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Abstract

Aim: In theory, long-distance dispersal (LDD) outside a species’ range contributes to genetic divergence. However, previous
studies have not discriminated this process from vicariant speciation in migratory bird species. We conducted an integrative
phylogeographic approach to test the LDD hypothesis, which predicts that a Japanese migratory bird subspecies diverged
from a population in the coastal region of the East China Sea (CRECS) via LDD over the East China Sea (ECS). Location:
East Asia Taxon: Brown Shrike (Lanius cristatus) Methods: Both a haplotype network and a multi-locus gene network of
its three subspecies were reconstructed to examine from which continental population the Japanese subspecies diverged. A
species distribution model (SDM) for the Japanese subspecies was constructed using bioclimatic variables under the maximum
entropy algorithm. It was projected to the climate of the last glacial maximum (LGM) to infer the candidate source area of
colonisation. A migratory route of the Japanese subspecies, which possibly reflects a candidate past colonisation route, was
tracked by light-level geolocators. Results: Molecular phylogenetic networks suggest that the Japanese subspecies diverged
from a population in the CRECS. The SDM inferred that the emerged continental shelf of the ECS and the present CRECS
were suitable breeding areas for the Japanese subspecies during the LGM. A major migratory route for the Japanese subspecies
was inferred between the CRECS and the Japanese archipelago across the ECS. Main conclusions: Our integrative approach
supported the LDD hypothesis for divergence of the Japanese subspecies of the Brown Shrike. Shrinkage and expansion of the
ECS may have been responsible for successful colonisation and isolation of the new population. Vicariance was inferred for
divergence of the subspecies in the northeast Asian continent from the Japanese population. Our framework provides a new
phylogeographic scenario in this region, and discriminating LDD and vicariance models should improve our understanding of
the phylogeographic histories of migratory species.
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vi. Abstract and keywords:

Aim : In theory, long-distance dispersal (LDD) outside a species’ range contributes to genetic divergence.
However, previous studies have not discriminated this process from vicariant speciation in migratory bird
species. We conducted an integrative phylogeographic approach to test the LDD hypothesis, which predicts
that a Japanese migratory bird subspecies diverged from a population in the coastal region of the East China
Sea (CRECS) via LDD over the East China Sea (ECS).

Location : East Asia

Taxon : Brown Shrike (Lanius cristatus )

Methods : Both a haplotype network and a multi-locus gene network of its three subspecies were re-
constructed to examine from which continental population the Japanese subspecies diverged. A species
distribution model (SDM) for the Japanese subspecies was constructed using bioclimatic variables under the
maximum entropy algorithm. It was projected to the climate of the last glacial maximum (LGM) to infer the
candidate source area of colonisation. A migratory route of the Japanese subspecies, which possibly reflects
a candidate past colonisation route, was tracked by light-level geolocators.

Results : Molecular phylogenetic networks suggest that the Japanese subspecies diverged from a population
in the CRECS. The SDM inferred that the emerged continental shelf of the ECS and the present CRECS
were suitable breeding areas for the Japanese subspecies during the LGM. A major migratory route for the
Japanese subspecies was inferred between the CRECS and the Japanese archipelago across the ECS.
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Main conclusions : Our integrative approach supported the LDD hypothesis for divergence of the Japanese
subspecies of the Brown Shrike. Shrinkage and expansion of the ECS may have been responsible for successful
colonisation and isolation of the new population. Vicariance was inferred for divergence of the subspecies in
the northeast Asian continent from the Japanese population. Our framework provides a new phylogeographic
scenario in this region, and discriminating LDD and vicariance models should improve our understanding of
the phylogeographic histories of migratory species.

Keywords: Light-level geolocator, long-distance dispersal, migratory route, phylogeography, species distri-
bution modelling, the Brown Shrike, the Japanese archipelago, vicariance

vii. Main text

Introduction:

