Community assembly processes as a mechanistic explanation of the predator-prey diversity relationship in marine microbes

Feng-Hsun Chang¹, Jinny Yang², Ariana Chih-Hsien Liu¹, Hsiao-Pei Lu³, Gwo-Ching Gong⁴, Fuh-Kwo Shiah⁵, and Chih-hao Hsieh¹

¹National Taiwan University
²University of Michigan Department of Ecology and Evolutionary Biology
³National Cheng Kung University
⁴National Taiwan Ocean University
⁵Academia Sinica

November 6, 2020

Abstract

Predator and prey α -diversity are often positively associated; yet, underlying mechanisms remain unclear. We attempt to address this issue by deciphering how α -diversity of predator and prey influences each other's community assembly processes and subsequently determines α -diversity. The occurrence of assembly processes were indicated by the mean pairwise taxonomic index within a community ($aM\Pi TI$), assuming assembly processes left traceable imprints on species' phylogeny. Specifically, $aM\Pi TI$ quantifies deviations of observed phylogenetic distances from that of random, thus indicating that non-random/deterministic assembly processes are in action. Less negative $aM\Pi TI$, which hints at the occurrence of weaker homogeneous deterministic assembly processes, is expected to increase α -diversity of the community. We hypothesize that higher predator and prey α diversity make each other's $aM\Pi TI$ less negative, which then increases their α -diversity. To test the hypothesis, we calculated Shannon diversity and $aM\Pi TI$ for heterotrophic nanoflagellates (HNF; predator) and bacteria (prey) communities in the East China Sea. The HNF Shannon diversity was found to make the $aM\Pi TI$ of bacteria less negative, which then increased bacterial Shannon diversity. In contrast, bacterial Shannon diversity did not affect HNF's $aM\Pi TI$. We provide evidence that top-down control underpins the positive α -diversity association among trophic levels in microbes of the East China Sea.

Hosted file

PdPy_ADiv_Assemb.pdf available at https://authorea.com/users/373560/articles/491224community-assembly-processes-as-a-mechanistic-explanation-of-the-predator-preydiversity-relationship-in-marine-microbes