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Abstract

Aim: Artemisia annua L. is the one and only original plant used to isolate artemisinin which is a highly effective remedy to

fight malaria. Climate change leads to change of distribution and suitable range for many species and A. annua is no exception.

However, it is not clear that the potential distribution and suitable range change of this unique plant under climate change.

Therefore, we present this research to study its change in the future. Location: Global. Methods: Since the accuracy

of species distribution models was affected by occurrence records and environmental variables, 1062 presence records and 7

variables were picked out to build ensemble models with 10 different algorithms by means of biomod2 under current and future

climate scenarios. Results: At present, except SRE, the AUC values of the rest models were greater than 0.8, and the TSS

values were greater than 0.6, the values of ensemble model were 0.968 and 0.826 respectively. Mean temperature of driest

quarter was the dominant factor to shape the range of A. annua and its optimum interval ranged from 4.8 to 23.3ºC. The high

suitable habitats of A. annua were mainly located in Eastern Asia, Western Europe, Central Europe. In the future, the high

suitable area would decline at 15.55% to 25.87%. Main conclusions: Ensemble models showed it performed better than any

the single one. At present, the high suitable habitat simulated by ensemble model was in accordance with the actual occurrence

records. In the future, the high suitable habitat for A. annua would move northeast, and disappear in North America. They

would increase with time under each SSP, but sharply decline while comparing with the current one. This study can be used

to protect wild resource and guide cultivation for A. annua, which would make modest contribution to fight malaria.

Title

Potential distribution of Artemisia annua L. under climate change

Running title

Distribution of Artemisia annua

Abstract

Aim: Artemisia annua L. is the one and only original plant used to isolate artemisinin which is a highly
effective remedy to fight malaria. Climate change leads to change of distribution and suitable range for many
species and A. annua is no exception. However, it is not clear that the potential distribution and suitable
range change of this unique plant under climate change. Therefore, we present this research to study its
change in the future.

Location: Global.

Methods: Since the accuracy of species distribution models was affected by occurrence records and envi-
ronmental variables, 1062 presence records and seven variables were picked out to build ensemble models
with 10 different algorithms by means of biomod2 under current and future climate scenarios.

1



P
os

te
d

on
A

u
th

or
ea

3
M

ar
20

21
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
61

47
64

88
.8

38
87

87
1/

v
1

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Results: At present, except SRE, the AUC values of the rest models were greater than 0.8, and the TSS
values were greater than 0.6, the values of ensemble model were 0.971 and 0.839 respectively. Mean tempe-
rature of driest quarter was the dominant factor to shape the range of A. annua and its optimum interval
ranged from 4.8 to 23.3ºC. The high suitable habitats of A. annua were mainly located in Eastern Asia,
Western Europe, Central Europe. In the future, the high suitable area would decline at 15.55% to 25.87%.

Main conclusions: Ensemble models showed it performed better than any the single one. At present, the
high suitable habitat simulated by ensemble model was in accordance with the actual occurrence records. In
the future, the high suitable habitat for A. annua would move northeast, and disappear in North America.
They would increase with time under each SSP, but sharply decline while comparing with the current one.
This study can be used to protect wild resource and guide cultivation for A. annua , which would make
modest contribution to fight malaria.

Keywords

Artemisia annua , biomod2, climate change, ensemble model, malaria, species distribution model

Introduction

Artemisia annua L. also called as annual wormwood, or huang hua hao, or sweet Annie, or sweet wormwood,
is an annual herb, belong to Asteraceae(Lin, Humphries, & Gilbert, 2011). Its dry aboveground part is a
traditional Chinese medicine called Qinghao(Tang & Eisenbrand, 1992). Qinghaosu (also named artemisinin
or atreannuin), known as the frontline treatment of malaria(L. H. Miller & Su, 2011), was isolated only from
A. annua with none yield in 30 other species of Artemisia (Klayman, 1985). Additional,A. annua has strong
allelopathy(Lydon, Teasdale, & Chen, 1997). During its growth process, some secondary metabolites could
be released to affect their surrounding plants(Knudsmark Jessing, Duke, & Cedergreeen, 2014). Therefore, it
is an important resource plant not only for medical purpose to cure human diseases, but also for agricultural
purpose to exploit natural herbicide.