High dispersal propensities due to animal migratory behaviour, and how they contribute to speciation, is
an infrequently studied area of biogeography (Greenberg & Marra, 2005; Winger, Auteri, Pegan, & Weeks,
2019). High dispersal ability often leads to long-distance dispersal (LDD) well outside a species’ known range.
This phenomenon is called vagrancy and derives mostly from migratory populations that have, for instance
in the case of birds, drifted past or overshot their anticipated destinations, influenced by wind during their
seasonal migration (Newton, 2008). In theory, the frequency of vagrancy is a key determinant of its effect
on a population that receives vagrants (Rose & Polis, 2000). A high frequency of vagrancy may increase the
chance of successful establishment of an allopatric population (O’Connor, 1986; but see Lees & Gilroy, 2014),
whereas it may prevent isolation of the new population and hence preclude genetic divergence (Harvey et
al. 2019). Paleogeographical change is a candidate mechanism that allows divergence of a new population
since it changes the frequency of LDD over geological timescales (Weeks & Claramunt, 2014). For example,
vagrancy will decrease in frequency when a geographic barrier between the source and new populations
expands, because vagrancy decreases with increasing distance (Lees & Gilroy, 2014; O’Connor, 1986). Many
phylogeographic studies of migratory species, however, have anecdotally assumed that previously known
biogeographical barriers subdivided a formerly continuous population, i.e. vicariance (e.g. Weir & Schluter,
2004; Zink, Pavlova, Rohwer, & Drovetski, 2006). While vicariance has provided sufficient explanations for
many cases of genetic divergence of migratory species, an alternative scenario — that a paleogeographical
change facilitated LDD-driven divergence — has never be empirically tested. This might be because many
currently migratory bird species are continental and widespread (Somveille, Rodrigues, & Manica, 2018),
thus their phylogeographic processes of speciation could have hardly be inferred without the assumption of
vicariance (Albert, Schoolmaster, Tagliacollo, & Duke-Sylvester, 2017).

Owing to its insular nature, well-documented paleogeography, and relatively high endemism of breeding
migratory passerine lineages (Saitoh et al., 2010, 2015), the Japanese archipelago provides a suitable system
within which to identify a biogeographic mode of speciation of a migratory lineage. During glacial periods of
the Quaternary (approximately 2.7 million years ago to the present), due to lower sea levels, some parts of the
Japanese archipelago were connected to the continent via land bridges, while other parts remained separated
(Gallagher et al., 2015; Matsuzaki, Itaki, & Tada, 2019; Ohshima, 1990; Ota, 1998). Most terrestrial animal
species currently occurring in Japan colonized the archipelago from the East Asian continent during glacial
periods, and they subsequently diverged as Japanese endemics (McKay, 2012; Motokawa, 2017). Moreover,
source continental populations could be either on the coastal region of the East China Sea (CRECS) or
northeast Asian continent (the Korean Peninsula, northern China to Far East Russia), where different
species or populations occupy their breeding ranges (e.g. Dong et al., 2015; Päckert et al., 2011; Saitoh et
al., 2015; Zhao et al., 2017). This system, predicting from which regional population and along which route
the Japanese archipelago was colonized, will help indicate which of the two following hypotheses is more
plausible. 1) Colonisation across the open East China Sea (ECS) from the CRECS, implying LDD-driven
divergence; hereafter called the LDD Hypothesis (Figure 1a). 2) Colonisation by means of a range shift over a
land bridge from the Korean Peninsula to Japan (where there is currently the Tsushima Strait), implies that
the disappearance of the land bridge led to vicariant speciation; hereafter called the Vicariance Hypothesis
(Figure 1b).
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. We conducted integrative phylogeography by means of phylogenetic networks, a species distribution model
(SDM), and migration tracking using light-level geolocators, to infer the past colonisation of the Japanese
archipelago. Phylogenetic networks are informative for disentangling relationships of intraspecific genetic
variations both in haplotype and multi-locus data (Huson & Bryant, 2006; Mardulyn, 2012). SDMs can infer
suitable breeding distributions of species during the last glacial maximum (LGM), ca. 20,000 years ago (20
kya) from present species distributions (Elith et al., 2011). Any continental range that was also suitable
during a glacial period may be interpreted as a potential area from which colonisation occurred (Zink &
Gardner, 2017). An avian migratory route over a sea barrier between the Japanese archipelago and the Asian
continent may be interpreted as a candidate for the past colonisation route to the Japanese archipelago for
the following reasons. First, an existing migration route over a large geographic barrier may reflect LDD in
the past when the barrier was smaller or absent (Newton, 2008; Winger et al., 2019). Second, the migratory
route also partly retraces past shifts in the breeding range (Alvarado, Fuller, & Smith, 2014; Newton, 2008;
Ruegg, Hijmans, & Moritz, 2006; Winger et al., 2019). Therefore, both modes of past colonisation may be
reflected in the migratory route over a present sea barrier in this system.

Results of the three components can be differently predicted from the LDD and vicariance hypotheses in
this framework. (1) The LDD hypothesis predicts that a genetic split between the archipelagic population
and a population in the CRECS will be inferred by phylogenetic networks. For the archipelagic population,
CRECS is predicted to have been suitable during the glacial period by the SDM, and a migratory route
across the ECS between the Japanese archipelago and the CRECS is expected to have been likely (Figure
1a). (2) The vicariance hypothesis predicts that the archipelagic population genetically nests within, or is
not well divergent from, the population in the northeast Asian continent, because the land bridge between
the Korean Peninsula and the Japanese archipelago repeatedly formed and disappeared. For the archipelagic
population, either current northern China or the Korean Peninsula are predicted to have been suitable during
a glacial period by the SDM, and a migratory route is expected over the Korean Peninsula from and to the
Japanese archipelago (Figure 1b).

