
P
os

te
d

on
A

ut
ho

re
a

19
Fe

b
20

21
|T

he
co

py
ri

gh
t

ho
ld

er
is

th
e

au
th

or
/f

un
de

r.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

us
e

w
it

ho
ut

pe
rm

is
si

on
.

|h
tt

ps
:/

/d
oi

.o
rg

/1
0.

22
54

1/
au

.1
61

37
25

77
.7

73
93

54
3/

v1
|T

hi
s

a
pr

ep
ri

nt
an

d
ha

s
no

t
be

en
pe

er
re

vi
ew

ed
.

D
at

a
m

ay
be

pr
el

im
in

ar
y.

Screening potential insect vectors in a museum biorepository
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Abstract

Phytoplasmas (Mollicutes, Acholeplasmataceae), vector-borne obligate bacterial plant-parasites, infect nearly 1,000 plant species
and unknown numbers of insects, mainly leafhoppers (Hemiptera, Deltocephalinae), which play a key role in transmission and
epidemiology. Although the plant-phytoplasma-insect association has been evolving for >300 million years, nearly all known
phytoplasmas have been discovered as a result of the damage inflicted by phytoplasma diseases on crops. Few efforts have been
made to study phytoplasmas occurring in non-economically important plants in natural habitats. In this study, a sub-sample
of leafhopper specimens preserved in a large museum biorepository was analyzed to unveil potential new associations. PCR
screening for phytoplasmas performed on 227 phloem-feeding leafhoppers collected worldwide from natural habitats revealed
the presence of 6 different previously unknown phytoplasma strains. This indicates that museum collections of herbivorous
insects represent a rich and largely untapped resource for discovery of new plant pathogens, that natural areas worldwide
harbor a diverse but largely undiscovered diversity of phytoplasmas and potential insect vectors, and that independent epi-
demiological cycles occur in such habitats, posing a potential threat of disease spillover into agricultural systems. Larger-scale
future investigations will contribute to a better understanding of phytoplasma genetic diversity, insect host range, and insect-
borne phytoplasma transmission and provide an early warning for the emergence of new phytoplasma diseases across global
agroecosystems.

Introduction

Phytoplasmas (Mollicutes , Acholeplasmatales ,Acholeplasmataceae ) are a large group of phloem-restricted,
cell wall-less, vector-borne bacteria that infect hundreds of plant species and cause serious economic loss
worldwide (Rao et al., 2018). In plants, phytoplasma infection may induce a variety of typical symptoms
including virescence, phyllody, and witches’-broom, thereby altering plant morphology, growth patterns
and architecture (MacLean et al., 2011; 2014; Wei et al., 2013; 2019), although infections may also be
asymptomatic (Zwolinska et al., 2019).

Phytoplasmas are transmitted from plant to plant by phloem-feeding hemipteran insect vectors, mainly
leafhoppers, in a persistent-propagative manner (Hogenhout et al., 2008; Lee et al., 2000; Weintraub &
Beanland, 2006). After acquisition of phytoplasmas from an infected plant by a hemipteran insect, the
phytoplasma cells must cross the midgut epithelium, then multiply in the hemolymph in order to invade the
salivary glands before being inoculated into another host plant (Hogenhout et al., 2008; Huang et al., 2020).

Attempts to culture phytoplasmas in vitro have, thus far, not succeeded. Thus, phytoplasmas are currently
assigned to the provisional genus ‘Candidatus (Ca. ) Phytoplasma’, and 45 ‘Ca . Phytoplasma’ species
have been described (IRPCM, 2004; Kirdat et al., 2020; Naderali et al., 2017; Rodrigues Jardim et al.,
2020; Šafářová et al., 2016; Zhao et al., 2021). Nevertheless, the phytoplasma lineage is a highly diverse
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monophyletic group (Gupta et al., 2018; Zhao et al., 2015), having been classified into 36 groups, and more
than 150 subgroups based on distinct 16S rRNA gene restriction fragment length polymorphism patterns
(Lee et al., 1998; Naderali et al., 2017; Rodrigues Jardim et al., 2020; Seemüller et al., 1998; Wei et al., 2007;
Zhao et al., 2009).

The intimate tri-trophic interaction among phytoplasmas, host plants, and insect vectors defines a complex of
multiple pathosystems worldwide (Trivellone, 2019). Unfortunately, almost all phytoplasma-host associations
have been characterized by testing plants showing symptoms of diseases in agroecosystems. However, because
the association between phytoplasmas, plants and insect vectors has been evolving for at least 300 million
years (Cao et al., 2020), phytoplasmas and their vectors should also be widespread and diverse in non-
managed, native habitats (Trivellone & Dietrich, 2020). Indeed, current theories of infectious disease evolution
suggest that most epidemic diseases afflicting humans, livestock and crops emerge as a result of potentially
pathogenic organisms “jumping” from a native host to a new host following anthropogenic disturbance of
natural habitats (Brooks et al., 2019).

