Controlling Quantum Wave Packet of Electronic Motion on Field-Dressed Coulomb Potential of H_2^+ by Carrier-Envelope Phase-Dependent Strong Field Laser Pulses

Mohammad Noh Daud¹

¹University of Malaya

March 9, 2021

Abstract

Solving numerically a non-Born-Oppenheimer time-dependent Schrödinger equation to study the dissociative-ionization of H₂ subjected to strong field six-cycle laser pulses ($I = 4 \times 10^{14}$ W/cm², $\lambda = 800$ nm) leads to newly ultrafast images of electron dynamics in H₂⁺. The electron distribution in H₂⁺ oscillates symmetrically with laser cycle with $\vartheta + \pi$ periodicity and gets trapped between two protons for about 8 fs by a Coulomb potential well. Nonetheless, this electron symmetrical distribution breaks up for the H₂⁺ internuclear separation larger than 9 a.u. in the field-free region at a time duration of 24 fs as a result of the distortion of Coulomb potential where the ejected electron preferentially localizes in one of the double-well potential separated by the inner Coulomb potential barrier. Moreover, controlling laser carrier-envelope phase ϑ enables one to generate the highest total asymmetry A_e^{tot} of 0.75 and -0.75 at 10^{*} and 190^{*}, respectively, associated with the electron preferential directionality being ionized to the left or the right paths along the H₂⁺ molecular axis. Thus the laser-controlled electron slightly reorganizes its position accordingly to track the shift in the position of the protons despite much heavier the proton's mass.

Hosted file

Manuscript_IJQC.pdf available at https://authorea.com/users/400379/articles/512707controlling-quantum-wave-packet-of-electronic-motion-on-field-dressed-coulomb-potentialof-h2-by-carrier-envelope-phase-dependent-strong-field-laser-pulses