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Abstract

Adaptive neural network (ANN) topology-based control is pro-
posed in this paper for three phase three wire shunt active
power filter (SAPF) application. The proposed controller im-
proves power quality and compensates harmonic components.
The system includes a current controlled voltage source inverter
(CC-VSI) using three phase insulated gate bipolar transistors
(IGBT), a DSP module for generating regulated pulse width
modulated (PWM) pulse and reference DC bus. The increase
in nonlinear load applications has raised power quality issues.
SAPF has emerged as one of the best solutions to improve
power quality. Application of ANN in SAPF eliminates the
need for unit template generation and the tuning requirement
of phase locked loop (PLL), as required in traditional SAPF.
The proposed ANN based SAPF can be dynamically regulated
for minimum harmonic contamination. The results were ob-

tained and verified in Matlab/ Simulink platform.

Keyword: DSP controller; harmonic minimization;
neural network; power quality; shunt active power fil-
ter

1 Introduction

In recent decades power quality issues have been
raised due to the increasing application of power elec-
tronic controllers, which include AC/DC/AC conver-
sion and digital computational equipments used in
interconnected electrical power networks [1, 2, 3].
These applications have nonlinear characteristics and
cause harmonic pollution in power transmission/ dis-
tribution networks [4, 5].

The power-electronics converter & nonlinear loads are
the main source of harmonics & reactive power, af-
fectng power system performance [6, 7, 8, 9]. Voltage
harmonics and related power distribution problems
arise due to the current harmonics produced by non-
linear loads such as controlled/uncontrolled converter,
electronic power supplies, lighting ballasts, arc fur-
naces, adjustable speed drives, electric oven and un-

interruptible power supplies (UPS) [10, 11, 12]. Dis-
torted voltage due to harmonics affects power qual-
ity for both power system operators and the con-
sumers connected at the point of common coupling
(PCCQ) [13, 14].

Passive and active filters are used extensively for
improving the quality of power by overcoming cur-
rent/voltage harmonics & compensating reactive
power [15, 16, 17]. Usually, passive filtering has been
preferred for harmonic compensation in the electrical
power system due to its low cost, simplicity, reliability
and efficient operation, but it has many disadvantages
such as bulk, unsuitability for changing system condi-
tions, source impedance strongly influencing the filter-
ing characteristics and possibilities of anti-resonance
with network impedance resulting in harmonic ampli-
fication [18, 19, 20, 21]. These drawbacks of passive
filters and increasing power quality concerns need to
be overcome by enhanced approaches towards math-
ematical analysis, robust design and ease of imple-
mentation of APFs [22, 23]. In series APFs voltage
compensation signals are produced, whereas in shunts
APFs current signal are obtained. APFs have better
control and faster response than conventional passive
filters. This paper deals with shunt APF control for
minimization of the harmonic components involved.

2 System Configuration

The proposed shunt APF consists of a DSP con-
trol unit for processing voltage error signal and neu-
ral network logic for processing output parameters
from the source. Fig. 1 shows the different compo-
nents of the proposed system configuration for reac-
tive power compensation and eliminating harmonics
current components. The 3-phase power source was
connected to a 3-phase uncontrolled converter hav-
ing inductive-resistive (RL) / capacitive-resistive (RC)
loads. The CC-VSI connected to a self-supported DC
busbar (L¢, Rc) consists of standard self commutat-
ing IGBT switches. Series inductors (L¢, R¢) were


mailto:annugovind@gmail.com

Journal of Power Technologies 101 (1) (2021) 78-85

]

N

used to avoid high di/dt (Akagi et al., 2007).
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Figure 1: DSP-based three-phase SAPF

To eliminate switching spikes, three smoothing induc-
tors (Lsm, Rsm) were coupled with a series nonlinear
load. SAPF compensate the harmonic components
& maintain the supply current sinusoidal by obtain-
ing harmonic current of similar value and opposite
phase. The capacitor connected on the dc side provides
minor ripple in steady-state dc voltage. This capac-
itor stores energy and provides necessary real power
during the transient period.