We studied a long-distance migratory passerine, the Brown Shrike (Lanius cristatus ), as our first attempt
to test these hypotheses given the breeding distribution of its three subspecies. L. c. superciliosu s breeds
in the Japanese archipelago, L. c. lucionensis breeds in the CRECS, and L. c. cristatus breeds in the
northeast Asian continent and most of Sakhalin Island (Figure 1c; Lefranc & Worfolk, 1997). With a dated
phylogenetic tree, we provided a phylogeographic scenario of the divergence of the Brown Shrike based on
the results obtained from our integrative approach. From this scenario, we discuss the paleogeographical
context in which LDD could have contributed to the genetic divergence of a migratory species.

Materials and Methods:

Study species and field procedure

To track the migratory routes of L. c. superciliosus , we captured 25 adult male shrikes in Hokkaido and
marked them with leg rings. We attached MK5740 geolocator tags (BioTrack) with leg-loop harness strings
(Rappole & Tipton, 1991). We ensured that the total mass of the system (< 1.1 g) did not exceed 5% of the
birds’ mass (Bridge et al., 2013). Eight birds (32%) returned to the breeding study site in 2018. Deployment
of tags did not significantly change the return rate when compared with a previous report by Takagi (2003)
(chi-square test for independence; χ2 = 0.11, df = 1, p = 0.74). Four males lost their tags before recapture.
One male marked with leg rings disappeared before breeding in 2018 and did not return to the site in 2019,
so it remained uncaptured (the presence of this bird’s geolocator was not confirmed).

Laboratory procedure and haplotyping

We collected tissue and blood samples from the Russian Far East forL. c. cristatus , from Hokkaido and
Nagano prefectures forL. c. superciliosus and from the Ryukyus for L. c. lucionensis . A total of 95
genetic samples was obtained. We also used database sequences of mitochondrial genes from GenBank and
BOLD (Ratnasingham & Hebert, 2007) for a coverage of its wider distribution range (Figure 1c). Since
the Ryukyus and the Philippines are occupied only by non-breeding (i.e. migrating and wintering) L.

4



P
os

te
d

on
A

u
th

or
ea

26
O

ct
20

20
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

37
31

83
.3

97
16

44
9/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. c. lucionensis (Lefranc & Worfolk, 1997; Severinghaus, 1996), they were used as representatives of L. c.
lucionensis . See Table S1.1 for details about samples and sequences.

Total genomic DNA was extracted from blood and tissue samples using DNeasy Blood & Tissue Kit (Qiagen).
Two mitochondrial genes (complete cytochrome b (cytb ), and partial cytochrome oxidase c subunit I (COI))
and two autosomal introns (myoglobin intron-2 (MB), transforming growth factor beta 2 intron-5 (TGFb2))
were amplified by polymerase chain reaction (PCR). The autosomal introns were sequenced only for a
subset of the samples (Table S1.1). Automated sequencing was run on either an ABI7130 or ABI3130
Genetic Analyzer (ABI). Sequences were aligned using ProSeq v. 3.5 software (Filatov, 2009). To determine
haplotypes of nuclear introns with multiple heterozygous sites, we used PHASE v. 2.1.1 (Stephens et al.,
2001; Stephens & Donnelly, 2003). Haplotypes inferred with support values below 0.5 were not used in the
following analyses. See Appendix S1 for details about primers, PCR reactions, and PHASE analysis.

Phylogenetic analyses

We constructed a median-joining (MJ) haplotype network (using NETWORK 5.0.0.3; Bandelt, Forster, &
Rohl, 1999) using partial COI (521 bp) from 108 samples. We also constructed a multi-locus network of
four loci (cytb , COI, MB and TGFb2) under the NeighborNet algorithm (using Splits Tree 4.14.4; Huson
& Bryant, 2006). We only included individuals with sequences of all four loci and calculated uncorrected
pairwise (p ) distances among sequences in each locus using MEGA v. 7 (Kumar, Stecher, & Tamura, 2016).
Then, we combined the fourp -distance matrices to produce a standardized genetic distance matrix among
individual samples using POFAD v. 1.03 (Joly & Bruneau, 2006), which was used as an input file for the
NeighborNet analysis.

We reconstructed mitochondrial phylogeny by using the two mitochondrial sequences. A dataset consisting
of unique haplotypes of concatenated sequences of cytb and COI was prepared for tree reconstruction by the
Bayesian inference (BI) method using BEAST v. 2.4.8 (Bouckaert et al., 2014). In the BEAST analysis, two
genes were independently assigned to different partitions with the best substitution models determined by
the lowest Bayesian Information Criterion on MEGA v. 7; HKY + G was selected for each gene (α = 0.10 for
cytb and 0.19 for COI). Application of the standard avian clock rate for cytb , 0.0105/lineage/million years
was justified since shrikes are passerines (Nabholz, Lanfear, & Fuchs, 2016; Weir & Schluter, 2008). Markov
chain Monte Carlo (MCMC) sampling proceeded for 50 million states with 100 thousand pre-burn-in chains.
Convergence for each parameter was checked through Tracer v. 1.7.1 software (Rambaut, Drummond, Xie,
Baele, & Suchard, 2018). We followed Aoki et al. (2018) for other settings.