About 100 insect species have been recorded as competent vectors of phytoplasmas; however, for most the of
described ‘Ca.Phytoplasma’ species and 16S rRNA subgroups the suite of vectors is still unknown (overview
in Trivellone, 2019). Because insects are often difficult to identify and individuals infected with phytoplasmas
cannot be distinguished from non-infected individuals except through microscopy, molecular screening, or
pathogen transmission trials, efforts to identify competent phytoplasma vectors have lagged far behind efforts
to characterize phytoplasmas and their host plants. Due to the mobility of insect vectors, spillovers of vector-
borne phytoplasmas from adjacent highly diverse natural habitats into agroecosystems were hypothesized
to play an important role in emergence of new phytoplasma diseases (see Brooks et al., accepted). However,
few attempts have been made to study phytoplasma diversity in natural habitats. Therefore, diversity, plant
host range, and insect vector range of phytoplasmas are probably significantly underestimated (Trivellone &
Dietrich, 2020).

Due to increased awareness of the importance of wildlife as pathogen reservoirs (Brooks et al., 2020), the use
of museum biorepositories to discover and track pathogens is a critical step for anticipating the emergence and
re-emergence of zoonotic diseases (DiEuliis et al., 2016; Dunnum et al., 2017). The high levels of biodiversity
and geographic coverage represented in such repositories can also help unveil the evolutionary history of
pathogens and reveal previously unknown interactions with actual or potential hosts.

In this study, we analyzed specimens of deltocephaline leafhoppers (Hemiptera: Cicadellidae:
Deltocephalinae) preserved in the collection of the Illinois Natural History Survey (INHS)
(http://inhsinsectcollection.speciesfile.org/InsectCollection.aspx). The INHS leafhopper collection is one of
the largest in world with over >400,000 specimens stored either pinned or in ethanol at -20°C. In 2018, a
subsample of ethanol-preserved leafhoppers collected in natural habitats were tested for presence of phyto-
plasmas. The results revealed that about 3% of tested insect specimens harbored phytoplasmas. The newly
discovered phytoplasmas belong to three distinct taxonomic (16Sr) groups. Phytoplasmas were detected from
a total of six leafhopper species including five known and one recently described species, all recorded for the
first time as potential phytoplasma vectors. These results indicated that phytoplasma diversity and poten-
tial insect host range are indeed underestimated and further large-scale investigation of leafhopper samples
collected from natural habitats is needed.

Materials and Methods

Collection and preservation of leafhoppers

More than 3,000 bulk samples of sap-feeding hemipteran insects were obtained between 1998-2018 through
field work by the last author, his students and colleagues during surveys that aimed to document poorly
studied insect faunas in various parts of the world and to obtain representatives of all major lineages of Cica-
dellidae for use in phylogenetic and systematic studies. This material was supplemented by the first author’s
collections in Europe between 2001-2018. Specimens were collected using various methods including sweeping
and vacuuming of vegetation, night collecting at lights, and in Malaise (flight intercept) traps. Specimens
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. were collected directly into 95% ethanol in the field, returned to the laboratory and stored in -20ºC freezers
at the INHS. Voucher specimens were also pinned for species identification and reference. Some samples in-
cluded undescribed species from under-investigated areas, and they are waiting to be described in the context
of other projects. In 2018, screening was carried out on a subset of 227 samples from independent sampling
events in 28 countries (six continents) worldwide (Argentina, Australia, Bolivia, Brazil, Cameroon, Chile,
China, Czech Republic, Ecuador, French Guiana, Ghana, Kyrgyzstan, India, Italy, Madagascar, Mongolia,
Nicaragua, Papua New Guinea, Peru, Republic of Congo, Serbia, South Africa, Swaziland, Switzerland, Tai-
wan, Thailand, United States, Zambia). The land cover of the sampling events was analyzed using thematic
maps within a geographic information system (QGIS 3.8, 2019) (Figure 1). Although 98% of the collections
were intentionally obtained from natural areas or patches of native vegetation within more anthropogenic
landscapes, we evaluated the land cover of a larger area including each sampling site using the raster layer
Cropland and Pasture area (resolution 10 x 10 Km) (Ramankutty et al., 2008).

In total, the 227 samples encompassed about 1,000 specimens, with each species (or morphospecies) repre-
sented by 1 to 20 specimens belonging to the phloem-feeding leafhopper subfamily Deltocephalinae (except
1 sample belonging to the related hemipteran family Membracidae), which includes most of the previously
documented vectors of phytoplasmas (Table S1). At least one specimen from each sample was selected ran-
domly (with preference for males when present because species identification usually requires examination
of male genitalia) for the molecular analyses.

