## Gene flow between island populations of the malaria mosquito, Anopheles hinesorum, may have contributed to the spread of divergent host preference phenotypes

Luke Ambrose<sup>1</sup>, Daniel Ortiz-Barrientos<sup>2</sup>, Robert Cooper<sup>3</sup>, Neil Lobo<sup>4</sup>, Thomas Burkot<sup>5</sup>, Tanya Russell<sup>5</sup>, and Nigel Beebe<sup>1</sup>

<sup>1</sup>University of Queensland <sup>2</sup>The University of Queenland <sup>3</sup>Australian Defence force <sup>4</sup>University of Notre Dame <sup>5</sup>James Cook University Division of Tropical Health and Medicine

December 29, 2020

## Abstract

Anopheles hinesorum is a mosquito species with variable host preference. Throughout New Guinea and northern Australia, An. hinesorum feeds on humans (it is opportunistically anthropophagic) while in the southwest Pacific's Solomon Archipelago, the species is abundant but has rarely been found biting humans (it is exclusively zoophagic in most populations). There are at least two divergent zoophagic (non-human biting) mitochondrial lineages of An. hinesorum in the Solomon Archipelago. Since zoophagy is a derived (non-ancestral) trait in this species, this leads to the question: has zoophagy evolved independently in these divergent lineages? Or conversely: has nuclear gene flow or connectivity resulted in the transfer of zoophagy? Although we cannot conclusively answer this, we find close nuclear relationships between Solomon Archipelago populations indicating that recent nuclear gene flow has occurred between zoophagic populations from the divergent mitochondrial lineages. Recent work on isolated islands of the Western Province (Solomon Archipelago) has also revealed an anomalous, anthropophagic island population of An. hinesorum. We find a common shared mitochondrial haplotype between this Solomon Island population from New Guinea. This finding suggests that there has been recent migration from New Guinea into the only known anthropophagic population from the Solomon Islands. Although currently localized to a few islands in the Western Province of the Solomon Archipelago, if anthropophagy presents a selective advantage, we may see An. hinesorum emerge as a new malaria vector in a region that is now working on malaria elimination.

## Hosted file

ME\_FINAL.pdf available at https://authorea.com/users/385895/articles/501137-gene-flowbetween-island-populations-of-the-malaria-mosquito-anopheles-hinesorum-may-havecontributed-to-the-spread-of-divergent-host-preference-phenotypes