Species distribution modelling

We modelled the breeding range of L. c. superciliosus and projected it into the LGM. Data on occurrence
in Japan were obtained from a summary of breeding localities based on the National Surveys conducted by
the Ministry of Environment of Japan and literature (M Kitazawa and his colleagues (in prep.) hereafter
referred to as ‘review data’). Additionally, on 12 May 2019 we downloaded data from Global Biodiversity In-
formation Facility (GBIF; https://www.gbif.org/, http://doi.org/10.15468/dl.igj5uw). A polygon bounding
the presumed distribution of L. c. superciliosus according to Lefranc & Worfolk (1997) was used to clip the
data. Records were limited only to the breeding season (May to August) to avoid integration of migrating
birds. After a few quality-checking processes, final coordinates were thinned to include only one occurrence
per 20 km square covering the Japanese archipelago (Figure S1.1).

We constructed a model with the final coordinate data. Our purpose is to infer the continental area that
might have been suitable for L. c. superciliosus as its breeding habitat during the LGM. Therefore, any
ecological differences between the current archipelago and the continental area need to be integrated in the
model (Elith et al., 2011). We clipped the environmental data to include the present distribution of the
Brown Shrike regardless of subspecies and this environmental data was defined as the modelling domain.
Of the available WorldClim data (version 1.4; Hijmans et al. 2005), only one variable from each pair of
correlated variables (|r| > 0.7) was used, resulting in seven variables: bio1, 2, 3, 5, 12, 14 and 15.
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. We used the R package ‘ENMeval’ v. 0.3.0 (Muscarella et al., 2014) to execute the maximum entropy
(MaxEnt) algorithm (Phillips, Anderson, & Schapire, 2006) across a range of several settings. Combina-
tions of three feature classes (linear, a combination of linear and quadratic, and hinge) and regularization
multipliers ranging from 0.5 to 3 (increments of 0.5) were tested. The ‘maxent.jar’ option was used as the
model algorithm. From the geographical modelling domain defined above, 10,000 background points were
sampled randomly. The ‘block’ method was used to partition data for cross-validation since it assesses model
transferability better than other methods (Muscarella et al., 2014). The hinge feature, with a regularization
multiplier of 1.5, was selected by the lowest AICc. The present distribution was predicted, and then it
was projected to the LGM environmental data using cloglog transformation. The LGM environmental data
were drawn by Hijmans et al. (2005) from three different climate models: the community climate system
model (CCSM, Gent et al., 2011), the model for interdisciplinary research on climate model (MIROC-ESM,
Hasumi & Emori, 2004) and the Max-Planck-Inst. Für Meteorologie climate model (MPI-ESM-P, Liepert
& Lo, 2013). Multivariate environmental similarity surface (MESS) was also calculated and extrapolation
was restricted to regions indicated by negative values from this analysis (See Appendix S1 for the detailed
procedures on the SDM analysis).

Migratory route analysis

Data retrieved from light-level geolocators were analysed in the R package ‘GeoLight’ version 2.0.0 (Lisovski
& Hahn, 2012) and ‘SGAT’ version 0.1.3 (Wotherspoon, Sumner, & Lisovski, 2015). We prepared an R script
by following the manual provided by Lisovski et al. (2019). We determined sunset and sunrise transitions for
specific dates by light intensity thresholds of 0.5. We incorporated a statistical modelling approach, called the
‘group model’ in a Bayesian framework implemented in ‘SGAT’. This model refines the estimated locations
by means of three components: the twilight model, a movement model, and spatial masks. The twilight
model incorporates the deviation between determined and actual twilight times in calibration periods of
each tag. We used twilight data of 26 days after geolocator deployment as the calibration period. We fitted
gamma distribution as an error distribution of detection of twilight. To define a movement model and spatial
masks separately for stationary and movement periods, the ChangeLight function in ‘GeoLight’ was applied
to discriminate between these periods from the twilight data. A probability threshold for discrimination was
set to 0.9. For the movement model, we set a flight speed prior with a gamma distribution for periods of
movement (shape = 13, rate = 0.3), determined allowing for the average air speed of 12.9 m/s for Lanius
collurio(Bruderer & Boldt, 2001). We conducted a sensitivity analysis for the gamma distribution, and we
found that priors did not greatly influence our interpretation of the results (Table S1.2). In the group model,
twilight times grouped for a stationary period are treated as records at a single location, thus no movement
model was defined. For a probability mask, birds must cross the sea between the Japanese archipelago and
the continent and must stopover on land. Therefore, a spatial mask for stationary periods was designed only
to include terrestrial land while both sea and land areas were allowed for movement periods. We slightly
modified our analysis for bird #V5604-025 because its geolocator stopped recording during the autumn
equinox period (see Appendix S1 for details).