DNA extraction

Total DNA was extracted from individual leafhoppers using a non-destructive method to preserve the spe-
cimen exoskeletons as vouchers and for subsequent morphological study. For each specimen, the abdomen
was dissected, transferred to a 1.5 ml tube containing 400 μl 1X TES pH 7.8 buffer (20 mM Tris, 10 mM
EDTA, 0.5% SDS) and 4 μl Proteinase K (20 mg/μl) and incubated at 56°C overnight. The abdomen was
then removed and preserved in ethanol for morphological study. The buffer solution was then blended for
10 minutes using a mixer (MixMate) and the solution was transferred to a new 1.5 ml tube with 400 μl of
chloroform, mixed and centrifuged 10 min at 4°C at 11,000 rpm. The supernatant was transferred to a new
tube and the chloroform wash was repeated. DNA was then transferred to a new tube and 400 μl of ice-cold
isopropanol was added followed by mixing and centrifuging for 15 min at 4°C at 12000 rpm. Supernatant
was discarded and the DNA pellet was washed twice using 500 μl of ice-cold 96% ethanol. The DNA pellet
was then dried for 20 min and re-suspended in 50 μl of TE buffer (pH 7.8). To each leafhopper sample a
molecular code was assigned: e.g., LH078 stands for LeafHopper followed by an ordinal number indicating
the collection event.

Leafhopper species identification

Specimens were sorted to morphospecies and tentatively identified by the last author prior to DNA extraction,
with species identifications confirmed following non-destructive DNA extraction through examination of
male genitalia. Exoskeletons of extracted specimens were saved as vouchers and deposited in the Illinois
Natural History Survey insect collection. After the initial screening all the specimens that tested positive
for the presence of phytoplasmas were identified by using published taxonomic keys and related literature
(Emeljanov, 1967; Fletcher, 2000; Stiller, 2010; Zahniser, 2008). One of them was a new species for science
and was recently described by the last author (Dietrich, in review). The abdomens of voucher specimens
(males) were dissected to study the genitalia under an Olympus SZX10 stereoscopic microscope. Habitus
photographs of voucher specimens were taken at INHS with a Canon SLR camera and 65 mm macro lens
mounted on an automated lift.

DNA amplification and sequencing of phytoplasmas

TaqMan real time PCR (qPCR) analysis of the 16S ribosomal gene was carried out on DNA extracted
from the 227 specimens to identify the presence of phytoplasmas, with the primers and probe described
by Christensen et al. (2004). The assays were performed in 96-well plates on a CFX96 thermal cycler
(Biorad), according to the protocol of Angelini et al. (2007). The reaction in 10 μl contained 4 μl of
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. DNA template diluted 1:2, 5 μl Platinum Quantitative PCR Supermix-UDG (ThermoFisher scientific),
160 nM for each primer and probe. Because this protocol may yield false positives for other bacteria
(e.g.,Bacillus spp.), samples with Cq value [?] 30.38 (according to Christensen et al., 2004) were tested using
nested PCR of the 16S ribosomal RNA gene to confirm the phytoplasma identity. In the 16S rRNA region,
nested PCR was performed using universal primer pair P1/P7 (Deng & Hiruki 1991; Smart et al., 1996)
followed by F2n/R2 (Gundersen & Lee, 1996). Amplicons were visualized on 1% agarose gel stained with
GelRed (Biotium Inc.) under a GelDoc XR UV transilluminator (Biorad). The DNA of ALY (Italian alder
yellows) phytoplasma, obtained from experimentally-infected periwinkle (Catharanthus roseus ), was used
as a positive reference strain in all the amplification reactions. Sequencing of the F2n/R2 amplicons was
carried out in both directions using automated equipment (BMR Service, Padua, Italy). Forward and reverse
reads were assembled using Gap4 and Pregap (Bonfield et al., 1995), followed by manual editing. Nucleotide
sequences were deposited in the GenBank database under the accession numbers listed in Table 1. An initial
BLAST query (Altschul et al., 1990) was performed in order to evaluate the similarity of newly obtained
sequences to phytoplasma reference sequences, the top two similar sequences were included in the dataset
for further phylogenetic analyses. The final reference sequence dataset consisted of 21 sequences obtained
from the National Center for Biotechnology Information (NCBI) database (Federhen, 2012). The ingroup
included 20 phytoplasma strains (11 described as ‘Ca.Phytoplasma’ species, including an incidental citation)
representing different countries and isolated from distantly related hosts (Table S2) and the outgroup included
Acholeplasma palmae(Acholeplasmataceae ). Electropherograms were corrected and aligned using the Muscle
algorithm as implemented in MEGA 7.0 (Edgar, 2004; Kumar et al., 2016) with default settings. Phylogenetic
trees were constructed with the Maximum Likelihood (ML) and Neighbor Joining (NJ) methods. Branch
support was measured using a bootstrap test with 1,000 replicates.

Results

The 227 specimens analyzed belong to 9 tribes (Athysanini, Chiasmini, Deltocephalini, Macrostelini, Opsiini,
Paralimnini, Pendarini, Scaphoideini, Scaphytopiini) which represent most of the groups of deltocephalinae
comprising known phytoplasma vectors worldwide. Overall, about 49% of them (111 specimens) were iden-
tified to species during earlier sorting and preparation of collected samples, 2% are of uncertain species
placement and ˜43% represent undescribed species and genera or belong to genera for which comprehensive
identification tools are not yet available. Thirteen species (6%) are represented by multiple specimens (Table
S1).

