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Abstract

Several algorithms based on 12-lead ECG measurements have been proposed to identify right ventricular outflow tract (RVOT)

and left ventricular outflow tract (LVOT) locations from which ventricular tachycardia (VT) and frequent premature ventricular

complex (PVC) originated. However, a clinical-grade artificial intelligence algorithm is not available yet, which can automatically

analyze characteristics of 12-lead ECGs and predict RVOT to LVOT origins of VT and PVC. We randomly sampled training,

validation, and testing datasets from 420 patients who underwent successful catheter ablation (CA) to treat VT or PVCs,

containing (340, 80%), (38, 9%), and (42, 10%) patients, respectively. We iteratively trained an AI algorithm that was supplied

with 1,600,800 features extracted from 12-lead ECGs of the patients in the training cohort. The area under the curve (AUC)

of the receiver operating characteristic (ROC) curve was calculated from the internal validation dataset to choose an optimal

discretization cutoff threshold. After running on the testing dataset, the proposed approach attained the following performance

metrics and 95% CIs (confidence intervals), accuracy (ACC) of 97.62 (87.44 -99.99), weighted F1-score of 98.46 (90-100), AUC

of 98.99 (96.89-100), sensitivity (SE) of 96.97 (82.54-99.89), and specificity (SP) of 100 (62.97-100). The proposed multi-

stage diagnostic scheme attained clinical-grade precision of prediction for LVOT and RVOT locations of VT origin with fewer

applicability restrictions than prior studies.
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Abstract

Introduction

Several algorithms based on 12-lead ECG measurements have been proposed to identify right ventricular
outflow tract (RVOT) and left ventricular outflow tract (LVOT) locations from which ventricular tachycardia
(VT) and frequent premature ventricular complex (PVC) originated. However, a clinical-grade artificial
intelligence algorithm is not available yet, which can automatically analyze characteristics of 12-lead ECGs
and predict RVOT to LVOT origins of VT and PVC.

Methods

We randomly sampled training, validation, and testing datasets from 420 patients who underwent successful
catheter ablation (CA) to treat VT or PVCs, containing (340, 80%), (38, 9%), and (42, 10%) patients,
respectively. We iteratively trained an AI algorithm that was supplied with 1,600,800 features extracted
from 12-lead ECGs of the patients in the training cohort. The area under the curve (AUC) of the receiver
operating characteristic (ROC) curve was calculated from the internal validation dataset to choose an optimal
discretization cutoff threshold.

Results

After running on the testing dataset, the proposed approach attained the following performance metrics and
95% CIs (confidence intervals), accuracy (ACC) of 97.62 (87.44 -99.99), weighted F1-score of 98.46 (90-100),
AUC of 98.99 (96.89-100), sensitivity (SE) of 96.97 (82.54-99.89), and specificity (SP) of 100 (62.97-100).

Conclusions

The proposed multi-stage diagnostic scheme attained clinical-grade precision of prediction for LVOT and
RVOT locations of VT origin with fewer applicability restrictions than prior studies.
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. Keywords : Outflow Tract Ventricular Tachycardia, Premature Ventricular Complex, Catheter Ablation,
Electrocardiography, Classification, Artificial Intelligence Algorithm

Introduction

One population-based study1 of 1,139 older adults without any heart failure signs or systolic dysfunction
showed that premature ventricular complexes (PVCs) and ventricular tachycardia (VT) burden were signif-
icantly associated with an increased risk of adjusted decreased left ventricular ejection fraction (odds ratio,
1.13) and increased adjusted risk of incident heart failure (hazard ratio, 1.06) and death (hazard ratio, 1.04).
Catheter ablation (CA) is a typically considered treatment of VT patients with and without structural heart
disease when drugs are ineffective or have unacceptable side effects2. It has a class I indication for the
treatment of idiopathic outflow tract ventricular tachycardia (OTVT)3, 4. The OTVT stems from either the
right ventricular outflow tract (RVOT) 60-80% or the left ventricular outflow tract (LVOT) 5. An accurate
prediction of RVOT and LVOT origins of OTVT can optimize the CA strategy, reduce ablation duration,
and avoid operative complications. Previous studies 3, 6-23 have proposed several criteria or models to es-
timate RVOT and LVOT origins. However, these results have been limited by sample size, the scope of
studies, ECG measurement efficiency, and the generalizability of the models. In contrast, we developed an
optimal multi-stage scheme that automatically extracts features from standard 12-lead ECGs, incorporates
these features into an AI model to accurately predict RVOT and LVOT origins of VT or PVCs, and provides
multi-prospective analysis for important ECG features.