We interpolated latitudinal estimations around the equinox periods by setting a ‘tol’ value between 0.08
and 0.1. As burn-in and fine tuning, we ran 120,000 chains with three iterations, and the final paths we-
re determined by the last 15,000 samples with three iterations. Regarding large uncertainties involved in
migration estimations by geolocators (Lisovski et al., 2019), we standardized the posterior probabilities of
location estimates on each raster cell, calculated their means among the three individuals, and we presented
them as a probability distribution in a region of interest where we expect birds to retrace the route of past
colonisation. We also inferred median paths of the three migratory tracks. Because birds spend more time
at stopover sites than at an instantaneous point along a migratory path, the former will be indicated with
relatively higher probabilities than the latter.

Results:

Phylogenetic analyses

6
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. An MJ haplotype network of COI was constructed using 108 sequences from the species’ range (Figure 2a).
This network inferred three genetic groups, which were supported as distinct clades in the BI phylogenetic
tree (Figure S1.2); the archipelagic, northern, and southern clades possibly reflected the three subspecies,
L. c. superciliosus ,L. c. cristatus , and L. c. lucionensis , respectively (Figure 1c). In this network, a split
between the southern and archipelagic clades was observed with nine mutational gaps. The northern clade
was genetically most distant from the southern clade and its major haplotype (H1) was separated only by
two mutational positions from one of the archipelagic major haplotypes. A similar structure was supported
by the multi-locus network including both the mitochondrial and nuclear loci. Two individuals appeared to
be intermediate between the southern and northern clusters (Figure 2b).

The southern clade was inferred as the basal lineage of the Brown Shrike by the BI tree (Figure S1.2).
The first split occurred between the southern and the archipelagic/northern clades, around 0.80 [0.55, 1.10]
million years ago (Mya), corresponding to the late Early to Middle Pleistocene while the northern and the
archipelagic clade diverged around 0.32 [0.20, 0.47] Mya, during the Middle Pleistocene (numbers within
square brackets indicate 95% highest posterior density).

Species distribution modelling

The present breeding distribution of L. c. superciliosus was modelled based on presence-only data and seven
non-correlated bioclimatic variables using the MaxEnt algorithm (Figure 3). Minimum training presence
omission rates for test localities were 1.9% and the model was evaluated to estimate suitable habitat without
problematic overfitting. The present prediction of suitable areas (Figure 3a) reflected the taxon’s known
breeding range according to Lefranc & Worfolk (1997).

Projection of the model to three climatic models of the LGM (Figure 3b-d) inferred that the coastal area of
the currently submerged ECS continental shelf, and an inner continental range corresponding to the present
CRECS, were predicted to be suitable breeding habitat forL. c. superciliosus . Suitability for these regions
was estimated to be relatively lower than in the Japanese archipelago, within which suitable breeding habitat
receded southwards but largely remained during the LGM. Most of the Ryukyu islands were not predicted
to be suitable for the species during the LGM, based on our model.

Migratory route analysis

Under the Bayesian framework, autumn and spring migration routes were inferred for three individual L.
c. superciliosus (Figure 4, Figure S1.4). Full annual data were retrieved from two tags, and similarity was
observed between their autumn and spring routes. One tag stopped recording on the continent due to cell
failure three months after deployment. Despite uncertainties involved with location estimates, higher mean
probabilities for migratory locations were observed among the three individuals both in the western part of
the Japanese archipelago and along the CRECS to northern Taiwan. The probability map and the median
migratory tracks suggest that birds migrated across the ECS between these two regions and did not detour
over the Korean Peninsula. The data from the two successfully retrieved geolocators revealed that both
shrikes had wintered in the Sunda Islands, specifically on Java and Flores.

