Excess Gibbs free energy models for studying ionic liquid-H2O binary system

Chunyan Ma¹, Yanxin Wang², Yunhao Sun¹, Xiaohua Lu², and Xiaoyan Ji³

¹Lulea University of Technology ²Nanjing Tech University ³Affiliation not available

February 26, 2021

Abstract

In this work, the excess Gibbs free energy models, i.e., non-random two-liquid (NRTL) model, electrolyte NRTL model, and electrolyte NRTL model including new strategies (association or hydration), were used to describe the macroscale properties and interpret the microstructure, clarifying the role of association and hydration in model development, and the enthalpy of mixing of three imidazolium-based IL-H2O systems containing the same cation but different sizes of anions, i.e., Cl-, Br-, and Iwere measured for the first time to provide systematic data for model development. The models were developed and evaluated based on the newly measured data and the osmotic coefficient from the literature. The model reflecting the intrinsic mechanism of dissociation and hydration competition gives the best modeling results. The real ionic strength predicted from the identified model was quantitatively correlated with the electrical conductivities.

Hosted file

Manuscript anout ENRTL modeling-Chunyan Final_short abstract.pdf available at https: //authorea.com/users/398248/articles/510881-excess-gibbs-free-energy-models-forstudying-ionic-liquid-h2o-binary-system