In 2017, there were still an estimated 219 million malaria cases and 435000 deaths globally(WHO, 2018). Re-
liable supply of artemisinin which is the core component of ACTs (artemisinin-based combination therapies)-
the most effective antimalarial drugs- is an urgent need(Kayani, Kiani, Dilshad, & Mirza, 2018). Besides
exploring new synthesis pathway of artemisinin, enlarging cultivated area of A. annua would be the best
way to ease this urgency while its wild resource is limited. Meanwhile, climate change has shift the ranges of
many species(Urban, 2015). So, projecting its potential distribution, predicting its range shift under different
climate scenarios and understanding the relationship between its distribution and environmental factors are
very necessary. Up to now, there are many researches on isolation(Klayman et al., 1984), pharmacological
analysis(Efferth, 2006) and artificial synthesis(Farhi, Kozin, Duchin, & Vainstein, 2013) of artemisinin, cli-
mate suitability analysis and relationship between artemisinin content and climate factors. It is rare to see
some related report or studies about the range shift of A. annua under future climate scenarios. Species
distribution models (SDM)(Austin, 2007) and global climate model(Comer, Fenech, & Gough, 2007) make
it possible for us to simulate and foresee the range change of species under different future climate scenarios.

With niche theory as its kernel, SDM is the synthesis of geographic information systems (GIS), ecology and
statistics(Jane Elith & Franklin, 2013; A. Guisan et al., 2013). Based on species occurrences and environmen-
tal variables, SDMs could work out some results using specific algorithms. These results can be explained as
species richness, habitat suitability or probability of species presence(J. Elith & Leathwick, 2009). Nowadays,
SDM is widely used in many research fields, such as Conservation Biology, Invasion Biology, Biogeography,
Lemology, and impact of climate change(Jane Elith & Franklin, 2013; J. Elith & Leathwick, 2009; J. Miller,
2010; Phillips, Anderson, & Schapire, 2006).

Many global climate models are developed to simulate the future climate for the Sixth Assessment Report
(AR6) of the Intergovernmental Panel on Climate Change (IPCC)(Eyring et al., 2016). The past, current
and future climate data could be accessed conveniently from the Coupled Model Intercomparison Project
(CMIP), and facilitate large scale research on impact of climate change(Balaji et al., 2018).
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In this study, by means of SDMs and climate data, we simulated the present and future potential distributions
ofA. annua based on its occurrence records around the world. The following questions were addressed:
(1) what is the potential distribution pattern of A. annua under present climate? (2) which bioclimatic
variable is the dominant variable to shape the range of this species? (3) How do the future distributions shift
under different future climate scenarios? (4) What can be inferred from these results for its plant plan and
management?

Methods

Species occurrence

In the study, 2130 occurrence records of A. annua were collected for modelling its potential distribu-
tion. Most of these data were retrieved from several online databases. They were Global Biodiversity
Information Facility (GBIF,http://www.gbif.org/ ), Tropicos Database (http://www.tropicos.org/ ), Natio-
nal Specimen Information Infrastructure (NSII,http://www.nsii.org.cn/ ) and Chinese Virtual Herbarium
(CVH,http://www.cvh.ac.cn/ ). The others were acquired from field investigation. The detailed addresses of
records were georeferenced by means of GPS and Google map. In order to reduce the negative effects caused
by high-density collection, SDMtoolbox(Brown, 2014) was introduced to spatially rarefy the occurrence data
and remove duplicate records. Each grid cell (˜10 km×10 km) just kept one record. Thus, 1062 presence
records remained for building models (Fig. 1).

