoV-2.
Nevertheless, our CFR and genetic AF correlation study suggests that East Asian ethnic groups may have
some genetic resistance that is reflected in the 3D structure of TMPRSS2 that negatively affects infection
efficiency and hence the CFR of COVID-19.

Methods
Variant selection and data collection

Autosomal nonsynonymous variants located in TMPRSS2 were extracted from Korea2K variome set (n
= 2,262) from the Korean Genome Project®9) | which turned out to contain 15 SNVs. Alternative AFs of
other populations were obtained from the PGG.SNV database (GRCh38) (n = 220,147)(23), Italian Genome
Reference Panel (IGRP1.0) (n = 926)(24), and Lithuanian high density SNP data (n = 425)(25). IGRP1.0
and Lithuanian genomes were lifted over to hg38 coordinates in Picard version 2.22.3(45), using LiftoverVcf
with default options. The combined dataset included 223,760 samples from 4 variome databases with whole-
genome sequencing, exome sequencing, or genotyping chip data (Supplementary Data 11). Allele counts
were merged based on country of sample origin. Populations were excluded if they could not be assigned to
any specific country, if fewer than 2,500 reported COVID-19 cases were present, or when CFR information
was unavailable. Nonsynonymous variants were included only if they were present in >10 countries and had
a global AF of >5%. The final dataset used to calculate AF and CFR correlations contained 69,168 samples
(from 27 countries) for TMPRSS2 V197M and 16,562 samples (from 17 countries) for TMPRSS2 G8V.

Correlation with average of T-CFR

We downloaded COVID-19 data set on May 21, 2020 from Our World in Data
(https://github.com/owid/covid-19-data/tree /master/public/data). We employed the equation from
Daneshkhah et. al(46), to calculated average of T-CFR (Equation 1).

Average of T — CFR = 27]:[:1 an X T —CFR,, a, = ¢,/ Ef\il ¢i(Equation 1)

Where N is the number of days which showed < 2,500 confirmed cases on each country, a, is a weight of
T-CFR on day n , T-CFR,, is T-CFR on day n ,c¢; is the number of confirmed cases at dayi .

Spearman’s correlation test was conducted between AF and the average of T-CFR in R version 3.5.1.
Variant annotation

Variants were annotated in VEP version 99.2(47) with dbNSFP version 3.0(48) to evaluate deleteriousness
and conservation. Additionally, phastCons scores were obtained for primates, mammals, and vertebrates to
determine interspecific conservation of significant variant sites.

TMPRSS2 protein structure modelling and variant effects on the protein structure

We built a TMPRSS2 model using hepsin (1Z8G) as the template structure. The model was selected using
PSI-BLAST sequence search(49), along with alignment from NCBI. Two sets of TMPRSS2 models were
generated using the Robetta web server(35) and I-TASSER(36): a wild-type TMPRSS2 model based on
178G and a V197M mutant model based on the wild-type one. Valine of residue 65 of 1Z8G was also
substituted with methionine to generate mutant type. Protein energies of wild-type and variant models
were compared in dDFIRE(33) and nDOPE(34) to determine structural stability (details in Supplementary
Method). dDFIRE(33) scores have been extracted from the protein structure based on the distance between



two atoms and the three angles involved in the dipole-dipole interaction. nDOPE(34) was used to measure
protein energy as a statistical potential dependent on the calculated atomic distance in the protein structure.

Ramachandran favorable regions were measured through MolProbity(50). The following tools were used to
predict variation in TMPRSS2 protein stability for both wild-type and mutant-type models: PoPMuSiC(51),
CUPSAT(52), I-Mutant3(53), DUET(54), mCSM(55), SDM(56), MuPro(57). Visualizations were created in
UCSF Chimera(58).

Ancient genome allele frequency analysis

Ancient genomes were downloaded from the David Reich Lab (https://reich.hms.harvard.edu/datasets; see
Supplementary Data 7, Supplementary Data 10). Additional ancient European data for V197M (rs12329760)
were obtained from the PGG.SNV database. Because the Reich Lab data did not cover G8V (rs75603675),
only sample data from PGG.SNV was used for this variant. Data format conversion was handled using
PLINK version 1.9(59). Presence of the two variants was verified and their frequencies calculated in different
ancient populations (see Supplementary Data 7, Supplementary Data 10, Supplementary Data 12). Temporal
variation in AF was visualized using the ggplot2 package in R.

