Accuracy of automatic abnormal potential annotation for substrate identification in scar-related ventricular tachycardia

Yosuke Nakatani¹, Philippe Maury², Anne Rollin², F. Daniel Ramirez³, Cyril Goujeau⁴, Takashi Nakashima ⁵, Clémentine André⁶, Aline Carapezzi⁷, Philipp Krisai⁸, Takamitsu Takagi⁹, Tsukasa Kamakura¹⁰, Konstantinos Vlachos¹¹, Ghassen Cheniti¹², Romain Tixier¹³, Quentin Voglimacci-Stefanopoli¹⁴, Nicolas Welte¹⁵, Remi Chauvel¹⁶, Josselin Duchateau¹³, Thomas Pambrun¹⁷, Nicolas Derval¹⁸, Mélèze Hocini¹⁹, Michel Haissaguerre²⁰, Pierre Jais¹³, and Frederic Sacher²¹

February 27, 2021

Abstract

Introduction: Ultra-high-density mapping for ventricular tachycardia (VT) is increasingly used. However, manual annotation of local abnormal ventricular activities (LAVAs) is challenging in this setting. Therefore, we assessed the accuracy of the automatic annotation of LAVAs with the Lumipoint algorithm of the Rhythmia system (Boston Scientific). Methods and Results: One hundred consecutive patients undergoing catheter ablation of scar-related VT were studied. Areas with LAVAs

¹University of Toyama

²University Hospital Rangueil

³Centre Hospitalier Universitaire de Bordeaux Hopital Cardiologique

⁴, Service de Rhythmologie, Hôpital Cardiologique du Haut-Lévêque (Centre Hospitalier Universtaire de Bordeaux)

⁵1. Electrophysiology and Ablation Unit and L'Institut de rythmologie et modélisation cardiaque (LIRYC)

⁶CHU Trousseau

⁷Boston scientific

⁸University of Bordeaux

⁹Yokosuka Kyosai Hospital

¹⁰National Cerebral and Cardiovascular Center

¹¹Evangelismos General Hospital of Athens

¹²Hôpital Cardiologique du Haut Lévêque

¹³Centre Hospitalier Universitaire de Bordeaux

¹⁴University Hospital Rangueil, Toulouse

¹⁵Centre Hospitalier Universitaire de Bordeaux Hôpital Haut-Lévêque

¹⁶Hôpital Cardiologique du Haut-Lévêque (Centre Hospitalier Universtaire de Bordeaux)

¹⁷Hopital du Haut Leveque/LIRYC, Bordeaux

¹⁸Hopital cardiologique du haut-leveque

 $^{^{19}{\}rm H\^{o}pital}$ Cardiologique du Haut-Lévèque

²⁰Hopital Cardiologique du Haut-Leveque

²¹Bordeaux University Hospital

and ablation sites were manually annotated during the procedure and compared with automatically annotated areas using the Lumipoint features for detecting late potentials (LP), fragmented potentials (FP), and double potentials (DP). The accuracy of each automatic annotation feature was assessed by re-evaluating local potentials within automatically annotated areas. Automatically annotated areas matched with manually annotated areas in 64 cases (64%), identified an area with LAVAs missed during manual annotation in 15 cases (15%), and did not highlight areas identified with manual annotation in 18 cases (18%). Automatic FP annotation accurately detected LAVAs regardless of the cardiac rhythm or scar location; automatic LP annotation accurately detected LAVAs in sinus rhythm, but was affected by the scar location during ventricular pacing; automatic DP annotation was not affected by the mapping rhythm, but its accuracy was suboptimal when the scar was located on the right ventricle or epicardium. Conclusion: The Lumipoint algorithm was as/more accurate than manual annotation in 79% of patients. FP annotation detected LAVAs most accurately regardless of mapping rhythm and scar location. The accuracy of LP and DP annotations varied depending on mapping rhythm or scar location.

Hosted file

VT lumipoint study Manuscript.pdf available at https://authorea.com/users/315801/articles/511082-accuracy-of-automatic-abnormal-potential-annotation-for-substrate-identification-in-scar-related-ventricular-tachycardia