Ultrahigh Capacity Retention of Li₂ZrO₃-Coated Ni-rich LNCM811 Cathode Material through Covalent Interfacial Engineering

Zhangxian Chen¹, Qiuge Zhang¹, Weijian Tang¹, Zhaoguo Wu¹, Juxuan Ding¹, Cheng Huang¹, Zeheng Yang¹, and Weixin Zhang¹

¹Hefei University of Technology

March 8, 2021

Abstract

Nickel-rich LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂ (LNCM811) is a promising lithium-ion battery cathode material, whereas the surface-sensitive issues (i.e., side reaction and oxygen loss) occurring on LNCM811 particles significantly degrade their electrochemical capacity retentions. A uniform Li₂ZrO₃ coating layer can effectively mitigate the problem by preventing these issues. Instead of the normally used weak hydrogen-bonding interaction, we present a covalent interfacial engineering for the uniform Li₂ZrO₃ coating on LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂ materials. Results indicate that the strong covalent interactions between citric acid and Ni_{0.8}Co_{0.1}Mn_{0.1}(OH)₂ precursor effectively promote the adsorption of ZrO₂ coating species on Ni_{0.8}Co_{0.1}Mn_{0.1}(OH)₂ precursor, which is eventually converted to uniform Li₂ZrO₃ coating layers of about 7 nm after thermal annealing. The uniform Li₂ZrO₃ coating endows LNCM811 cathode materials with an exceptionally high capacity retention of 98.7% after 300 cycles at 1 C. This work shows the great potential of covalent interfacial engineering for improving the electrochemical cycling capability of Ni-rich lithium-ion battery cathode materials.

Hosted file

Manuscript_0224.pdf available at https://authorea.com/users/400098/articles/512462-ultrahighcapacity-retention-of-li2zro3-coated-ni-rich-lncm811-cathode-material-through-covalentinterfacial-engineering