Predictive Ecology: a Re-imagined Foundation and Toolkit for Ecological Models

Eliot McIntrie¹, Alex Chubaty², Steve Cumming³, David Andison⁴, Ceres Barros⁵, Céline Boisvenue¹, Samuel Hache⁶, Yong Luo⁷, Tatiane Micheletti⁸, and Frances Stewart¹

¹Natural Resources Canada
²FOR-CAST Research & Analytics
³Université Laval
⁴Bandaloop Landscape-Ecosystem Services Ltd.
⁵The University of British Columbia
⁶Environment and Climate Change Canada
⁷Canadian Forest Service
⁸University of British Columbia Faculty of Forestry

March 30, 2021

Abstract

Prediction from models and data in Ecology has a long history and can be made from many types of statistical, simulation, and other classes of models. To date, our ability to use the predictive approach as a tool for developing, validating, updating, integrating and applying models across scientific disciplines and to influence management decisions, policies and the public has been hampered by disparate perspectives on prediction and inadequate tools. We present a coherent perspective that follows a Predictive Ecology approach based on 5 principles: Reusable, Freely available and Interoperable models, built around a Continuous workflow, which are Tested automatically (PERFICT). We describe the SpaDES toolkit that helps implement these principles. We outline some benefits for society of working with these principles, including 1) speeding up scientific advances; 2) data science advances; and 3) improving science-policy integration.

Hosted file

McIntire et al Predictive Ecology.pdf available at https://authorea.com/users/404838/ articles/515943-predictive-ecology-a-re-imagined-foundation-and-toolkit-for-ecologicalmodels