GIS analyses with the Cropland and Pasture overlay confirmed that the sampling sites were located mainly
in natural areas, with average raster values of 0.091± 0.13 (compared to cropland raster value =1).

Detection and phylogenetic analysis of phytoplasmas

Using qPCR on 227 leafhoppers, a positive signal was detected in 111 specimens. Only 14 samples with Cq
value [?] 30.38 were selected for further analysis (Table S1). The nested PCR primed by F2n/R2 amplified
fragments of the 16S rRNA gene of 1,200 bp from 6 phytoplasma-infected samples (Fig. S1). A lower
or different sensitivity of the direct/nested primers compared to the ones used in qPCR may have caused
the negative results for the remaining 8 samples. Overall, 6 species tested positive:Leofa (Tortotettix )
dispar (Theron) (molecular sample codes: LH078), Pravistylus exquadratus (Naude) (LH082),Macrosteles
(Macrosteles ) sordidipennis (Stal) (LH102), Mayawa capitata (Kirkaldy) (LH133), Mayawa affinifacialis
Dietrich (LH139), and Acharis ussuriensis(Melichar) (LH143) (Table 1, Fig. 2 A-F).

The phylogenetic trees included 27 phytoplasma strains, and the alignment of 16S rRNA consisted of 952
positions (including gaps). The ML phylogenetic tree recovered our new sequences in three main clus-
ters (A, B and C in Fig. 3). The first well-supported cluster (A) includes a monophyletic group of 4
samples from this study (LH078, LH082, LH139, LH143) and 4 strains belonging to 16SrXI phytoplasma
group (2 ‘Ca. Phytoplasma sacchari’ and 2 Goosegrass white leaf phytoplasma strains) and the Candi-
datus species ‘Ca.Phytoplasma oryzae’ (16SrXI) + ‘Ca. Phytoplasma cynodontis’ (16SrXIV). Although
the internal branches of this clade are very short with low bootstrap support, both samples from South
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. Africa (LH078, LH082) were recovered in the same subcluster. Samples from China (LH143) and Australia
(LH139) are polyphyletic, with LH139 branching more deeply than LH143. A recent comprehensive ML tree
for phytoplasmas recovered members of 16SrXI as paraphyletic with respect to 16SrXIV (Cao et al., 2020).

In the second cluster (B), LH133 is sister to ‘Ca. Phytoplasma brasiliense’ (16SrXV) and together these
two strains are sister to the closely related phytoplasma strains in the 16SrII group. The last cluster (C)
includes LH103 and members of the 16SrI phytoplasma group. The NJ analysis yielded the same topology
(not shown).

Although the pairwise similarity of the sequences with closely related reference strains is >97.5%, further
characterization revealed that all the phytoplasmas detected in this study represent new strains belonging
to five new subgroups (Wei et al., in review).

Discussion

Ecological and evolutionary context of the new phytoplasma-host associations

None of the leafhopper species that tested positive for presence of phytoplasmas in the present study were
previously reported as hosts or vectors of phytoplasmas (Trivellone, 2019). These 6 leafhopper specimens
were collected from native grassy vegetation in four countries: South Africa, Kyrgyzstan, Australia, and
China (Table 1 and Figure 1).Leofa dispar (LH078) and P. exquadratus (LH082) were collected from native
grassland and fynbos vegetation in two different provinces in South Africa (KwaZulu-Natal and Western
Cape) in 2004. The distance between these two sampling sites is about 1,120 km. In South Africa only
four 16Sr phytoplasma groups were previously recorded (16SrI, 16SrII, 16SrIII, 16SrXII) (for an overview
see Trivellone, 2019), and only two species of leafhoppers were recorded as potential vectors and competent
vectors of phytoplasmas in the 16SrI group:Austroagallia sp. (subfamily Megophthalminae) and Mgenia
fuscovaria (Stal) (Coelidiinae) (Kruger et al., 2015). Thus, this is the first record of phytoplasma strains in
the clade 16SrXI/16SrXIV in South Africa. The leafhopper fauna of Africa is diverse but remains poorly
known, with new genera and species continuing to be discovered (e.g., Stiller, 2019; 2020). Pravistylus
exquadratus and other members of the same genus have never been reported as pests, except for single
records of this species on Korog wheat cultivar and on rye grass (Stiller, 2010). The species is mainly
associated with native grassland and fynbos vegetation, and it is always macropterous with high potential
for dispersal. Leofa dispar also occurs in native grassland and has not been reported from crops. Both,P.
exquadratus and L. dispar are restricted to South Africa.