3 Control Strategy

The control technique used for reference current gen-
eration is simple, robust and has fast dynamic re-
sponse under fixed and variable load conditions. It
should also perform its best under non sinusoidal sup-
ply voltage condition. To attain it, the proposed con-
trol stratagem was divided into two steps. These two
steps include estimation of reference source current
using instantaneous p-q theory and fundamental sig-
nal extraction using the ANN algorithm.

3.1 Instantaneous p-q Theory

Fig. 2 shows a basic block diagram using the p-q the-
ory control algorithm. It was designed for calculation
of the reference source current.
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Figure 2: Schematic representation of reference cur-
rent signal generation

s per p-q theory, instantaneous reactive power com-
pensator encompassing devices like switching devices
— which are passive components and do not need en-
ergy storage units. It can be used for compensation of
a fundamental imaginary power component from har-
monic current involved in instantaneous reactive load
power under both steady state and transient condi-
tions. Clarke Transformation was used for p-q theory.
3-phase voltage source voltage (vss , Vsp , Vsc) and
load currents (iy5, irp , irc) were changed into an o-
B-0 reference frame and calculated as [refer Equation

(1)]

Vo Vsa iLa Z‘La
(] :[C] Vsh and iLB —[C} 7;Lb
Vg Vse ir0 iLc
where
11
2
[C]=v/2/3 oﬁ—

(1)

For balanced voltage condition, zero-sequence voltage
is absent and current is available. In order to repre-
sent zero-sequence current and voltage components, p
and g can be given as [refer Eq. (2)]

p _ VaUp iLa
q —VUgVa | |tL8
P =Vq-lLo + vﬁ.iLﬁ

q = Ua-iL6 — ’Uﬁ.iLa

Thus, the instantaneous real and reactive power (q)
can be calculated. Net power can be expressed as P
represented as the sum of real and reactive power.
This real and reactive power can further split in terms
of DC (average) and AC (oscillating) components,
given as [refer Eq. (3)]

Pnet =Pp+q=P+Dp+q+q (3)

Here, p and § and shows DC component of real and
reactive power respectively. p and § are oscillating val-
ues of active and reactive power. These oscillations

79| 85



Journal of Power Technologies 101 (1) (2021) 78-85

\J D:

of power occur between load and source without con-
tributing to system energy. The a-B factors of load
current are given as [refer Eq. (4)]

7;Lo¢ _ 1 Vo — Up p
irg v2 +v3 | vsva | |4

(4)

PCC compensates filter losses and regulates bus volt-
age. The PI controller output is processed error sig-
nal/loss power (loss) [24, 25, 26]. Therefore, the net
active power of source (p’) is the sum of zero com-
ponents of active load power (p ) and obtained error

signal (piss) )[refer Eq. (6)-(8)]

p/ =P + Dioss (6)
Load current a-B component can be expressed on the
basis of the average component and an instantaneous
oscillating component of the real and imaginary power
of the load.
Z‘* _ ’UO( 'p/ 7
sa 'U(% _|_ U?} ( )
. Vo _ Vo - vp _ Up ~
iLa = D+ P+ — g+ - .
Lo Ui-ﬁ-’v?;p vi—l—v%p vg—l—vgq vi—i—v%q
- fvﬁ /
lig= 5.
B2 4 v3 P (8)
. Up _ Up - Ve _ Vo ~
L3 = .p+ D+ — . — .
Lp vi—l—v%p vi—l—v%p v2 + v Ui—i—v%q

(5)

Equation (5) gives various components of load cur-
rents. To make the supply current smooth and
distortion-free, currents should first flow from source
to load; and compensate the other remaining reac-
tive (¢ ) & oscillating (p , ¢ ) components; thereby
improving overall power quality. Thus, the current
control topology can be sub-divided into direct and
indirect current control.