Environmental variables

Altitude and a set of 19 bioclimatic variables were adopted in our research (Table 1). These bioclimatic
variables were derived from the monthly meteorological data(Fick & Hijmans, 2017). They could be clus-
tered into four groups which represented annual trends, seasonality and extreme or limiting environmental
factors(van Zonneveld, Castaneda, Scheldeman, van Etten, & Van Damme, 2014). All these variables were
at 5 arc-minutes spatial resolution (˜10 km×10 km) and with the range of 180°W to 180°E longitude and
60°S to 84°N latitude.

The altitude data were obtained from CGIAR-CSI (available athttps://srtm.csi.cgiar.org/ ). The current
global bioclimatic variables data were download from CHELSA (available at http://chelsa-climate.org/).
They were the average values for the period 1979-2013(Karger et al., 2017). The future ones were derived
from the projections of eight global climate models (GCMs): BCC-CSM2-MR, CNRM-CM6-1, CNRM-
ESM2-1, CanESM5, IPSL-CM6A-LR, MIROC-ES2L, MIROC6, MRI-ESM2-0. These GCMs were selected
according to their data availability and involvement in relevant model intercomparison projects within the
CMIP6(Moseid et al., 2020). The future climate data were 20-year averages for 2021-2040, 241-2060, 2061-
2080 and 2081-2100 and for four Shared Socio-economic Pathways (SSPs): 126, 245, 370 and 585. These
data were downloaded from WorldClim (available at http://www.worldclim.org). In order to reduce the bias
in certain area from sole GCM, multi-model ensemble (MME) was adopted to derived the average values
for future climates(Mendlik & Gobiet, 2016; Pierce, Barnett, Santer, & Gleckler, 2009). Since collinearity-
correlation among variables would result in accuracy drop of SDMs, total seven variables (shown in bold in
Table 1) were picked out from 20 environmental variables according to multiple correlation coefficient (|R|
< 0.6) and variance inflation factor (VIF < 10) between each other(Naimi & Araújo, 2016).

Modelling procedure

Biomod2 was a R package which was developed for species distribution modelling. It included 10 diffe-
rent species distribution algorithms, such as Artificial Neural Network (ANN), Classification Tree Analysis
(CTA), Flexible Discriminant Analysis (FDA), Generalized Additive Model (GAM), Generalized Boosting
Model (GBM), Generalized Linear Model (GLM), Multiple Adaptive Regression Splines (MARS), Maxi-
mum Entropy (MAXENT), Random Forests (RF) and Surface Range Envelop (SRE)(Wilfried Thuiller,
Georges, Engler, & Breiner, 2016). Since absence records requirement of several algorithms above, 10000
pseudo-absences were selected randomly 5 times to follow a common strategy(Antoine Guisan, Thuiller,
& Zimmermann, 2017; Merow, Smith, & Silander, 2013). 80% of presence and pseudo-absence data were
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used to calibrate the models, and the rest was used for model testing(Antoine Guisan et al., 2017). The
model calibrations and evaluations would repeat 10 times. Response curves and relative contributions of
each variable involved were calculated. AUC (area under the receiver operating characteristic curve) and
TSS (true skill statistics) were employed as performance evaluation criteria for 10 different algorithms. The
models whose AUC was greater than 0.90 and TSS was greater than 0.6 were considered to be with good
performance in species distribution modelling(Allouche, Tsoar, & Kadmon, 2006; Swets, 1988). By means of
biomod2, an ensemble modelling approach were adopted to build the ensemble models for eliminating model
bias caused by model selection. Using these ensemble models, the potential distributions under current and
future climate scenarios were projected for A. annua . And finally, based on these projections, distribution
patterns, range sizes and shifts under different climate scenarios were analyzed and compared for A. annua
.

Results

Model performances

There were 10 algorithms used to build the ensemble models for A. annuain the research. The AUC and
TSS values of each algorithms and ensemble models were calculated to evaluate their performance under
different climate scenarios.