Discussion:

The results from the three approaches supported the LDD hypothesis for genetic divergence of the Brown
Shrike in the Japanese archipelago (Figure 1a, 5a-b). A phylogenetic split between the southern and ar-
chipelagic clades was inferred in the gene networks (Figure 2), suitable glacial breeding habitat for L. c.
superciliosus was estimated to have existed around the CRECS by the SDM (Figure 3), and its current
migratory route was observed between the CRECS and the Japanese archipelago across the ECS (Figure 4).
Our results cannot reflect gradual expansion of a population via normal dispersal over a terrestrial landscape.
This is because, during the glacial periods around which the divergence was estimated, the gulf separating
the Japanese archipelago, the Korean Peninsula and the CRECS was relatively wide (Figure 5; Matsuzaki et
al., 2019; Ota, 1998), compared to the LGM to which we projected our SDM (Figure 3). LDD colonisation in
a stepping-stone manner along the Ryukyu islands from the CRECS or Taiwan may also be less likely. This
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. is supported by our results showing that most of the Ryukyu islands were predicted to have been unsuitable
during a glacial period (Figure 3b-d), and the migratory route was not inferred along them (Figure 4), unlike
the routes reported for other species (Shiu et al., 2006; Koike, Hijikata, Higuchi, 2016). Meanwhile, since
northern Taiwan was connected to the CRECS during this period (Figure 5), the inferred migration aligns
with our prediction. Therefore, within our hypothesis-testing framework, we imply that our results reflect
the LDD-driven divergence of a Japanese migratory subspecies across the ECS.

Hypothetical phylogeographic scenario of the Brown Shrike

The southern clade represented the basal lineage of the Brown Shrike (Figure S1.2), suggesting that the
ancestral breeding area of this species may have been located in the eastern part of the Asian continent,
including CRECS. Given the LDD hypothesis, the archipelagic population may have diverged from this
population around the late Early Pleistocene. The northern clade was found to be most distant from the
southern clade and genetically close to the archipelagic clade (Figure 2), possibly suggesting divergence
of the northern clade from the archipelagic population. Therefore, our interpretation of the results is that
divergence between the archipelago and the continent occurred at least twice. Such an interpretation can be
explained by the following hypothetical scenario that involves different divergence processes across different
geographic barriers.

The ECS has remained open during a glacial period throughout the species’ history. Meanwhile, the ECS
shrank and became less effective as a biogeographic barrier during glacial periods because the lower sea
level led to the emergence of the continental shelf in the late Early to Middle Pleistocene (Matsuzaki et al.,
2019; Ota, 1998). Paleopalynological records are in line with our SDM analysis; the emergent continental
shelf of the ECS was covered by grassland with sparse forest (Xu, Lu, Wu & Liu, 2010), which provides
suitable breeding habitat for the Brown Shrike (Lefranc & Worfolk, 1997). Present vagrancy records of many
migratory species in the Japanese archipelago during spring are probably due to overshooting (birds traveling
too far due to favourable winds and anticyclonic conditions; Newton, 2008) from the CRECS (Senzaki et
al., 2019). Increased proximity of the two landmasses, therefore, may have resulted in sufficient propagule
numbers (accidental migrants), which arrived in the Japanese archipelago from the CRECS (Figure 5a;
Gillespie et al., 2012; MacArthur & Wilson, 1967). During a subsequent interglacial period, the breadth of
the ECS expanded to almost 1,000 km (Figure 5b). This could have facilitated isolation of the archipelagic
shrike population from that in the CRECS since vagrancy to islands becomes increasingly rare as the distance
from the continental source area to the island increases (Lees & Gilroy, 2014). Thus, changes in the size of
a geographic barrier may have been responsible for LDD-driven divergence between these regions.

In contrast, the following description supports a hypothesis for the northern clade diverging from the ar-
chipelagic clade by vicariance. During the LGM, the present Korean peninsula and current northern China,
with the Japanese archipelago connected to the continent at the time, were predicted to be highly suitable
for L. c. cristatus (Figure S1.3). The Japanese archipelago was predicted to be more suitable than either
the east or southern continental coast (current China). This implies that part of the archipelagic population
colonized the Korean Peninsula and current northern China. Moreover, a major COI haplotype of the nor-
thern clade (H1) was shared among samples from a wide range of localities in Russia, and a star-like pattern
of this clade was found (Figure 2a). The structure of this haplotype network suggests a small population
during the glacial period that expanded its range, probably northwards, during the subsequent interglacial
period (Avise et al., 1987). Therefore, we suggest that a population may have colonised the Korean Peninsula
from the Japanese archipelago over a land bridge during a glacial period, and subsequently expanded its
range during an interglacial period (Figure 5c), as the reverse colonisation hypothesis predicts (Hikida 2003;
Nishiumi & Kim, 2015). Disappearance of the land bridge and northward expansion of the archipelagic and
northern clades could have resulted in the present vicariant distribution (Figure 5d; Aoki et al., 2018; Saitoh
et al., 2010). The genetically intermediate individuals between the most distant clade pair, shown in our
multi-locus network, possibly reflect their secondary contact with presumed introgression on the continent
(Lefranc & Worfolk, 1997). Although their past population dynamics and gene flow needs to be directly
estimated to refine our hypothetical scenario, our integrative approach provides, at least, a new scenario for
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. this region (Motokawa, 2017) and a better phylogeographic interpretation of the Brown Shrike.