(a) In the direct current control (DCC) topology, ref-
erence current (i*c, , ¥ , i*cc ) is compared with
filter current (ica , icb .+ icc )-

(b) In indirect current control (ICC), reference source
current ((i*s; , i*sp , i*s ) is compared with source
current (isa , dsb , sc )-

These two current controlling techniques differ by
their technique for reducing switching ripples. In the
DCC topology, switching ripples are more as compared
to ICC topology; as a reference, APF current operates
on feed-forward control and varies rapidly compared
to reference supply current, which operates on feed-
back control.

ICC topology has been used in this paper to gen-
erate a reference signal. To obtain average active
power, a-B components are calculated from active
power using load current and supply voltage. The
zero/ dc power component is obtained from LPF
with a tuned time constant. Now, the obtained V4
and Ve rer are compared and fed to the Pl con-
troller. The Pl controller connected to the DC-link

Equation (9) gives two-phase to three-phase trans-
formation, using this three-phase instantaneous refer-

ence supply currents ( i*s, , ¥y , i*sc ) are to be
computed.
10
ity | =/2/3 979 L:a} 9)
Ui I
2 2

A hysteresis control based PWM converter was used
to generate the desired pulses to obtain the regulated
output.

3.2 Adaptive Neural Network Architec-
ture

ANN architecture was used to extract a fundamen-
tal component from SAPF by minimizing harmonic
pollution. It can be assured by estimating the ref-
erence current correctly in ideal and real time load
applications for a given source voltage. In the con-
text of increasing dependency on nonlinear loads in
common households as well as industrial applications,
minimization of harmonic pollution has been a prime
challenge. When distorted voltage at PCC involves
harmonic contamination in the source current and is
further affected by additional harmonic contamination
due to load current, ANN has been found more suit-
able than p-q theory in these cases of imprecise volt-
age.
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This paper deals with a DSP based ANN controller
for extraction of fundamental signal using the ICC
scheme shown in Fig. 3. Source voltages (vs; , Vsp ,
Vsc) are first transformed into a two phase (vq & vg)
component. An adaptive linear (ADALINE) network
based ANN was established to obtain primary volt-
age components vq o & vg, from distorted v, & vg
components. Primary voltage components were used
to calculate the active power transmitted from source
to load in a 3-phase system. The ANN (ADALINE)
used in this paper has two neural layers in feed for-
ward control topology, having “n" inputs and single
output. The output signal depends on training data
and pattern; thereby providing a trained ANN block
for generation of regulated source voltage.

To reference
Vo | source current
Vs | ABC to o-p POWC}’ generation circuit
. estimation
conversion | y» »
£ > Pu=Ptq
=p+p+q+q

Figure 3: Reference Current Generation using ANN

Voltage input weight factors in the proposed ADA-
LINE network was given as V = (vi,, Vo,
V3n. - Vimn) ' and W= (W1, Wap, W3p,... W), re-
spectively. Considering a linear transfer function with
Yo bias, the obtained outcome Y in terms of volt-
age input and weight for nt" function is calculated as
[refer Eq.(10)]

Yr(n) = W(,l;l)‘/(n) = Y0 + WinVip + WanV2n + W3nV3n + ..

_YOWW\PHWH ] i

(10)

Adaption of the weight was done by Widrow-Hoff
delta rule, also termed as Least mean square (LMS)
in the presented ADALINE network. It minimizes the
mean square error between the expected and obtained
output y (n). It can be represented as |[refer Eq.

(11)]

€(n)V(n)

W(nt1) = Wn) +a

(11)

Where, w(n+1) and w(n) represent the next and
present value of weight vector respectively, v(n) and
e(n) show the input (voltage) error signal. The value
of o was calculated by the current decomposition
technique.

