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Abstract

$i\dot{U} = HU$ (or $\dot{U} = -iHU$) is the equation that is said to govern the evolution of a unitary matrix $U$ given the

Hamiltonian $H$ of the system. This equation is said to hold true even if the Hamiltonian is time dependent. We show iU = HU (or

$\dot{U} = -iHU$) is the equation that is said to govern the evolution of a unitary matrix $U$ given the Hamiltonian $H$ of the

system. This equation is said to hold true even if the Hamiltonian is time dependent. We show in this paper that $i\dot{U} = HU$

may not always hold for time dependent Hamiltonians.this paper that $i\dot{U} = HU$ may not always hold for time dependent

Hamiltonians.

Introduction

The evolution of a unitary operator is given by iU̇ = HU . (where H is the Hamiltonian of the system).
This equation is so common place that no one bothers to cite it. It is considered as a standard part of the
curricula of certain courses, in physics books (see [1]) and even in allied engineering fields. For example
see [2] ( a course in Nuclear Engineering). Needless to say, the formula also has been extensively used in
the literature. For example see Equation 35 in [3], Equation 25 in [4], Equation 7 in [5], Equation 4 in [6].

The organisation of next section is as follows:
In subsection A we show that for any matrix A, [A, Ȧ] is not necessarily equal to 0. Subsection B deals
with the derivative of eA. From this we find the derivative of a unitary matrix in subsection C. We show in
subsection D as to why in case of time independent Hamiltonian iU̇ = HU more or less holds good.

Finally in section III, we synthesize the various lines of argument into a concluding paragraph.

Proof

A and its time derivative don’t commute

The title can be mathematically paraphrased as
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[A, Ȧ] 6= 0. For any function f(A) (matrix or scalar valued) ḟ = ∂f
∂t . Say we have a matrix valued function

A(t) =

[
a b
c d

]
(1)

where a,b,c,d are four distinct functions of time. We can differentiate A(t) as follows [7], [8]

Ȧ =

[
ȧ ḃ

ċ ḋ

]
(2)

Thus, [
A, Ȧ

]
= AȦ− ȦA

=

[
a b
c d

] [
ȧ ḃ

ċ ḋ

]
−
[
ȧ ḃ

ċ ḋ

] [
a b
c d

]
=

[
bċ− ḃc aḃ− ȧb+ bḋ− ḃd

cȧ− ċa+ dċ− ḋc −
(
bċ− ḃc

) ]
(3)

Any of the elements of
[
A, Ȧ

]
are not necessarily zero at all times. Thus

[
A, Ȧ

]
is not necessarily zero.

Special cases where
[
A, Ȧ

]
= 0

1. A is a constant function. This makes Ȧ = 0. Because of this
[
A, Ȧ

]
= 0

2. A = λ(t)I ⇒ Ȧ = λ̇(t)I

∴
[
A, Ȧ

]
= AȦ− ȦA

= (λI)
(
λ̇I
)
−
(
λ̇I
)

(λI)

=
(
λλ̇I

)
−
(
λ̇λI

)
= 0 (4)

3. A is a diagonal matrix. This implies that b, c = 0. From Equation 3 we have
[
A, Ȧ

]
= 0.

4. A = tB, where B is a constant matrix.

∴
[
A, Ȧ

]
= AȦ− ȦA

= tBB −BtB
= 0 (5)

It can be easily shown that even if A is a skew Hermitian
[
A, Ȧ

]
is not necessarily zero. For the rest of

discussion we only consider A such that
[
A, Ȧ

]
6= 0 ∀ t

In the case
[
A, Ȧ

]
= 0, everything is true and wonderful.

2
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Derivative of matrix exponential functions

Let us see what we get on differentiating A2. From the product rule, we have

˙(A2) = AȦ+ ȦA (6)

But, given the previous discussion

˙(A2) 6= ȦA+ ȦA
(
∵
[
A, Ȧ

]
6= 0
)

(7)

6= 2ȦA

Similarly,

˙(A3) 6= 3ȦA (8)

Instead, we obtain

˙(A3) = AAȦ+AȦA+ ȦAA (9)

For An, we get

˙(An) = ˙(AAn−1) (10)

= A ˙(An−1) + ȦAn−1 (11)

Continuing down, we are left with

˙(An) =
n−1∑
m=0

AmȦAn−(m+1) (12)

