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Hillslope scale water flow and transport dynamics have been extensively studied (Burt & McDonnell, 2015;
Hewlett & Hibbert, 1963), but observing those internal dynamics in high spatial and temporal resolutions
remains challenging. In this study, we uncover internal water flow and transport dynamics in an artificial
hillslope in the Landscape Evolution Observatory (LEO), Biosphere 2, University of Arizona, Tucson, USA,
using the experimental dataset collected in December 2016. Complete information about the hillslope and
experiment can be found elsewhere (Pangle et al., 2015; Till H. M. Volkmann et al., 2018); Here, we only
summarize some relevant information.

The first part of the animation describes the experimental system and setup (time 00:12 – 04:14 in Animation
S1). The LEO hillslope is 330 m3 (30 m long, 11 m wide, and 1 m deep) sloping soil lysimeter. The hillslope
is primarily made up of loamy-sand textured basaltic tephra, and the most downslope 5.5 m3 is filled
with gravel-textured basaltic tephra. A custom irrigation system supplies reverse osmosis filtered water
onto the LEO surface. The downslope boundary is exposed to atmospheric pressure, creating the seepage
face boundary condition. The sensor networks (including pressure transducers and volumetric water content
sensors) and the water isotope sampling locations and intervals (7 hrs to 101 hrs) are illustrated in Animation
S1 (time 02:09 – 03:01). The isotope composition of subsurface water is obtained from laser-based online
measurements of vapor that is extracted via custom gas probes through equilibrium calculation (T. H.M.
Volkmann & Weiler, 2014). The irrigation sequence of this experiment was designed to generate a periodic
steady state, which allows the application of the PERidoic Tracer Hierarchy method (Harman & Kim,
2014) for the observation of the time-variable transit time distributions and the StorAge Selection functions.
Deuterium-labeled water was irrigated during the first two irrigation events.

The second part of the animation shows the dynamics of the perched water table and soil water content
(time 04:15 – 06:53). The extent of the saturated zone was estimated using the pressure transducer da-
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. ta and Delaunay triangulation (Delaunay, 1934). The experimental data show the saturation from below
mechanisms—wetting up from the bedrock surface into the soil profile (McDonnell, 1997)—and the satura-
tion from downslope to upslope. The water table profile forms a wedge-like shape, which is a characteristic
of hillslope with a high hillslope (Peclet) number (Berne et al., 2005; Brutsaert, 1994). The hillslope Peclet
number of the LEO hillslope during the experiment is high (> 10) (Kim et al., 2020). Significant time delays
in the water table dynamics are observed at some upslope locations (e.g., at 13 m upslope), which is mostly
due to the delayed water supply from the convergent upslope area. The water content data indicates that
the convergent upslope water content began to decrease around the timing of the water table peak at 13 m
upslope.

The third part of the animation shows the tracer dynamics (from time 06:43). The animated experimental
data reveal two notable water transport dynamics. First, the vertical tracer movement is faster at the upslope.
This faster movement at the upslope is, in a sense, counter-intuitive because the upslope region is drier than
the downslope. This is due to the lateral flow in the saturated zone and the tension saturated zone, that
are thicker at the downslope. While water velocity is higher at the downslope, the direction of velocity is
not vertical but rotated towards the downslope in those zones.Second, the animated data illustrate that old
water is present only at the downslope. This observation is a characteristic of hillslope with a high hillslope
number, in which old water is preferentially discharged (Kim et al., 2020). Indeed, the observed SAS function
in this hillslope is concave (Kim et al., 2020), indicating that the hillslope preferentially discharges old water
that is stored at the downslope.
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