The TSS results were showed in Table 2. The Average TSS value of RF was 0.835. It got the first place in
10 algorithms, followed by GBM, CTA, MAXENT, GAM, ANN, MARS, GLM and FDA. The last one was
SRE, its average TSS value was 0.494. The average TSS value for Ensemble was 0.839, it was greater than
any other individual algorithm.

The AUC values were showed in Table3. The average AUC value of RF was 0.964. It was the maximum
in 10 algorithms, followed by GBM, MAXENT, GAM, MARS, CTA, ANN, FDA and GLM. The last one
continued to be SRE, its average AUC value was 0.747. The average AUC value for Ensemble was 0.971, it
was greater than any other individual algorithm too.

Contributions of climatic factors

Potential distribution of species strongly depended on environmental factors, especially climatic factors. Du-
ring model simulating, variable importance and response curves were figured out to indicate the relationship
between distributions and environmental variables (Fig. 2a). Each factor played a different part in different
algorithms, and showed out different importance. Dominant environmental factors were figured out for each
algorithm. BIO9 (mean temperature of driest quarter) performed the best among seven variables in all of
10 algorithms. According its response curves plotted out in Fig. 2b, the proper mean temperature of driest
quarter for A. annua ranged from 4.8 to 23.3.

Current and future potential distributions

Potential distributions of A. annua were projected by ensemble models under current and future climate
scenarios. Based on the value of presence probability, the distribution could be categorized into three classes
respectively. The area with value ranged from 0-0.2 was low suitable area, the area with value ranged from
0.2-0.5 was medium suitable area, and the area with value ranged from 0.5-1 was high suitable area.

According to the projection of ensemble model under current climate scenario, the high suitable areas for
A. annua were located in Eastern Asia, Western Europe, Central Europe, eastern part of Northern Europe,
western part of Eastern Europe, south and east edge of Australia, eastern coast of North America, northwest
part of Great Plains in U.S., southeast coast and Andes Mountains in South America (Fig. 3). The medium
suitable areas were located in west of China, Eastern Europe, central and east of U.S. and southeast of South
America.

Due to different climate scenarios, the future potential distributions ofA. annua differed. The outputs
showed that, the pixel numbers for high suitable habitats increased with time under each SSP (Fig. 4). The
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largest growth occurred under SSP 585, its percentage raised up to 7.18% (average of 2080-2100) from 6.34%
(average of 2021-2040).

Although, compared with the current one, the pixel numbers declined sharply under future climate scenarios.
The percentages ranged from 15.55% (average of 2081-2100 under SSP 585) to 25.87% (average of 2021-2040
under SSP 126). After analyzing the projections of ensemble models under different climate scenarios and
periods, we figured out the gain and loss of high suitable habitats in the future. According to the result,
the shift patterns of different periods under SSP 126 was demonstrated below (Fig. 5). Almost all the high
suitable habitats which located in North America degraded. The high suitable habitats in Europe presented
a trend moving toward east, they were loss in Atlantic coast and gain in East Europe. In Asia, the habitat
shift area mainly located around China, most of degraded areas were in northwest China and north of China,
major parts of upgraded area spotted along the border of southwest China and south China. Under the
other three SSPs, the gain and loss acted a same pattern as the one under SSP 126, which could be checked
in supplementary materials (see Appendix S1).

Discussion

In our study, ensemble models were developed for A. annua . With good accuracy, potential distributions
were simulated and suitable habitats were estimated under present and future climate scenarios. The sim-
ulations indicated that the mean temperature of driest quarter was the dominant bioclimatic variable. It
also showed that a huge change both on its range and location which would be caused by climate change.
This result clearly pointed out that this herb would be dramatically influenced by climate change. Its future
conservation and utilization must consider the impact of climate change.