Justification for the use of a migratory route as a proxy for the past colonisation pathway

Our data on the migratory route of the Brown Shrike across the ECS is far too limited for population-
level inference, thus the universality of the route for the entire L. c. superciliosus remains unclear. Careful
interpretation of our tracking data is required because individual variation in migratory routes is recognized
(Stanley, MacPherson, Fraser, McKinnon, & Stutchbury, 2012). Migratory routes inferred from the analysis
also included large uncertainties (Figure 4) because of the methodological limitations of light-level geolocators
(Lisovski et al., 2019). However, Lefranc & Worfolk (1997) stated that, based on direct observation during
migration, many L. c. superciliosus fly at least 700 km across the sea from Japan to the coast of China’s
Jiangsu Province or the Zhoushan Islands. Our geolocator data concur with their statement. Although further
deployment of geolocators is needed, their statement guarantees that the focal sea crossing route is at least
one of the major routes for the archipelagic population.

We have taken the recent view that idiosyncratic routes of obligate long-distance migratory species are highly
persistent traits throughout their evolutionary histories (Winger et al., 2019) in order to interpret part of
our tracking data as the route of past colonisation. However, the dominant view is to consider migratory
routes as highly labile traits that are easily subjected to natural selection (Pulido, 2007; Winger et al., 2019).
Thus, one could claim that the observed migratory route across the ECS is a result of optimization to the
present environmental conditions and does not reflect past colonisation (Alerstam, 2011; Berthold, Helbig,
Mohr, & Querner, 1992; Sutherland, 1998; Zink & Gardner, 2017).

For the following two reasons, we believe Winger et al.’s (2019) and our interpretation to be more plausible
than the counterview. First, our system does not include any region that experienced severe glaciation.
Previous studies have used species that inhabit regions previously covered by ice sheets during the LGM
(Haché et al., 2017; Milá, Smith, & Wayne, 2006; Ruegg et al., 2006; Sokolovskis et al., 2018). Reverting from
being migratory to becoming sedentary residents was probably a major response to glaciation, which was
inferred by SDM analyses (Zink & Gardner, 2017). This implied that migration needed to be labile throughout
a species’ evolutionary history and migratory routes should trace the post-LGM expansion to the present
breeding range. By contrast, we have shown that suitable breeding habitat for the archipelagic population
remained in the Japanese archipelago even during the LGM (Figure 3b-d). This implies that the focal
migratory route traces a distribution change before the LGM, supporting our view that idiosyncratic routes
over a large barrier have been conserved. Second, similarity between autumn and spring migration across the
ECS (Figure 4) may support the conservatism of the focal route. If a migratory route is optimized with the
present environment, different selection pressures upon passages in different seasons should independently
shape the route (Stanley et al., 2012; Tøttrup et al., 2012). Generally, loop migration, in which spring
and autumn migration routes are divergent, is thought to have evolved by retaining one ancestral route
retracing colonisation while deriving the other to adjust to current environmental conditions (Newton, 2008).
Wind is an important determinant (Alerstam 2001). This loop migration phenomenon has been shown for
a population of the Oriental Honey Buzzard Pernis ptilorhynchus breeding in Japan. Its autumn migration
involves crossing the ECS whereas its spring migration route detours around the Korean Peninsula to cross
a narrow sea channel to enter the Japanese archipelago (Nourani, Yamaguchi, Manda, & Higuchi, 2016). It
has been shown that a route over the Tsushima Strait was specifically suitable for spring wind conditions,
when wind directions and strengths over the ECS were unstable (Nourani et al., 2016; Yamaguchi, Arisawa,
Shimada, & Higuchi, 2012). These conditions would be unfavourable also for passerines such as shrikes
(Alerstam 2001; Tøttrup, Pederson, Onrubia, Klassen, & Thorup, 2017).

Possible LDD-driven divergence process of migratory species

Previous studies have illustrated a divergence scenario for migratory species that assumed vicariance in gene-
rating isolated populations (Hewitt, 2004; Weir & Schluter, 2004). While this scenario has provided suitable
explanations for many cases, some divergence events may not adequately be explained by it. For example,
the traditional vicariance scenario suggests that the 100 km wide strait between the Korean Peninsula and
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. the Japanese archipelago caused deep genetic divergence of archipelagic populations of mammals from the
continent (McKay, 2012; Sato, 2017). From an ecological perspective, such a small barrier would ineffectively
restrict the movement of a highly volant bird species (e.g. Gotelli & Graves, 1990), and establishment of a
new population from a more distant area as a consequence of LDD is likely to be its alternative explanati-
on. However, traditional frameworks based on the continental distribution for most migratory species have
probably hindered the opportunities to test it (Warren et al., 2015).