Macrosteles sordidipennis (LH102) specimens were collected in a riparian sedge meadow, on a river bank
in Kyrgyzstan (Jeti-Oguz District) in 1999. The single tested specimen LH102 was infected by a strain of
group 16SrI related to aster yellows phytoplasma strains. Based on a recent review (see Trivellone, 2019),
this appears to be the first record of this phytoplasma group in Kyrgyzstan. The only previous phytoplasma
record from this country was the potato stolbur disease, associated with the 16SrXII phytoplasma group. In-
terestingly, other species in the genus Macrosteles have been reported as competent vectors of phytoplasmas
(Trivellone, 2019). In particular, competent and potential vectors of Macrosteles show a strong cophylo-
genetic signal with the 16SrI phytoplasma group (Trivellone, unpublished data) suggesting that these two
lineages have been associated for a long time. Nine additional species of Macrosteles have been documented
in Kyrgyzstan (Novikov et al., 2000), including four that are competent vectors of 16SrI phytoplasmas in Eu-
rope, although 16SrI phytoplasmas have not been previously recorded from this country (Trivellone, 2018).
Our discovery of a new association between a Macrosteles species not previously recorded as a phytoplasma
host and a new 16SrI group strain or host suggest that further surveys and phytoplasma screening in Kyr-
gyzstan may be important for assessing the potential threat of emerging phytoplasma diseases in this region
of Central Asia.

Mayawa capitata (LH133) and M. affinifacialis (LH139) were collected at lights from two different nature
reserves in Australia in 2010 and 2009, respectively. The two sampling sites are about 3,597 km away from
each other. Mayawa capitata belongs to the grass-specialist leafhopper tribe Paralimnini and reportedly
occurs on grasses and Sida acuta (Malvaceae) (Fletcher, 2000). Mayawa affinifacialis has been recently
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. described (Dietrich, in review) and little is known about its ecology; however, the species was collected
in grassland is likely a grass-feeding species. A specimen of the first species (LH133) was infected with a
phytoplasma strain closely related to 16SrXV group and the second one (LH139) with a phytoplasma strain
closely related to 16SrXI. Although the last group was never detected in Australia, only 3 competent vectors
for phytoplasma strains in group 16SrII are known for this country, two species of Orosius, tribe Opsiini
(Deltocephalinae), and Batracomorphus angustatus (Osborn) in the subfamily Iassinae (for an overview see
Trivellone, 2019). A recent review of Australian phytoplasma pathosystems revealed an important gap
of knowledge, with several recorded phytoplasma strains not yet assigned to 16Sr groups and subgroups
(Liu et al., 2017). Moreover, information on competent vectors is scarce with many species still undescribed,
hampering the understanding of epidemiological cycles. Our results expand the spectrum of potential vectors
recorded in Australia to include species from the tribe Paralimnini, and reveal new possible epidemiological
routes that require further investigation.

Acharis ussuriensis (LH143) was collected in China from grasses on a dry hillside at Zhouzhi Nature Reserve
(Zhouzhi county, Shaanxi Province). The sampling location is entirely surrounded by forest with the nearest
farming settlement about 10 Km away. The specimen testing positive was infected with a strain closely
related to strains in the 16SrXI/16SrXIV groups (Figs 4, cluster A). Although both phytoplasma groups were
previously detected in China, further investigation on the pattern of transmission and host plants involved
in this pristine area will provide useful insights into the characterization of phytoplasma-host relationships
in natural areas.

Underestimated phytoplasma diversity

in natural areas

Phytoplasmas are a highly diverse group of plant pathogens and new strains continue to be discovered at a
steady pace worldwide but most such discoveries still mainly result from screening of plants showing “typical”
phytoplasma disease symptoms in human-managed ecosystems.

