PolyLog ${ }_{2}$ of InverseEllipticNomeExponentialGeneratingFunction

Benedict Irwin ${ }^{1}$

${ }^{1}$ University of Cambridge
November 2, 2020

1 Main

Let

$$
\begin{equation*}
G(q)=\mathrm{Li}_{2}(m(q)) \tag{1}
\end{equation*}
$$

be an exponential generating function, where Li_{2} is the polylogarithm of order 2 ,

$$
\begin{equation*}
\operatorname{Li}_{2}(z)=\sum_{k=1}^{\infty} \frac{z^{k}}{k^{2}} \tag{2}
\end{equation*}
$$

and $m(q)$ is the inverse elliptic nome which can be expressed through the Dedakind eta function as

$$
\begin{equation*}
m(q)=\frac{\eta\left(\frac{\tau}{2}\right)^{8} \eta(2 \tau)^{16}}{\eta(\tau)^{24}} \tag{3}
\end{equation*}
$$

where $q=e^{i \pi \tau}$ or by Jacobi theta functions

$$
\begin{equation*}
m(q)=\left(\frac{\theta_{2}(0, q)}{\theta_{3}(0, q)}\right)^{4} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta_{2}(0, q)=2 \sum_{n=0}^{\infty} q^{(n+1 / 2)^{2}} \theta_{3}(0, q)=1+2 \sum_{n=1}^{\infty} q^{n^{2}} \tag{5}
\end{equation*}
$$

giving explicitly

$$
\begin{equation*}
G(x)=\sum_{k=1}^{\infty} \frac{1}{k^{2}}\left(\frac{2 \sum_{n=0}^{\infty} x^{(n+1 / 2)^{2}}}{1+2 \sum_{n=1}^{\infty} x^{n^{2}}}\right)^{4 k}=\sum_{k=0}^{\infty} \frac{a_{k} x^{k}}{k!} \tag{6}
\end{equation*}
$$

if we consider the sequence of coefficients a_{k} associated with $G(x)$, modulo 1 , or the fractional part of the coefficients, $\operatorname{frac}\left(a_{k}\right)$ we gain the following sequence
$0,0,0, \frac{2}{3}, 0, \frac{4}{5}, 0, \frac{5}{7}, 0,0,0, \frac{6}{11}, 0, \frac{10}{13}, 0,0,0, \frac{1}{17}, 0, \frac{3}{19}, 0,0,0, \frac{7}{23}, 0,0,0,0,0, \frac{13}{19}, 0, \frac{15}{31}, 0,0,0,0,0, \frac{21}{37}, 0,0,0, \frac{25}{41}, \cdots$
we see the primes in the denominator in positions where the power of x is a prime. We also note that so far, the numerators are always less than the denominator (obviously), but count, succesively upwards, producing monotonically increasing subsequences. The prime only parts continue

$$
\begin{equation*}
\frac{2}{3}, \frac{4}{5}, \frac{5}{7}, \frac{6}{11}, \frac{10}{13}, \frac{1}{17}, \frac{3}{19}, \frac{7}{23}, \frac{13}{29}, \frac{15}{31}, \frac{21}{37}, \frac{25}{41}, \frac{27}{43}, \frac{31}{47}, \frac{37}{53}, \frac{43}{59}, \frac{45}{61}, \frac{51}{67}, \frac{55}{71}, \frac{57}{73}, \frac{63}{79}, \frac{67}{83}, \frac{73}{89}, \frac{81}{97} \tag{8}
\end{equation*}
$$

After closer inspection, we see the numerators from the point $1,3,7,13,15,21,25,27,31,37,43,45,51,55,57, \ldots$ take the form prime $(k)-16$, the numerators before this take the form $2 \cdot \operatorname{prime}(k)-16$, for $6,10,3 \cdot \operatorname{prime}(k)-16$ for $5,4 \cdot \operatorname{prime}(k)-16$ for 4 and $6 \cdot \operatorname{prime}(k)-16$ for the first numerator 2 . It is likely then that for the rest of the numbers this pattern continues. This then gives for the coefficient a_{k} of $G(x)$, with $k>6$,

$$
\begin{equation*}
\operatorname{frac}\left(a_{k}\right)=\frac{k-16}{k}, k \in \mathbb{P} \tag{9}
\end{equation*}
$$

We find that if we take the original coefficients a_{k}, and subtract this fractional part in general

$$
\begin{equation*}
\delta_{k}=a_{k}-\frac{k-16}{k} \tag{10}
\end{equation*}
$$

for numbers m which cannot be written as a sum of at least three consecutive positive integers, δ_{m} is an integer (empirical). A111774 "Numbers that can be written as a sum of at least three consecutive positive integers." apart from odd primes, numbers which cannot are powers of two.

2 Other

We find a similar relationship with

$$
\begin{equation*}
G_{2}(x)=\operatorname{Li}_{2}\left(\frac{4 x}{(1-x)^{2}\left(1-\frac{2 x}{x-1}\right)^{2}}\right)=\sum_{k=0}^{\infty} \frac{b_{k} x^{k}}{k!} \tag{11}
\end{equation*}
$$

where b_{k} seem to follow for $k>2$

$$
\begin{equation*}
\operatorname{frac}\left(b_{k}\right)=\frac{k-4}{k}, k \in \mathbb{P} \tag{12}
\end{equation*}
$$

3 Generating Function for Fractional Part

We see the Generating function for $n / 2$ is

$$
\begin{equation*}
\frac{x}{2(x-1)^{2}} \tag{13}
\end{equation*}
$$

but the generating function for the fractional part of $n / 2$, which is $(n \bmod 2) / 2$, is given by

$$
\begin{equation*}
\frac{-x}{2\left(x^{2}-1\right)} \tag{14}
\end{equation*}
$$

the property described is associated with the polylog, and we seen that the fractional part of

$$
\begin{equation*}
\mathrm{Li}_{2}(2 x)=\sum_{k=0}^{\infty} \frac{c_{k} x^{k}}{k!} \tag{15}
\end{equation*}
$$

gives

$$
\begin{equation*}
\operatorname{frac}\left(c_{k}\right)=\frac{k-2}{k}, k \in \mathbb{P} 0, \text { otherwise } \tag{16}
\end{equation*}
$$

this means

$$
\begin{equation*}
\operatorname{frac}\left(\frac{2^{k} k!}{k^{2}}\right)=\frac{k-2}{k}, k \in \mathbb{P} 0, \text { otherwise } \tag{17}
\end{equation*}
$$

or

$$
\begin{equation*}
\operatorname{frac}\left(\frac{2^{k}(k-1)!}{k}\right)=\frac{k-2}{k}, k \in \mathbb{P} 0, \text { otherwise } \tag{18}
\end{equation*}
$$

we also see that

$$
\begin{equation*}
\operatorname{frac}\left(\frac{(k-1)!}{k}\right)=\frac{k-1}{k}, k \in \mathbb{P} \frac{1}{2}, 40, \text { otherwise } \tag{19}
\end{equation*}
$$