Methods

Study design.

The institutional review board of Ningbo First Hospital of Zhejiang University has approved this retrospective
study and granted the waiver of consent requirement. The study was conducted in accordance with the
Declaration of Helsinki.

From each patient’s entire ECG recorder, we selected one QRS complex during the sinus rhythm (SR) and
one QRS complex during the PVCs or VT to classify RVOT and LVOT, which means the AI model will
give two possible prediction outputs, either RVOT or LVOT. This study employed a training-validation-
testing design to assess algorithm performance. This study consists of four phases: 1) a feature extraction
phase where two feature extraction methods were studied and compared, including an automated ECG
feature extraction method and a method based on conventional QRS morphological ECG measurements; 2)
a training phase where the extreme gradient boosting tree classification model was fed by features generated
in feature extraction phase; 3) a validation phase to tune the model and find the optimal discretization
cutoff threshold that was applied in the testing phase; 4) a testing phase to evaluate, interpret and report
the model performance.

Patient selection.

We reviewed patients who underwent mapping and ablation for frequent PVCs or VT originated from either
LVOT or RVOT at the Ningbo First Hospital of Zhejiang University from March 2007 to September 2019.
The PVCs or VT burden above 10% of total test duration was required for study entry. A total of 420
patients with OTVT were included in this study. Origin sites of OTVT were confirmed by a successful CA,
which means the frequent PVCs and VT (happened above 5% of total test duration) did not occur in the
first six-month follow-up after CA.

Classification of anatomic sites.

The anatomical structure of RVOT and LVOT was depicted in Figure 1 , and the demographic data of
anatomic sites were listed in Supplementary material. This study only focuses on the prediction of RVOT
and LVOT rather than the subsites (shown in Figure 1 ) under RVOT and LVOT. The effective ablation
sites of RVOT and LVOT confirmed by ablation provided evidence to create RVOT and LVOT labels for AI
model learning.

3
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. Mapping and ablation procedure.

Antiarrhythmic drugs were stopped for at least five half-lives before the inception of the ablation procedure.
A 4.0-mm 7F non-irrigated ablation catheter (Navistar; Biosense Webster, Diamond Bar, CA) was initially
placed in the RVOT for mapping. Both fluoroscopy and electroanatomic mapping systems (CARTO, Biosense
Webster, Diamond Bar, CA, USA or NavX Velocity, St. Jude Medical, St. Paul, MN, USA) were used to
localize the anatomic position of the ablation catheter within the outflow tract. Figures 2 and 3 respectively
present the activation, fluoroscopy, and 3-dimensional mapping example for a case that has the origin site in
LCC-RCC commissure of LVOT. Using point by point mapping, anatomic aggregated maps were created.
Activation mapping was performed in all patients during VT and PVCs. Pace mapping was also performed,
with the lowest pacing output (2 to 20 mA) and pulse width (0.5 to 10 ms), to capture the ventricular
myocardium at the site of the earliest activation. If suitable ablation sites for the RVOT VT were not
located or ablation failed to abolish the arrhythmia, extended mapping to the LVOT site was deployed via
a retrograde aortic approach. After target sites were located, radiofrequency energy was delivered up to
maximum power of 50 W and a maximum electrode-tissue interface temperature of 55 °C. If the VT or
PVCs disappeared or the frequency of arrhythmias diminished after the first 30s of ablation, the energy was
delivered continuously from the 60s to 180s. Ablation success was defined as the absence of spontaneous or
induced VT or PVCs at 30 min after the last energy delivery and confirmed by continuous cardiac telemetry
in the subsequent 24 hours of inpatient care.

ECG measurement protocol.

The standard 12-lead ECGs during the whole ablation procedure were collected at a sampling rate of 2,000
Hz. The coif5 Wavelets and SURE-based threshold were implemented by MATLAB for noise reduction. The
ECG measurement protocol and two feature extraction methods were fully illustrated in Supplementary
material section C.