In our study we unveiled 6 new associations between phytoplasmas and their insect hosts, recording new
phytoplasma group records for 3 countries, and we detected new phytoplasma strains that will be further
characterized and described separately (Wei et. al., in review). Our screening also highlights that potential
vectors collected in natural areas worldwide are poorly studied (as suggested by Trivellone & Dietrich, 2020)
and potentially harbor phytoplasma species not yet discovered and described. Our discovery of new phy-
toplasma subgroup strains in natural areas worldwide is not surprising, given the >300-million-year history
of co-evolution between phytoplasmas, their plant hosts, and insect vectors and the lack of previous atten-
tion to phytoplasmas in non-managed ecosystems (Cao et al., 2020; Trivellone & Dietrich 2020). According
to a recent molecular timetree for phytoplasmas (Cao et al., 2020), the earliest divergences of phytoplas-
mas approximately coincided with those of their vascular plant hosts and some phytoplasma lineages are
associated with particular major lineages of plants and hemipteran insects. If many such associations are
evolutionarily conservative, then phylogenies may be useful tools for predicting undocumented associations
between phytoplasmas, insects and plants. Also, because coevolutionary theory suggests that associations
between parasites and their hosts should evolve toward commensalism over time (i.e., virulence should de-
crease; Alizon et al., 2009; Jansen et al., 2015), plants naturally infected by phytoplasmas in natural areas
may not exhibit the classical symptoms of phytoplasma disease found in crop plants. Thus, many naturally
occurring plant-phytoplasma associations may be asymptomatic, so screening of potential vectors and/or
asymptomatic plants, may be necessary to reveal the true diversity of unknown phytoplasma strains in na-
tive ecosystems. Collections of leafhoppers used in our study were obtained in natural habitats. Although
no evidence of diseased plant hosts was reported from the investigated sites, the collections were originally
made for the purpose of documenting insect biodiversity, rather than within the context of plant pathogen
surveys. For this reason, we cannot speculate on the disease epidemiology of phytoplasmas associated with
leafhoppers tested for the present study. Further investigations are needed to document the host plants and
phenotypic effects of phytoplasma infections for the newly documented strains.
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. Interestingly, 5 of the 6 leafhopper genera recorded here as phytoplasma hosts have not been previously
reported as potential or competent vectors of phytoplasmas but all belong to tribes that include known
phytoplasma vectors. Cophylogenetic studies may be used to predict new pathogen-host associations and
emerging diseases (reviewed in Brooks et al., 2019). In our study 4 species in the tribe Paralimnini from 3
different countries were found to be associated with new phytoplasma strains related to the 16SrXI/16SrXIV
and 16SrII/16SrXV groups. Previous studies have associated species of this tribe with groups 16SrI, 16SrXII,
and 16SrIX (Trivellone, 2018). A previous phylogeny of Deltocephalinae recovered Paralimnini as a mono-
phyletic group within a larger clade of leafhoppers that includes notorious groups of competent vectors of
phytoplasma groups 16SrII, 16SrXI and 16SrXIV in the tribe Opsiini (Zahniser & Dietrich, 2013; Trivellone,
2018). Preliminary cophylogenetic analysis (Trivellone unpublished) suggests that potential host shifts of
phytoplasma strains in the 16SrII/16SrXV, 16SrXI/16SrXIV groups may have occurred among species of
deltocephaline leafhoppers. The newly documented associations reported here provide evidence to support
this hypothesis. These associations remained undetected in natural areas until now.

Previous research showed that integrating different sources of knowledge is of paramount importance for
discovering potentially emergent pathogens. Studies on zoonotic diseases showed that museum bioreposito-
ries represent an invaluable but still poorly utilized resource for pathogen discovery, due to the wealth of
species represented and prevalent best practices of specimen preservation, identification and collecting-event
description (Dunnum et al., 2017). Furthermore, existing databases and traditional ecological knowledge can
contribute to discovery of the location and timing of potential spillover of pathogens into human-managed
systems worldwide (Brook et al., 2009; Kutz et al., 2009).

Given that most previous research on phytoplasmas has been performed within the relatively narrow context
of plant disease epidemiology in agroecosystems, we suggest that the diversity of phytoplasmas is severely
underestimated and that natural areas worldwide should harbor a rich undiscovered diversity of phytoplasmas
and their actual or potential insect vectors.

Similar phytoplasma infection prevalence in agroecosystems and natural grassland was previously reported
in the literature; however, knowledge of the entire range of hosts (plants and insects) and symptoms caused
by phytoplasmas in natural habitats remains inadequate (for a review see Trivellone & Dietrich, 2020).

Museum biorepository as source of unknown phytoplasmas

Plant, fungal and animal specimens deposited in natural history museums and public or private collections
are becoming increasingly accessible due to web-based interfaces. Recently it was pointed out that the hun-
dreds of millions of samples preserved in collections are useful for many purposes beyond their traditional
uses in comparative morphology, taxonomy and biogeography (Meineke et al., 2019). Because they provide
broad taxonomic, spatial and temporal coverage of Earth’s biodiversity, such collections provide opportuni-
ties to analyze global changes and under-investigated areas. Species interactions documented by collections
have mainly been investigated using metadata (e.g., Bartomeus et al., 2019; Meineke & Davies, 2019). The
advent of increasingly sensitive molecular methods has recently allowed more cryptic symbiotic associations
to be explored directly by the testing preserved tissues of potential hosts for presence of microbes and other
symbionts (e.g., Daru et al., 2019). To our knowledge, this is the first time that phytoplasma-insect associ-
ations have been documented using museum specimens. Our screening confirmed presence of phytoplasmas
in 6 leafhopper specimens (accounting for ˜ 3% of the subset of 227 leafhopper analyzed). Most studies
conducted until now in agroecosystems reported prevalence of infection on local or regional scales, mainly
focusing on epidemiological cycles. Major examples from European crop fields (one or few plots) revealed
prevalence of infection in single insect species hosts ranging from 0 to 52% for a single phytoplasma strain
(as an example, 33-37.5% Acs et al., 2011; 7-13% Lessio et al., 2016; 0-52% Mitrovic et al., 2012; 0-35%
Sforza et al. 1998; 6-50% Trivellone et al., 2005). Such studies employ extensive resources and sampling
over a prolonged timespan during the growing season. Also, because these studies usually aim to document
ongoing disease outbreaks, they are not directly comparable to our study, in which samples were collected
in the absence of any prior evidence of phytoplasma infection at locations where the samples were collected.
Because we mostly tested single specimens from collecting events spread over 20 years on multiple continents,
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. it is not surprising that most of our samples tested negative for presence of phytoplasmas. Our data do not
allow us to speculate on local infection rates of the new strains detected. However, considering the spatial,
temporal and taxonomic scale of the samples available in museum biorepositories, our results can be taken
as a very rough, preliminary estimate of phytoplasma prevalence in natural areas worldwide and suggest
that the undiscovered diversity of phytoplasmas in natural areas worldwide is substantial.