Model performance

Ensemble models were widely adopted in many researches related to species distribution(Hao, Elith, Lahoz-
Monfort, & Guillera-Arroita, 2020). Previous studies showed that uncertainty of model result would be
brought out by many factors such as species distribution models, dispersal strategies, environmental factors
and so on(W. Thuiller, Gueguen, Renaud, Karger, & Zimmermann, 2019). Although there were lack of strong
quantitative conclusions about the predictive performance of ensemble models(Hao, Elith, Guillera-Arroita,
& Lahoz-Monfort, 2019). There was a popular belief that ensemble model would reduce the uncertainty due
to sole algorithm, and it would perform better than sole one(Araujo et al., 2019; Araujo & New, 2007). In
our study, except SRE, the AUC values of all the other nine models were greater than 0.8, and the TSS
values were greater than 0.6. The values of ensemble model were 0.971 and 0.835 respectively. Based on this,
an obvious result could easily draw out that ensemble model outperformed any sole algorithm, which was
consistent with the conclusion ahead. This result also showed that the simulation was with high accuracy
and could be used to predict the current and future potential distributions of A. annua .

Dominant factors

Any organisms cannot live without its biotic and abiotic elements around. Their distribution range was
determined with many factors, such as climate, soil, topography, biology, history, human activity and so on.
A. annua was no exception. In our study, 19 bioclimatic factors and altitude were prepared for distribution
modeling. After analyzing their correlations between each other, seven variables were considered to build
species distribution models for A. annua . Due to their different basic theories and emphases, the same
factors behaved diversely. But BIO9 (mean temperature of driest quarter) occupied the leading position in
every models. This bioclimatic variable played an important role in shaping the distribution of A. annua.

Potential distribution

A. annua is an annual plant. Its native habitat was located in Asia, most likely in China. Now, it grew in
every continent except Antarctic (Ferreira, Laughlin, Delabays, & de Magalhaes, 2005). Accompany with
development of cultivating techniques and growing demand of raw material for extracting artemisinin, it
had been introduced in for experimental cultivation or adopted for breeding in non-native habitats(Ferreira
et al., 2005; Woerdenbag et al., 1994). The simulation showed its high suitable habitat was located in
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many countries, such as USA, Brazil, Argentina, Australia, Malaysia, Vietnam, Thailand, Japan, Korea,
India, Ukraine, Poland, Czech, Slovenia, Hungary, Romania, Austria, Italy, Sweden, German, France, UK,
Madagascar, Tanzania, South Africa and so on(Laughlin, Heazlewood, & Beattie, 2002). It was in consistent
with the distribution of its occurrence records. Compared with other similar studies, it showed that our
simulation basically coincided with others(Qin, Jian, Jie, Chengzhong, & Caixiang, 2018; Wang, Li, Zeng,
& Xie, 2015). But it was obvious that the high suitable habitat area in their study was bigger than that
in ours(Ding et al., 2020). This may be caused by different quantity of adopted algorithms and occurrence
records. Only boosted regression tree (BRT) was used in their research. The uncertainty of single model
was unavoidable in that situation.

Shift of suitable habitat in Future

Range of species would shift with climate change, which had been demonstrated by a larger number of
observation and simulating studies on species distribution(Bellard, Bertelsmeier, Leadley, Thuiller, & Cour-
champ, 2012; Urban, 2015). Medicinal plants, as an important class of resource plants, were always the
first target of species distribution modeling. According to previous studies, high suitable habitat of some
species would shrink, even disappear, others would increase, and still others would remain stable in the fu-
ture. Kurpis(Kurpis, Serrato-Cruz, & Feria Arroyo, 2019), Zhao(Zhao et al., 2020) and Xie(Xie et al., 2018)
found the potential distribution of Tagetes lucida Cav. (Asteraceae), Notopterygium incisum Ting ex H. T.
Chang (Apiaceae) and Eriocaulon buergerianum Kornicke. (Eriocaulaceae) would decrease respectively in
the future. Asase(Asase & Peterson, 2019) considered that the high suitable habitat of Alstonia boonei De
Wild (Apocynaceae) would be stable under future climate scenarios. Kunwar(Kunwar et al., 2020) pointed
out that there would be more high suitable habitat for Dactylorhiza hatagirea (D. Don) Soo (Orchidaceae)
in the future. Shen(Shen et al., 2019) indicated that adaptive cultivation regions for Panax quinquefolius L.
(Araliaceae) would expand by 9.16%–30.97% in 2070s. In our study, the projections revealed that ranges
of A. annua would change dramatically in the future, its area of high suitable habitats would decline in all
mentioned periods and climate scenarios.