We applied the following measurements and transformation protocol to automatically extract features and
feed them into the AI model. The R-wave peak time points of PVC and SR heartbeat in the lead V6 were
reference lines since they are easy to be identified in most conditions. At the first step, for one SR heartbeat,
430 data points (0.22 seconds) were truncated before and after the reference line that is in the middle, and
670 data points (0.34 seconds) before and after the reference line were cut for one PVC. The above lengths of
430 and 670 were the means of QRS complex duration plus four times the standard deviation. Secondly, for
SR heartbeat and PVC at every lead, we selected eight peaks and valleys (local maximums or minimums)
closest to the reference line (shown in Figure 4 Section A ). For the cases that do not have eight peaks
and valleys around the reference line, the zero-padding method was applied. The numerical measurements
(shown in Figure 4 section B ) of each peak and valley included location, prominence, distance from peak
or valley location to left prominence boundary, distance from peak or valley location to right prominence
boundary, width at half of the prominence, distance from left prominence boundary to right prominence
boundary, amplitude, contour height, and a logic variable to present peak or valley. We transformed the above
measurements to create features that can reveal the vital ECG morphological information. Finally, 1,600,800
features were obtained, and the manifest of them can be found in Supplementary material section C.2. The
estimated margin error within 95% CI of each numerical measurement was presented in Supplementary
material section C.2 Table 7.

Furthermore, we also studied the conventional QRS morphological ECG measurement method in this work.
During the clinical arrhythmia, the following measurements (presented in Supplementary material section
C.3 Figure 1) were obtained: 1) amplitude of Q-, R-, and S-waves; 2) duration of Q-, R-, and S-waves as
well as QRS complex; 3) R/S amplitude ratio 6, 7, transitional zone 8, 9, V2 transition ratio 12, transitional
zone index 13, 21, the R-wave deflection interval14, the V2S/V3R index15, R-wave duration index24 and
R/S amplitude index24. All measurements above were used to compare our approach against methods from
12 prior studies6, 11-21. The total number of features generated by this method is 155,784, and the entire
definition of features can be found in Supplementary material section C.3. The estimated margin errors
within 95% CI of each numerical measurement were listed in the Supplementary material section C.3 Table
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. 9.

Statistical analysis.

For the continuous variables of age and ECG measurements, we calculated the mean and standard deviation.
For all count variables, total sample size, number of males, number of subjects with frequent PVC, sustained
VT, and sub-locations under RVOT or LVOT, we calculated frequency counts and percentages. One-sample
test for proportions, two-sample t-test, two-sample test for proportions, and Fisher’s exact test were adopted
to test the difference of the sample numbers, average ages, genders, and the number of frequent PVC or
sustained VT between RVOT and LVOT groups. A two-sample t-test was also used to test equal means
of ECG measurements between RVOT and LVOT. Statistical optimization of the gradient boosting tree
model was done through iterative training using the XGBoost package. The following measures of diagnostic
performance were formally analyzed, including the AUC of ROC curve, ACC, SE, SP, and the F1-Score. A
two-sided 95% CI summarizes the sample variability in the estimates. The CI for the AUC was estimated
using the Sun and Su optimization of the Delong method implemented in the pROC package. In contrast,
CIs for F1-Score, sensitivity, and specificity were obtained by the bootstrap method with 20,000 replications.
All analyses were done by R version 3.5.3.

Results

We analyzed data from 420 patients who underwent catheter ablation of OTVT at the Ningbo First Hospital
of Zhejiang University from March 2007 to September 2019. After the CA procedure, 2 (0.5%) patients
developed slight ecchymosis. A total of 5 (1.2%) patients were excluded from this study because of the
reoccurrence of frequent PVCs or VT (happened above 5% of total test duration) in the first six-month
follow-up.

Patient demographic and clinical characteristics data for the RVOT and LVOT groups were shown in Table
1 . We compared the distributions of these background characteristics in the RVOT and LVOT groups and
listed the associated p-values in the last column. The proportions of RVOT (78%) and LVOT (22%) cases
were significantly different (p-value < 0.001). The average ages of subjects with RVOT and LVOT were not
significantly different (p-value of 0.92). Proportions of males to females in LVOT and RVOT groups were
significantly different (p-value < 0.001). Proportions of subjects with frequent PVC (and sustained VT) in
LVOT and RVOT groups were not significantly different (p-values: 0.87 and 0.26, respectively). The RVOT
cohort consisted of 20.95% left cusp, 17.62% posterior septal, 14.29% anterior septal, 10% anterior cusp,
7.86% free wall, and 7.14% right cusp. The LVOT cohort consisted of 10.71% left coronary cusp, 5.71%
aortomitral continuity, 2.62% left coronary cusp and right coronary cusp ommisure, 1.67% right coronary
cusp, and 1.43% summit.