The present study provides strong evidence that both phytoplasma diversity and potential insect vector
diversity are underestimated in natural habitats. Larger-scale studies of museum biorepositories will likely
fill major gaps in our knowledge of this diversity, the evolution of phytoplasma-plant-vector associations and
the potential for emergence of new pathogens of agricultural importance.

Potential impact of vector-borne phytoplasma spillovers and large-scale future study

Centuries of homogenization of agricultural production systems led to decreased genetic and species diver-
sity of crops. Such general biological depletion was previously associated with increased pathogen outbreaks
and serious economic losses in agroecosystems (Newton, 2016; King & Lively, 2012). Earlier research rec-
ognized the role of wildlife as natural reservoirs where infections are often asymptomatic. The onslaught
of emerging infectious diseases in crops often involved alternative sources of inoculum and creation of new
ecological interfaces, and global changes (e.g., land use or climate warming) set the stage for new associ-
ations to occur. Spillover events from natural habitats in direct contact with cultivated fields have been
documented for several plant pathogens (McCann, 2020; Brooks et al., accepted), and the involvement of
vectors may facilitate host shifts, accelerating the spread of diseases at the regional level. The phytoplasmas
associated with Flavescence doree disease, and related strains, (FDp) represent one of the most well-studied
pathosystems (Malembic-Maher et al., 2020), providing a good example of spillover from wild plants to a
crop (Vitis vinifera ) through efficient insect vectors (Trivellone & Dietrich 2020; Brooks et al., accepted).
For other phytoplasma pathosystems, epidemiological information and characterization of strains associated
with crops have accumulated for over forty years. However, information on genetic diversity, the range of
hosts and ecological characteristics of the spreading of phytoplasmas in natural habitats are still broadly
missing. This gap of knowledge hinders basic understanding of the evolution of phytoplasmas in association
with their hosts, and hampers the implementation of proactive measures to cope with emerging pathogens.

Acknowledgements

The authors would like to thank Dr. Nadia Bertazzon for her support during DNA extraction, and Dr. Elisa
Angelini for the insightful comments and suggestions to the manuscript. This study was partially supported
by the Swiss National Science Foundation (P2NEP3 168526) and US NSF grant DEB-1639601.

Authors’ contributions

CHD and VT conceived the rationale, designed this study, and obtained the leafhopper samples. VT and
LF performed the initial screening experiments using qPCR, direct and nested PCR, and analyzed the
sequences. WW confirmed the phytoplasma identities. VT, CHD and WW drafted the manuscript. All
authors contributed to revising and finalizing the manuscript.

Data Availability Statement

The sequences supporting the conclusions of this article were deposited into the NCBI under the accession
numbers MW473669- MW473674.

References

Acs, Z., Jović, J., Ember, I., Cvrković, T., Nagy, Z., Talaber, C., . . . Koelber, M. (2011).
First report of maize redness disease in Hungary. Bulletin of Insectology , 64. Retrieved from
https://plantarum.izbis.bg.ac.rs/handle/123456789/161

Alizon, S., Hurford, A., Mideo, N., & Van Baalen, M. (2009). Virulence evolution and the trade-off hypoth-
esis: History, current state of affairs and the future. Journal of Evolutionary Biology ,22 (2), 245–259. doi:

8



P
os

te
d

on
A

u
th

or
ea

19
F

eb
20

21
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
61

37
25

77
.7

73
93

54
3/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. 10.1111/j.1420-9101.2008.01658.x

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search
tool. Journal of Molecular Biology , 215 (3), 403–410. doi: 10.1016/S0022-2836(05)80360-2

Angelini, E., Bianchi, G. L., Filippin, L., Morassutti, C., & Borgo, M. (2007). A new TaqMan method for
the identification of phytoplasmas associated with grapevine yellows by real-time PCR assay. Journal of
Microbiological Methods , 68 (3), 613-622. doi: 10.1016/j.mimet.2006.11.015

Bartomeus, I., Stavert, J. R., Ward, D., & Aguado, O. (2019). Historical collections as a tool for assessing
the global pollination crisis. Philosophical Transactions of the Royal Society B: Biological Sciences , 374
(1763), 20170389. doi: 10.1098/rstb.2017.0389

Bonfield, J. K., Smith, K. f, & Staden, R. (1995). A new DNA sequence assembly program. Nucleic Acids
Research , 23 (24), 4992–4999. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC307504/

Brooks, D. R., Hoberg, E. P., & Boeger, W. A. (2019). The Stockholm paradigm: Climate change and
emerging disease. Chicago: The University of Chicago Press.

