Shrinkage in serial intervals across cluster transmission generations of COVID-19

Shi Zhao¹, Yu Zhao², Biao Tang³, Daozhou Gao⁴, Zhao Guo⁵, Marc Chong⁵, Salihu Musa⁶, Yongli Cai⁶, Weiming Wang⁷, Daihai He¹, and Maggie H Wang⁵

¹Affiliation not available
²Ningxia Medical University
³York University
⁴Shanghai Normal University
⁵The Chinese University of Hong Kong
⁶The Hong Kong Polytechnic University
⁷Huaiyin Normal University

December 17, 2020

Abstract

The COVID-19 pandemic poses a serious threat to global health, and one of the key epidemiological factors that shape the transmission of COVID-19 is its serial interval (SI). Although SI is commonly considered following a probability distribution at a population scale, slight discrepancies in SI across different transmission generations are observed from the aggregated statistics in recent studies. To explore the change in SI across transmission generations, we develop a likelihood-based statistical inference framework to examine and quantify the change in SI. The COVID-19 contact tracing surveillance data in Hong Kong are used for exemplification. We find that the individual SI of COVID-19 is likely to shrink with a rate of 0.72 per generation and 95%CI: (0.54, 0.96) as the transmission generation increases. We speculate that the shrinkage in SI is an outcome of competition among multiple candidate infectors within a cluster of cases. The shrinkage in SI may speed up the transmission process, and thus the nonpharmaceutical interventive strategies are crucially important to mitigate the COVID-19 epidemic.

Hosted file

main.pdf available at https://authorea.com/users/349966/articles/499289-shrinkage-in-serialintervals-across-cluster-transmission-generations-of-covid-19