Interactions of tricyclic antipsychotic and antidepressant medications with a novel binding site in GABA_A receptors

Konstantina Bampali¹, Filip Koniuszewski¹, Luca Silva¹, Sabah Rehman¹, Florian Vogel¹, Thomas Seidel², Florian Zirpel¹, Arthur Garon², Thierry Langer², Matthäus Willeit¹, and Margot Ernst¹

April 9, 2021

Abstract

Background and Purpose: Many psychotherapeutic drugs including clozapine have a polypharmacological profile and act on GABA_A receptors, where subtype-specific information is often lacking. Patients with schizophrenia show alterations in function, structure and molecular composition of the hippocampus, and a recent study demonstrated aberrant levels of hippocampal α5 subunit containing GABA_A receptors. Experimental Approach: Functional studies of GABA modulatory effects by antipsychotic and antidepressant medications were performed in several GABA_A receptor subtypes by two-electrode voltage-clamp electrophysiology using *Xenopus laevis* oocytes. Computational structural analysis was employed to design mutated constructs of the α5 subunit, probing a novel binding site. Computational ligand analysis complemented the functional and mutational data. Key Results: We show that the antipsychotic drugs clozapine and chlorpromazine have negative modulatory effects on multiple GABA_A receptor subtypes, including α5-containing. On the latter we show negative modulatory effects for five additional antipsychotic and antidepressant drugs. Based on a chlorpromazine binding site observed in a GABA-gated bacterial homologue, we identified a novel site in α5 GABA_A receptor subunits. Conclusion and Implications: Our findings support previous studies suggesting a link between some of the therapeutic effects of clozapine and its negative modulatory action on certain GABA_A receptor subtypes. The novel site we describe in this study is a new potential target for optimizing antipsychotic medications with beneficial polypharmacology.

Hosted file

Bampali et al - MS.pdf available at https://authorea.com/users/406835/articles/517350-interactions-of-tricyclic-antipsychotic-and-antidepressant-medications-with-a-novel-binding-site-in-gabaa-receptors

¹Medical University of Vienna

²University of Vienna