Impact of climate change

Global climate is changing but its rate and impacts are localized(IPCC, 2013). Amplitude of the variation
differed from area to area under future climate change scenarios. So, shifts of high suitable habitat ofA.
annua would present out different patterns in different regions in the future scenarios. In our study, the
ranges of high suitable area of A. annua in some areas would expand, some would remain stable, some
would shrink, even disappear. In Europe, its high suitable habitat would shrink in the coast area of Atlantic
Ocean, and expand in the south of Finland and the northwest of Russia. A good agreement could be observed
between our simulation and the one made in other studies. Thuiller (W. Thuiller, Lavorel, Araujo, Sykes, &
Prentice, 2005) stated that the total suitable area of forest herb in Europe would move strongly northwards
and eastwards under future climate scenarios. In Asia, the expand area scatters in southwest border of
China, and shrinks in 40degN in China. This may be caused by the unique topography. There were many
mountains. And it should be point out that the high suitable habitat for A. annua in North America almost
disappeared in the future. This was in accordance with previous studies about extinction risk of North
American seed plant(Zhang et al., 2017). They predicted that most species belong in Artemisia would suffer
distribution loss in the future.

In conclusion, we simulated the potential distributions of A. annua under current and future climate scenarios
across the world, and predicted its range shift in different periods and Shared Socio-economic Pathways. In
our study, with better performance than sole species distribution model, ensemble model was qualified
for simulating the potential distribution of A. annua . Among 20 environmental factors, BIO9 (Mean
temperature of driest quarter) had the strongest ability of shaping the range of the target species. Its
potential distribution under present climate scenario was in accordance with the actual range. It was
predicted that the high suitable habitat ofA. annua would decrease under the climate change in the future.
Its high suitable habitats would disappear in North America, and move northeastwards in the Europe. Our
simulation and forecast could be used to protect the wild resource of A. annua and provide theory guidance
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for field selection in its cultivation and management. Finally, we hoped that this study could make modest
contribution to fight malaria.
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Tables

Table 1 Environmental variables used in modeling potential distribution of A. annua

Name Description

ALT Altitude
BIO1 Annual Mean Temperature
BIO2 Mean Diurnal Range (Mean of monthly (max temp - min temp))
BIO3 Isothermality (BIO2/BIO7) (×100)
BIO4 Temperature Seasonality (standard deviation ×100)
BIO5 Max Temperature of Warmest Month
BIO6 Min Temperature of Coldest Month
BIO7 Temperature Annual Range (BIO5-BIO6)
BIO8 Mean Temperature of Wettest Quarter
BIO9 Mean Temperature of Driest Quarter
BIO10 Mean Temperature of Warmest Quarter
BIO11 Mean Temperature of Coldest Quarter
BIO12 Annual Precipitation
BIO13 Precipitation of Wettest Month
BIO14 Precipitation of Driest Month
BIO15 Precipitation Seasonality (Coefficient of Variation)
BIO16 Precipitation of Wettest Quarter
BIO17 Precipitation of Driest Quarter
BIO18 Precipitation of Warmest Quarter
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. Name Description

BIO19 Precipitation of Coldest Quarter

Table 2 TSS of 10 algorithms applied in modeling potential distribution of A. annua under current and
future climate scenarios. The color from blue to red represented the TSS values got bigger and bigger.