The patients were assigned to training, validation, and testing cohort, consisting of 340 (81%), 38 (9%),
and 42 (10%) patients, respectively, using random proportional allocation (demographic summary shown in
Supplementary material section A Table 2). For a fair comparison, the AI model fed by different features
from two feature extraction methods was trained and validated on the same training, validation, and testing
cohorts.

Using 1,600,800 automatically generated ECG features as AI model input, with a 95% CI, the proposed
approach achieved an ACC of 97.62 (87.44-99.99), F1-Score of 98.46 (90-100), prediction of RVOT origins
with SE of 96.97 (82.54-99.89), SP of 100 (62.97-100) (shown in Table 2 ), respectively, and AUC of 98.99
(96.89-100) (presented in Figure 5 ). Among 1,600,800 automatically generated ECG features, we found
a total of 1,352 critical ECG criteria with non-zero Shapley additive explanations (SHAP) values, showing
the importance of their contributions to RVOT and LVOT prediction. The detailed interpretation of SHAP
value was introduced in Supplementary material section D.2. We chose and analyzed the top three important
features (shown inFigure 6 ) that have significant classification capability: 1) the ratio between the location
of the 5th peak or valley at SR beat V1 lead and the right boundary of the 5th peak or valley at V1 lead of
PVC; 2) the ratio between the prominence of the 5th peak or valley at V1 lead of PVC and the prominence
of the 5th peak or valley at V3 lead of PVC; 3) The difference between the distance of the 5th peak or valley

5



P
os

te
d

on
A

u
th

or
ea

14
D

ec
20

20
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

33
19

13
.3

29
28

78
3/

v
2

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. to the left boundary at V1 lead of PVC and the distance of the 5th peak or valley to the left boundary at
V1 lead of SR beat.

Training the AI model by 155,784 features extracted from conventional QRS morphological ECG measu-
rements, with a 95% CI, the proposed method attained an ACC of 92.86 (80.35-98.85), F1-score of 95.38
(86.62-98.86), prediction of RVOT origins with SE of 93.94 (78.64-98.99), SP of 88.89 (50.86-99.45) (shown
in Table 2 ) and AUC of 95.62 (89.78-100) (presented in Figure 5 ). Among 155,784 features, the top three
important features (shown in Supplementary material section D Figure 2) that showed significant classifi-
cation capacity are: 1) the ratio between R-wave amplitude based on the zero isoelectric baselines at lead
III PVC and the R-wave amplitude based on the offset of S-wave at V1 lead PVC; 2) the ratio between
the R-wave amplitude based on Q-wave onset at V2 lead SR beat and the R-wave amplitude based on zero
isoelectric baseline at V3 lead PVC; 3) the ratio between the R-wave amplitude based on zero isoelectric ba-
seline at aVL lead SR beat and the R-wave amplitude based on S-wave offset at V1 lead PVC. The statistical
summary of conventional QRS morphological measurements for lead V1 to V6 is listed in Supplementary
material section A Table 3.

Finally, the average performance of eight cardiologists who determined RVOT and LVOT using the same
ECG samples in this study was presented inTable 2 . The classification confusion matrix for these three
methods showed correct and incorrect frequency counts in Supplementary material section A. We compared
our approach against methods from 12 prior studies 6, 11-21 using samples in this work. Accuracy, F1-Score,
sensitivity, specificity, positive predictive value, negative predictive value, and AUC were used to compare
performance and shown in Supplementary material section A. The validation datasets were not only used to
find the optimal discretization cutoff threshold but also employed to validate the performance consistency.
We used a 10-fold cross-validation setting to assess the performance of our AI approach and reported the
average accuracy scores and 95% CIs in the Supplementary material.