Our integrative approach using a Japanese migratory bird species provided a suitable system within which to
discriminate the mode of genetic divergence under a hypothesis testing framework. We successfully provided a
hypothetical scenario for how LDD and paleogeography have contributed to divergence of a migratory species.
We also showed that discriminating LDD from vicariance in our framework benefited a more comprehensive
understanding of diversification mechanisms of migratory species in this region. We believe that consideration
of LDD is also important for continental regions where most migratory species have diversified. Attention
has recently been paid to LDD and colonisation as an important phenomenon for distribution and speciation
of continental migratory species (Rushing, Dudash, Studds, & Marra, 2015; Winkler et al., 2017). Like the
ECS in our system, some geographic barriers (such as seas, deserts, and mountain ranges) in continental
areas have also changed size and shape during their geological history (Hewitt, 2004; Sun et al., 2018).
Some of the genetic divergence in migratory species over these barriers should be revisited taking the LDD
hypothesis into account (e.g. Reeves, Drovetski, & Fadeev, 2008). Further verification of the usability of our
integrative approach among several species will facilitate our understanding of the relative importance of
LDD to vicariance in the speciation of migratory birds and other animals.

ix. Figures embedded in the text:

Figure 1 Predicted colonisation route (black arrows) and expected results from integrative approaches
in (a) long distance dispersal (LDD) and (b) vicariance hypotheses in the Brown Shrike. Predicted gene
networks (upper left panes), migratory routes (lines with open circles), and suitable glacial regions (coloured
circles) under the two hypotheses are shown. Colours correspond to subspecies in Figure 1c. We predicted
that L. c. lucionensis represents the basal lineage of the Brown Shrike since close relatives of this species
are distributed around South-east Asia (Zhang et al., 2007). Because there are various possibilities for the
genetic position of L. c. cristatus in the LDD hypothesis, we did not present it in Figure 1a. Grey coloured
regions represent terrestrial areas during the Early to the Middle Pleistocene, and dotted lines indicate
the present coastlines. (c) DNA sampling localities. Circles and triangles represent samples from breeding
and non-breeding localities, respectively, and their colours indicate haplogroups inferred in the median-
joining haplotype network of COI (Figure 2a). Land colours indicate breeding ranges of presumed subspecies
following Worfolk (2000). The striped region indicates a presumed hybrid zone between subspecies.

Figure 2 (a) A median joining haplotype network constructed using 521 bp of the partial COI gene. Each
circle indicates a unique haplotype and its size is proportional to the number of samples. Colours of circles
indicate regions where samples were collected. One mutational gap was indicated by one bar, and a black
node indicates a median vector. Clusters analogous to clades found in the Bayesian inference tree (Figure
S1.2) are indicated. (b) The multi-locus network constructed for the Brown Shrike using the four loci under
the NeighborNet algorithm. Coloured shades correspond to clades to which their mitochondrial haplotypes
belong.

Figure 3 Estimated suitable distribution for L. c.superciliosus for different time periods; a constructed
model was projected to (a) the present climate, and (b-d) three different climate models for the Last Glacial
Maximum (LGM, 20 kya). Suitability for a 2.5 min grid increases from yellow, green to indigo, whereas the
grey area was determined as absence. The black area is that of strict extrapolation indicated by multivariate
environmental similarity surface analysis. Black lines indicate present coastlines. Note that the terrestrial
landmass expanded during the LGM due to the lowered sea level.

Figure 4 Migratory routes of three individual L. c. superciliosus around the East China Sea. Mean posterior
probabilities of location estimates of the three birds for each raster cell are indicated by colour gradation from
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. yellow (high) to indigo (low). Dots with line segments indicate median tracks of their inferred migratory routes
(white and red dots indicate migrating and stationary sites, respectively). Autumn and spring migrations
are indicated by solid and hatched lines, respectively.

Figure 5 Schematic presentation of the hypothetical phylogeographic scenario of divergence in the Brown
Shrike. (a) The ancestral population colonised the Japanese archipelago via LDD across the East China
Sea (ECS) in a glacial period around the late Early Pleistocene. (b) Increased isolation of the archipelagic
population through expansion of the ECS facilitated its divergence. Its migratory route was shaped to retrace
the colonisation route. (c) In a later glacial period, part of the archipelagic population colonised the Korean
Peninsula over a land bridge. (d) Northward expansions caused vicariance of both the archipelagic and
northern clades and resulted in their present geographical distributions. The hatched lines in each pane
indicate the predicted coastlines in the previous inter/glacial periods, following Ota (1998). Coloured circles
indicate ancestral populations of each lineage. Lines with open circles indicate the migration route and arrows
indicate movements of populations.

Figure 1

Figure 2
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Figure 3
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Figure 5
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x. Data availability statement:

Genetic data is available at DDBJ (accession numbers are listed in Table S1.1). R scripts and the raw data
for migratory route analyses and species distribution modelling are available at data repository (submitted
to DRYAD with DOI https://doi.org/10.5061/dryad.cfxpnvx2j).
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