SSPa Periods SREb FDAc GLMd MARSe ANNf GAMg MAXENTh CTAi GBMj RFk Ensemble Model

Current Current 0.457 0.557 0.572 0.661 0.636 0.638 0.716 0.754 0.772 0.818 0.827
SSP126 2021-2040 0.490 0.622 0.647 0.704 0.705 0.720 0.759 0.764 0.792 0.833 0.840
SSP126 2041-2060 0.492 0.614 0.642 0.693 0.696 0.704 0.762 0.764 0.793 0.835 0.839
SSP126 2061-2080 0.494 0.616 0.645 0.704 0.708 0.711 0.773 0.773 0.798 0.837 0.839
SSP126 2081-2100 0.483 0.612 0.650 0.697 0.696 0.709 0.760 0.761 0.787 0.833 0.839
SSP245 2021-2040 0.497 0.626 0.651 0.700 0.708 0.720 0.762 0.767 0.796 0.838 0.839
SSP245 2041-2060 0.491 0.618 0.646 0.701 0.707 0.723 0.771 0.773 0.795 0.833 0.841
SSP245 2061-2080 0.497 0.609 0.645 0.697 0.695 0.708 0.767 0.764 0.791 0.836 0.840
SSP245 2081-2100 0.490 0.605 0.642 0.691 0.693 0.706 0.763 0.763 0.786 0.831 0.839
SSP370 2021-2040 0.498 0.633 0.652 0.705 0.702 0.725 0.768 0.768 0.794 0.836 0.842
SSP370 2041-2060 0.502 0.623 0.653 0.695 0.713 0.714 0.764 0.770 0.791 0.838 0.838
SSP370 2061-2080 0.509 0.620 0.649 0.698 0.697 0.715 0.766 0.774 0.790 0.840 0.837
SSP370 2081-2100 0.503 0.610 0.646 0.695 0.711 0.709 0.764 0.763 0.786 0.833 0.838
SSP585 2021-2040 0.501 0.637 0.657 0.706 0.707 0.731 0.759 0.775 0.794 0.840 0.837
SSP585 2041-2060 0.497 0.620 0.649 0.705 0.699 0.722 0.763 0.768 0.796 0.836 0.839
SSP585 2061-2080 0.495 0.600 0.640 0.687 0.700 0.701 0.760 0.774 0.790 0.837 0.848
SSP585 2081-2100 0.507 0.605 0.632 0.685 0.708 0.713 0.758 0.765 0.789 0.841 0.836
Average Average 0.494 0.613 0.642 0.696 0.699 0.710 0.761 0.767 0.791 0.835 0.839

a SSP is the abbreviation of Shared Socio-economic Pathways. b-k were the short name for following species
distribution models. They are Artificial Neural Network (ANN), Classification Tree Analysis (CTA), Flexi-
ble Discriminant Analysis (FDA), Generalized Additive Model (GAM), Generalized Boosting Model (GBM),
Generalized Linear Model (GLM), Multiple Adaptive Regression Splines (MARS), Maximum Entropy (MAX-
ENT), Random Forests (RF) and Surface Range Envelop (SRE).

Table 3 AUC of 10 algorithms applied in modeling potential distribution of A. annua under current and
future climate scenarios. The color from blue to red represented the AUC values got bigger and bigger.

SSPa Periods SREb GLMc FDAd ANNe CTAf MARSg GAMh MAXENTi GBMj RFk Ensemble Model

Current Current 0.729 0.844 0.840 0.857 0.893 0.886 0.866 0.921 0.942 0.961 0.969
SSP126 2021-2040 0.745 0.882 0.889 0.892 0.896 0.910 0.916 0.938 0.950 0.965 0.972
SSP126 2041-2060 0.746 0.875 0.885 0.886 0.897 0.906 0.910 0.937 0.947 0.963 0.971
SSP126 2061-2080 0.747 0.877 0.885 0.897 0.904 0.910 0.914 0.942 0.950 0.966 0.971
SSP126 2081-2100 0.742 0.879 0.883 0.886 0.896 0.908 0.912 0.936 0.948 0.964 0.970
SSP245 2021-2040 0.748 0.882 0.889 0.895 0.899 0.908 0.916 0.938 0.949 0.965 0.971
SSP245 2041-2060 0.745 0.881 0.885 0.895 0.903 0.907 0.915 0.938 0.949 0.963 0.970
SSP245 2061-2080 0.748 0.876 0.883 0.890 0.899 0.906 0.913 0.936 0.947 0.964 0.971
SSP245 2081-2100 0.745 0.875 0.880 0.889 0.898 0.905 0.911 0.936 0.946 0.964 0.971
SSP370 2021-2040 0.749 0.884 0.891 0.894 0.897 0.910 0.917 0.939 0.949 0.964 0.971
SSP370 2041-2060 0.751 0.879 0.886 0.895 0.902 0.905 0.912 0.937 0.948 0.964 0.970
SSP370 2061-2080 0.755 0.877 0.885 0.891 0.903 0.905 0.913 0.937 0.948 0.964 0.971
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. SSPa Periods SREb GLMc FDAd ANNe CTAf MARSg GAMh MAXENTi GBMj RFk Ensemble Model