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary
information files. For the Korea2K variome set, the allele counts of the two TMPRSS2variants are available
in supplementary data files. Detailed information about the Korea2K variome and request procedure can be
found athttp://koreangenome.org.
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Figure Legends

Fig. 1. Correlation plots of COVID-19 average of time-adjusted case fatality rate (AT-CFR) with allele
frequencies of TMPRSS2variants. a) V197M (rs12329760) from 27 countries andb) G8V (rs75603675) from
17 countries. Size of dots indicates the proportion of people who are 70 or older in the countries. The corre-
lations were estimated by Spearman’s correlation test. Allelic odds ratios (ORs) (i.e., alternative/reference
allele counts) of the Y-axis country to the X-axis country are presented in ¢) for V197M andd) for G8V.
AFR: Africa, CA: Central Asia, EU: Europe, SEA: Southeast Asia, AMR: Americas, EA: East Asia, SA:
South Asia, and WA: West Asia. Full country names and allele frequencies per country are in Supplementary
Data 3.

Fig. 2. TMPRSS2 protein structure of both wild type and mutant type (V197M), predicted with homology
modeling using hepsin (1Z8G) template from the PDB database.

Fig. S1. Correlation plots of total COVID-19 cases per population of one million with allele frequencies of
TMPRSS2variants: a) V197TM (rs12329760) from 27 countries andb) G8V (rs75603675) from 17 countries.
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AFR: Africa, CA: Central Asia, EU: Europe, SEA: Southeast Asia, AMR: American continents, EA: East
Asia, SA: South Asia, and WA: West Asia.

Fig. S2. Exonic variants of TMPRSS2 from gnomAD and Korea2K datasets with gnomAD global AF >
0.01.

Fig. S3 . Protein domain architecture of TMPRSS2. TM: transmembrane domain, LDLRA: LDL receptor
class A domain, SRCR: scavenger receptor cysteine-rich domain. IBS version 1.0 was used to visualize domain
architecture of TMPRSS2.

Fig. S4. Between-country differences in allele frequencies ofa) V197M and b) G8V. Red box, allele frequen-
cies of countries on the X and Y axes are significantly different (P< 0.05, Chi-squared test). White box, not
significant. Gray box, small sample size precluded statistical analysis.

Fig. S5 . Allele frequency of V197M variant in ancient genomes. Dashed lines denote allele frequencies in
present-day East Asians (red) and Europeans (blue), obtained from the gnomAD database. Allele frequencies
in Europeans separated into Finnish (upper line) and non-Finnish (lower line). Numbers on the bar refer to
sample size for the time frame on the X axis.

Fig. S6. Protein sequence alignment of SRCR and peptidase S1 domain from TMPRSS2 and hepsin. Darker
and lighter colors represent matched and non-matched amino acids, respectively. Red box indicates amino
acid position with the V197M variant.

Fig. S7. Correlations between average of T-CFR and factors in Our World in Data COVID-19 dataset. a)
government response stringency index, b) population density, ¢) median age of the population, d) share of
the population that is 65 years and older, e) share of the population that is 70 years and older, f) gross
domestic product at purchasing power parity,g) share of the population living in extreme poverty,h) death
rate from cardiovascular disease, i) diabetes prevalence, j) share of women who smoke, k) share of men
who smoke, 1) share of population with basic handwashing facilities on premises, and m) hospital beds per
100,000 people.

Table
Table 1. Effect of V197M variant on structural features

Ramachandran
Modeled Modeled Type of plot
structure structure structures dDFIRE nDOPE (Favored) (%)
Hepsin (1Z8G) Hepsin (1Z8G) WTd -822.28 -1.586 97.53
MT® -812.80 -1.439 96.76
Robetta® TMPRSS2(SRCR)*WT -183.43 -1.125 94.68
MT -176.48 -0.907 93.62
TMPRSS2 WT -730.79 -1.135 94.77
(SRCR+Peptidase
S1)°
MT -725.40 -1.062 93.90
I-TASSER® TMPRSS2(SRCR) WT -184.17 -0.909 91.67
MT -151.16 -0.156 86.17
TMPRSS2 WT -700.23 -0.704 92.44
(SRCR+Peptidase
S1)
MT -615.98 -0.129 86.05

2Homology modeling tools, "SRCR domain separated from modeled TMPRSS2 structure,"Modeled TM-
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PRSS2 structure, 4Wild type structure, °Mutant type structure with V197M variant
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