Residue of Series of Functions

Benedict Irwin ${ }^{1}$

${ }^{1}$ University of Cambridge
January 7, 2021

Abstract

We consider the values of residues of functions. We know the residues of some functions at their poles. For example $$
\operatorname{Res}(\Gamma(s),-k)=\frac{(-1)^{k}}{k!}, k \in \mathbb{Z}
$$

but then some functions are hard, for example

$$
\operatorname{Res}\left(e^{\Gamma(s)},-k\right)=?
$$

if we consider a series expansion of $e^{[s]}$, we get terms

$$
\operatorname{Res}\left(\sum_{l=0}^{n} \frac{\Gamma(s)^{l}}{l!},-k\right)
$$

for some such expansions it appears that there is a convergent limit, for large n. i.e.

$$
\lim _{n \rightarrow \infty} \operatorname{Res}\left(\sum_{l=0}^{n} \frac{\Gamma(s)^{l}}{l!}, s=0\right) \approx 0.80562017 \ldots
$$

and

$$
\lim _{n \rightarrow \infty} \operatorname{Res}\left(\sum_{l=0}^{n} \frac{\Gamma(s)^{l}}{l!}, s=-1\right) \approx-1.21469623 \ldots
$$

If we call this

$$
Q\left[e^{\Gamma(s)}\right](k)=\lim _{n \rightarrow \infty} \operatorname{Res}\left(\sum_{l=0}^{n} \frac{\Gamma(s)^{l}}{l!}, s=-k\right)
$$

then we could define a function

$$
\begin{equation*}
f(x)=\sum_{k=0}^{\infty} Q\left[e^{\Gamma(s)}\right](k) x^{k} \approx 0.806-1.215 x+1.02621 x^{2}-0.13931294 x^{3}+0.04446964782 x^{4}-\ldots \tag{1}
\end{equation*}
$$

where interestingly, the higher terms are more precise with only a few terms required in the truncated version of Q .

For the function $\mathrm{f}(\mathrm{x})$, it seems like the minimum is around $x_{0}=0.658734$ with a value of $v=0.418402$, with some likely bounds $0.401076<v<0.454371$ and $0.62907<x_{0}<0.726154$.