Brooks, D. R., Hoberg, E. P., Boeger, W. A., Gardner, S. L., Araujo, S. B. L., Bajer, K., Botero-Cañola,
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Code Tribe Species Country Coordinate

Habitat,
altitude
(m a.s.l.)

Date
Collection
method
Collector

Phytoplasma
(Accession
number)

LH78 Chiasmini Leofa dispar South Africa 28°53’59”S
29°26’05”E

Grassland,
1,583

27 Dec 2004
Sweep net
J.N.
Zahniser

16Sr
XI/XIV
(MW473669)

LH82 Paralimnini Pravistylus
exquadratus

South Africa 33°51’01”S
19°03’16”E

Fynbos, 201 15 Dec 2004
Vacuum
J.N.
Zahniser

16Sr
XI/XIV
(MW473673)

LH102 Macrostelini Macrosteles
sordidipen-
nis

Kyrgyzstan 41°47’52”N
78°39’44”E

Sedge
meadow
2,950

04 Jul 1999
Vacuum D.
Novikonv &
C.H.
Dietrich

16Sr I
(MW473674)
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Code Tribe Species Country Coordinate

Habitat,
altitude
(m a.s.l.)

Date
Collection
method
Collector

Phytoplasma
(Accession
number)

LH133 Paralimnini Mayawa
capitata

Australia 32°57’06”S
115°54’49”E

Yarloop
Nature
Reserve, 76

10 Jan 2010
Sweep net
K. Hill, et.
al.

16Sr II/XV
(MW473671)

LH139 Paralimnini Mayawa
affinifacialis

Australia 27°56’03”S
153°04’42”E

Flagstone
Creek
Reserve
Park, on
grassland,
50

04 Jan 2009
Sweep net
K. Hill, et.
al.

16Sr XIV
(MW473672)

LH143 Paralimnini Acharis
ussuriensis

China 33°58’53”N
108°09’50”E

Forest
Natural
Reserve, 660

12 July 2012
Vacuum Wei
Cong

16Sr
XI/XIV
(MW473670)

Figure 1. Map of the sampling sites of the 227 leafhopper samples screened in the present study. Symbols
indicating the Cq values results of qPCR (small empty circle: negative; big empty circle: Cq >41; big black
circle: 35.54<Cq[?]40; empty triangle: 31<Cq<35.52; black triangle Cq [?]30). Map created QGIS 3.8 and
was modified with Adobe Photoshop CC 2019. This map is licensed under an X/MIT style Open-Source
License by the Open Source Geospatial Foundation.
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Figure 2. Dorsal views of the 6 species of leafhoppers that tested positive for phytoplasmas. A, Acharis us-
suriensis (Melichar) (LH143); B, Leofa (Tortotettix ) dispar (Theron) (molecular code, LH078); C, Macroste-
les (Macrosteles )sordidipennis (St̊al) (LH102); D, Mayawa capitata(Kirkaldy) (LH133); E, Mayawa affini-
facialis Dietrich (LH139); F,Pravistylus exquadratus (Naudé) (LH082). Scale bar 1.0 mm.

Figure 3. Maximum likelihood tree based on 952 positions of the F2n/R2 fragment of the 16S rRNA gene
obtained from 6 samples of the present study (in bold), 20 phytoplasma strains from GenBank (used as
references) and Acholeplasma palmae (outgroup). Bootstrap values (> 63%) are shown above or below the
branches. Branch lengths are proportional based on the scale indicated. GenBank accession numbers and
details of the reference phytoplasma strains are listed in Supplementary Table S2. The names at the tip
of the tree include the following: the phytoplasma strain (acronym or Candidatus species name), the 16Sr
phytoplasma group in parenthesis or the name of the insect species host, and the Country Code where the
strain was detected (AU, Australia; BR, Brazil; CN, China; EG, Egypt; FR, France; IT, Italy; IN, India;
KE, Kenya; KG, Kyrgyzstan; MM, Myanmar; MX, Mexico; PL, Poland; RS, Serbia; TH, Thailand; US,
United States; ZA, South Africa). lab: laboratory-maintained strain. A, B and C indicate the clusters that
include the samples from this study.
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. Supplementary material

Figure S1. Agarose gel (1%) showing F2n/R2 amplicons obtained in nested PCR for 14 leafhopper samples
of study. B1: blanks, negative control; ALY, alder yellow phytoplasma; M: marker of molecular weight, 1
kb DNA ladder (RBC Bioscience). Numbers refer to the leafhopper IDs in Table S1.

Table S1. List of 227 samples of leafhoppers analyzed in 2018. All taxa belong to subfamily Deltocephali-
nae (Hemiptera, Cicadellidae) except the species 216 (ID) belonging to Hemiptera in family Membracidae.
Each record (ID) represents a sample of 1 or more specimens of one species (columns E-F) collected in an
independent collecting event (columns I-O). Results of the qPCR and nested PCR are reported in columns
B-C.

Table S2. List of 16S rRNA gene sequences downloaded from GenBank and used as reference strains in this
study.
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