We know that

eA =
∞∑
n=0

An

n!
(13)

On applying the above train of thought

˙(eA) =
∞∑
n=0

n−1∑
m=0

AmȦAn−(m+1)

n!
(14)

[9] and [10] have rewritten the above formula in a more pleasing format. The simplified form of Equation
2.1 from [10] in terms of our notation is as follows

˙(eA) =

∫ 1

0
eA(1−s)ȦeAsds (15)

Let us try to derive Equation 15 from Equation 14. The steps below are inspired from [9].
When we differentiate An we obtain a series in which each term is a permutation of a product of n− 1 A′s
and one Ȧ. So the series in Equation 14 can be rewritten as:

3
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˙(eA) =

∞∑
p=0

∞∑
m=0

AmȦAp

(m+ p+ 1)!
(∵ n = m+ p+ 1) (16)

=
∞∑
p=0

∞∑
m=0

AmȦAp

m! p!

m! p!

(m+ p+ 1)!
(17)

We know that ∫ 1

0
(1− s)mspds =

m!p!

(m+ p+ 1)!
(18)

Hence:

˙(eA) =
∞∑
p=0

∞∑
m=0

AmȦAp

m! p!

∫ 1

0
(1− s)mspds (19)

˙(eA) =

∫ 1

0

∞∑
p=0

∞∑
m=0

(1− s)mAmȦApsp

m! p!
ds (20)

˙(eA) =

∫ 1

0

∞∑
p=0

( ∞∑
m=0

(1− s)mAm

m!

)
Ȧ
Apsp

p!
ds (21)

˙(eA) =

∫ 1

0

∞∑
p=0

e(1−s)AȦ
Apsp

p!
ds (22)

˙(eA) =

∫ 1

0
e(1−s)AȦ eAs ds (23)

Since,
[
A, Ȧ

]
6= 0,

[
eA, Ȧ

]
6= 0. Given that

[
eA, Ȧ

]
6= 0, we can say that

eA(1−s)ȦeAs 6= ȦeA(1−s)eAs (24)

6= ȦeA

Hence,

˙(eA) 6=
∫ 1

0
ȦeAds

˙(eA) 6= ȦeA (25)

From Equation 15, 24 and 25 one can safely say that ˙(eA) can not be written as BeA (where B = g ˙(A) i.e
B is a function of only Ȧ ).

Derivative of a unitary matrix

We can write U = eΩ(t), where Ω(t) is a matrix valued function of time. By the virtue of its construction,
Ω(t) is an skew Hermitian matrix. Thus from end of section ,

[
Ω, Ω̇

]
6= 0

4
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Since ˙(eA) 6= B ˙(A)eA as proved in end of section

U̇ 6= B ˙(Ω)eΩ or

U̇ 6= B ˙(Ω)U (26)

In words it means that U̇ cannot be written as a product of function of B ˙(Ω) and U . We know that for time
independent Hamiltonians U = e−iHt. So it is fair to assume that Ω may depend on the Hamiltonian H in
some way. Since Ω depends on the Hamiltonian H , Ω̇ too is a function of H .

∴ From the previous Equation 26

U̇ 6= B′(H)U (27)

where B′ is another function only of H such that B′(H) = B(Ω̇) .

Taking things a step further U̇ 6= −iHU for time dependent Hamiltonians.

Time independent Hamiltonians

The rule U̇ = −iHU still holds good for time independent Hamiltonians, but here too things are not the
same as before. From special case 1 from subsection we have[

H, Ḣ
]

= 0 since H is time independent (28)

From the discussion in sub-section we can say that[
H, e−iHt

]
= 0 (29)

[H,U ] = 0 (30)

Thus U̇ = −iHU can be transformed to U̇ = −iUH . So The order of U , H does not really matter on the
right hand side the equation U̇ = −iHU for time independent Hamiltonians.

Conclusion

In this paper, we have shown that U̇ is not always equal to −iHU for time dependant Hamiltonians. This
does not mean that it is not possible. One of the ways it may be possible is that the functions a, b, c,
d of A align themselves in such a way that

[
A, Ȧ

]
= 0 (other than those special cases considered in

section ). Under more severely restrictive conditions than those considered here, [12], [13] have shown that
( ˙eA) = ȦeA, even if

[
A, Ȧ

]
6= 0. But these restrictions coupled with the Hermiticity requirements of the

Hamiltonian make this very unlikely to happen.
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