Discussion

We designed and implemented a high-accuracy algorithm for LVOT and RVOT origins of OTVT classificati-
on, using 1,600,800 ECG measurements automatically extracted from 12-lead ECGs. The comparison among
two feature extraction methods and cardiologists (shown in Table 2 ) shows that the performance of the AI
model with the automated feature extraction method is superior. The comparison of our approach against
methods from 12 prior studies 6, 11-21 shows that our algorithm achieved the highest performance scores.
Additionally, we evaluated the general classification capability of each criterion proposed by previous studies
using the database in this study. Not surprisingly, we observed significant differences between previously
reported performances and the reproduced results of these methods since most of the prior studies used the
univariate analysis to make predictions.

Furthermore, the excellent performance of the AI algorithm demands an enormous volume of data and
features. It is an extremely time- and cost-consuming task to generate such an amount of features by the
conventional ECG QRS morphological measurements introduced in prior studies since these measurements
are manually obtained. Thus, we did not set up any pre-assumptions about ECG criteria before training the
AI algorithm and intended to exhaust all possible relationships among morphological measures of Q-, R-
and S-waves as well as the entire QRS complex. We designed and implemented an automated ECG feature
extraction method that can generate 1,600,800 ECG signal characteristics. Not only these features contained
a considerable amount of information the classical statistics from 12 prior studies 6, 11-21, but also they
captured morphological measures not considered by previous studies, such as rsR’ waves and rsr’s’ waves.
However, one may concern that such a feature extraction method will include the P-wave and T-wave within
SR beats and retrograde P-waves within PVCs. The AI model captures and analyzes a large amount of
information from every beat but filters out all unimportant features based on their classification accuracy
contribution. As we can see from the top three important features (shown in Figure 6 ) selected by the AI
model, none of the features that presented waves mentioned above played a role in the prediction.

Moreover, before the AI model is safely applied to practice, the unambiguous interoperation is necessary

6
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. for cardiologists to gear this advanced tool, such as explaining what crucial criteria are and why they play
vital roles. For instance, the AI model showed that the smaller the magnitude of the first important feature
(shown in Figure 6 C.1 ), the higher possibility of LVOT origin OTVT. The first important feature is the
ratio of the location of the 5th peak or valley at V1 lead SR beat and the right boundary of the 5th peak
or valley at V1 lead of PVC. In our feature extraction system, the 5th peak or valley at V1 lead of PVC is
an S-wave in most cases. Therefore, such interpretation makes the AI decision process is not a black box
anymore.

Last but not least, the AI model proposed in this study can be immediately and effortlessly deployed to EP
labs. The pre-trained model, source code, and data were available online to be found in the Data Availability
section. The model inputs are only two R-wave peak points, one for PVC and one for SR beat, and they
can be easily acquired from 12-lead standard ECG data. The analysis of one patient will take less than a
second provided every step of measurement, and computation is automatically done by the model and the
preprocessing approach. The precise prediction of origins can significantly reduce the CA duration and will
reduce the risk of complications.

Study limitations.

Since the dataset did not produce enough well-labeled data to feed a machine learning model, the algorithm
currently only predicts LVOT and RVOT, rather than sub-sites of them. Although this study includes
patients with comprehensive anatomy sites under RVOT and LVOT, the performance of the method could
improve in the presence of more cases of RCC and summit under LVOT. Moreover, some conditions such
as cardiomyopathies, reentrant VT coronary heart disease, prior structural and congenital abnormalities are
underrepresented or absent from the study. Thus, the algorithm potentially has a limitation if applied in
such scenarios.

Conclusions

Considering the performance of prediction, the capacity of extracting vital information from 12-lead ECG,
and the robustness of application, our results provided the promising and reliable decision support to guide
a successful CA treatment of ventricular arrhythmia by AI technology.

Supplementary material

Supplementary material is available online.

Data availability

The data processing and usage method was introduced by an open-access article25. The complete
data, analytical methods, pre-trained AI model, and source code are available in Figshare, at htt-
ps://doi.org/10.6084/m9.figshare.c.4668086.v2
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Figure Legends

Figure 1: [Anatomic Structure of LVOT and RVOT. LCC = left coronary cusp; RCC = right coronary
cusp; NCC =non-coronary cusp; AMC = aortomitral continuity; AC = anterior cusp; LC = left cusp; RC
= right cusp; MV= mitral valve; TV = tricuspid valve.]
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.