4 Simulation and Results

The presented system and ANN were validated on
the Matlab/ Simulink platform. The system under
consideration is shown in Fig.4
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Figure 4. Proposed ANN architecture for APF

The factors of source voltage, APF and load have
been simulated as listed in Table 1. Simulated results
have been obtained to verify the working of proposed
neural network for the APF with balanced and nonlin-
ear load conditions. The three phase source voltage
and current used in this paper has been shown in the
Fig. 5 and Fig. 6 respectively.
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Figure 5: Voltage source output voltage in volts

The obtained THD is nominal for source voltage and
current as 1.12% and 3.12% respectively, as shown in
Fig. 7 and Fig. 8. Now a load of 7.5 kW has ini-
tially been connected to the source at 0.05 Sec. At
this instant when APF is switched ON, the obtained
source current is changed to sinusoidal as of stepped
waveform. Thus, the obtained DC capacitor voltage
achieves steady state voltage magnitude, in contrast
to the reference voltage magnitude, in a few consec-
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Table 1: The APF parameters used for simulation

System parameters

Simulated values

Supply voltage (Vs)

230 volts/ph, 50 Hz

Cdc, Vdc

1.5 * 102 pF, 612 volt

Coupling inductors (Rc, Lc) 0.2 Q2, 2.75 mH
Source impedance (Rs , Ls) 0.1Q,0.25 mH
Smoothing inductor (Rsm, Lsm) | 0.1 Q, 1 mH

(RLL, LL1) and (RL2, LL2)

(50 Q, 20 mH) , (100 Q, 16 mH)

Figure 6: Voltage source output current in amps

utive cycles as obtained in Fig. 9. To analyze the
system behavior for variable load condition, load has
been changed from 7.5 kW to 10 kW at t=0.34 s by
changing the balanced load and again changed from
10 kW to 7.5 kW at t=0.4 s.
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Figure 7: THD of voltage source output voltage
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Figure 8: THD of voltage source output current
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Figure 9: Voltage across the capacitor for balanced
load

To check the robustness of the proposed system, dis-
torted nonlinear current and voltage was considered,
as shown in Fig. 10 and Fig. 11 respectively. The
obtained Vpc is highly distorted and compensating
current, as shown in Fig. 12, has been used.
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Figure 10: Nonlinear current due to nonlinear load
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Figure 11: Distorted voltage due to nonlinear load
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Figure 12: Compensating current

In order to reduce higher order harmonics, ANN was
incorporated to generate reference voltage signal by
extracting fundamental voltage component from dis-
torted voltage waveform. This reference voltage signal
is converted into alfa and beta components and then
passed through a DSP unit to generate the required
PWM signal for obtaining line fundamental voltage
and current components as obtained in Fig. 13. The
response of the trained neural network has been seen
in less than one cycle time period. Obtained line volt-
age and current has been shown in Fig. 14. Thus
obtained regulated PWM pulses can be used to ob-
tain desired regulated volage and current at the output
terminals. The obtained output has THD of 4.52%,

|

|

|

|

I

as shown in Fig. 15.
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Figure 13: Generated PWM waveform from the ANN-
DSP module
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Figure 14: Obtained line voltage and current wave-
form
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Figure 15: Obtained THD in output line voltage and
current

5 CONCLUSION

A neural network-based controller is proposed in this
paper for a three-phase three-wire shunt APF. To val-
idate the compatibility of the proposed approach, an
indirect current control theory-based controller was
developed for variable loads at different switching in-
stant. To generate the reference source current in-
stantaneous p-q theory with indirect current control
technique is used and the switching pattern of semi-
conductor devices used in the PWM converter. The
performance of the proposed APF was evaluated in
Matlab/ Simulink platform. The obtained THD is
within the permissible limit of 10% for both uniform
and nonlinear loading condition. Compared to the
direct current control technique, the indirect current
control technique is superior for eliminating switch-
ing ripples from the supply current. The obtained
results reveal satisfactory operation of the system at
hand, under sudden load and frequency changes con-
ditions.
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