SSP370 2081-2100 0.752 0.876 0.882 0.900 0.896 0.906 0.912 0.935 0.946 0.964 0.971
SSP585 2021-2040 0.750 0.885 0.893 0.893 0.901 0.911 0.919 0.937 0.949 0.965 0.971
SSP585 2041-2060 0.749 0.880 0.885 0.891 0.903 0.909 0.914 0.935 0.949 0.965 0.971
SSP585 2061-2080 0.748 0.874 0.874 0.890 0.898 0.906 0.911 0.936 0.949 0.964 0.972
SSP585 2081-2100 0.753 0.870 0.873 0.895 0.897 0.901 0.911 0.934 0.948 0.966 0.971
Average Average 0.747 0.876 0.882 0.890 0.899 0.906 0.911 0.936 0.948 0.964 0.971

a SSP is the abbreviation of Shared Socio-economic Pathways. b-k were the short name for following species
distribution models. They are Artificial Neural Network (ANN), Classification Tree Analysis (CTA), Flexi-
ble Discriminant Analysis (FDA), Generalized Additive Model (GAM), Generalized Boosting Model (GBM),
Generalized Linear Model (GLM), Multiple Adaptive Regression Splines (MARS), Maximum Entropy (MAX-
ENT), Random Forests (RF) and Surface Range Envelop (SRE).

Figure legend and embedded figures

Fig. 1 Occurrence distribution of A. annua

(Blue pot represented the location of occurrence)
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Fig. 2 (a) Variable importance of seven environmental factors in modeling potential distributions of A.
annua with 10 different species distribution models. (b) Response curves of BIO9 (mean temperature of
driest quarter) for each algorithm in modeling potential distribution of A. annua. The 10 species distribution
models were Artificial Neural Network (ANN), Classification Tree Analysis (CTA), Flexible Discriminant
Analysis (FDA), Generalized Additive Model (GAM), Generalized Boosting Model (GBM), Generalized Lin-
ear Model (GLM), Multiple Adaptive Regression Splines (MARS), Maximum Entropy (MAXENT), Random
Forests (RF) and Surface Range Envelop (SRE). The seven environmental factors were altitude (ALT), Mean
Diurnal Range (Mean of monthly (max temp - min temp)) (BIO2), Mean Temperature of Wettest Quarter
(BIO8), Mean Temperature of Driest Quarter (BIO9), Precipitation Seasonality (Coefficient of Variation)
(BIO15), Precipitation of Warmest Quarter (BIO18), Precipitation of Coldest Quarter (BIO19).
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Fig. 3 Habitat suitability distribution of A. annua projected by ensemble model based on 10 algorithms
under current climate scenario.

Fig. 4 Proportion of high suitable habitat size for A. annuaunder future climate scenarios. The x axis
represented different decades. The y axis represented the proportion of high suitable habitats in total study
areas, which was counted by pixel number. SSP is the abbreviation of Shared Socio-economic Pathways.
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Fig. 5 The gain and loss of high suitable habitats of A. annua projected during four periods under SSP 126.
SSP is the abbreviation of Shared Socio-economic Pathways.
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