Figure 2: [Activation map and fluoroscopic map for VA originating from LCC-RCC commissure
in LVOT. (a) The earliest bipolar and unipolar activation time (–30 ms) were presented here. (b) Right
anterior oblique and left anterior oblique fluoroscopic views showed an ablation catheter in in the LVOT.
Ablation in the LVOT (LCC-RCC commissure) eliminated the PVC within 3 seconds. ]
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.

Figure 3: [3D map for VA originating from LCC-RCC commissure in LVOT. The three-
dimensional anatomic representation of the RV endocardium, LV endocardium, and venous system with
the ablation catheter positioned at the AIV.]
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.

Figure 4: [Description of Automated ECG Feature Extraction Method. The proposed feature
extraction method automatically finds peaks presented by P# and valleys presented by V# in (A) through
430 data points of one SR beat in 12 leads. Section (B) presents the numerical measurements that captured
essential information of a peak, including location =sample points at P3, prominence=distance from P2 to
P3, distance from peak or valley location to left prominence boundary=distance from P1 to P3, distance
from peak or valley location to right prominence boundary=distance from P3 to P4, width at half of the
prominence= the length of green line, distance from left prominence boundary to right prominence bound-
ary=distance from P1 to P4, amplitude=distance from P2 to zero baseline, contour height = prominence -
amplitude. X-axis presents sampling data points, and Y-axis presents voltage.]

Figure 5: [Receiver-Operating Characteristic Curve Generated by the Optimal AI Model

12
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. Supplied with Two Feature Extraction Methods.The CI for the AUC was estimated using the Sun
and Su optimization of the Delong method. Sensitivity and specificity to RVOT prediction are indicated for
different thresholds.]

Figure 6: [The Analysis of Top 3 Significant ECG Measurements Found by AI Model with
Automated Feature Extraction Method. The univariate analysis (A) shows that feature 1 (A.1) and
feature 2 (A.2) have significant capability to separate RVOT and LVOT. The bivariate analysis (B) indicates
the classification ability of one-one interaction of the top 3 significant features. In the multivariate analysis
(C), the smaller feature 1 (C.1), feature 1 (C.2), and feature 3 (C.3) will generate a higher probability of
LVOT, but the magnitude of influence varies across features. The color in (C) represents the feature value
(red high, blue low).]

13



P
os

te
d

on
A

u
th

or
ea

14
D

ec
20

20
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

33
19

13
.3

29
28

78
3/

v
2

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Table 1: [Summary Statistics of Demographic Data andClinical Characteristics of All Patients.]
11LVOT = left ventricular outflow tract; RVOT = right ventricular outflow tract; PVC = premature ven-
tricular complex; VT = ventricular tachycardia.

All RVOT LVOT P-Value

Patients, n (%) Patients, n (%) 420 327(78) 93(22) <0.0001
Age, Mean ± SD, year Age, Mean ± SD, year 47.1±12.3 47.5±13.4 45.7±15.4 0.92
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. All RVOT LVOT P-Value

Male, n (%) Male, n (%) 134(32) 86(26) 48(52) <0.0001
Clinical arrhythmia Frequent PVC, n (%) 402(96) 315(96) 87(94) 0.8665

Sustained VT, n (%) 18(4) 12(4) 6(6) 0.2588
Training Cohort Training Cohort 340 (81) 264 (63) 76 (18) NA
Validation Cohort Validation Cohort 38 (9) 29 (7) 9 (2) NA
Testing Cohort Testing Cohort 42 (10) 33 (8) 9 (2) NA

Table 2: [The Classification Performance Comparison with 95% CI.] 11F1-Score =2 * Precision *
Recall / (Precision + Recall); SE = Sensitivity; SP = Spcificity; ACC = accurancy; CI = confidence interval.

AUC SE SP F1-Score ACC

Automated ECG
Feature
Extraction

98.99%
(96.89-100)

96.97%
(82.54-99.89)

100% (62.97-100) 98.46% (90-100) 97.62%
(87.44-99.99)

Conventional
QRS
morphological
Feature
Extraction

95.62%
(89.78-100)

93.94%
(78.64-98.99)

88.89%
(50.86-99.45)

95.38%
(86.62-98.86)

92.86%
(80.35-98.85)

Cardiologists NA 97.86% 81.72% 96.39% 94.29%
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