Bypassing the Multi-reference Character of Singlet Molecular Oxygen. Part 2: Ene-reaction

Kurt Mikkelsen¹, Malte Jespersen¹, Matthew Johnson¹, Solvejg Jørgensen¹, and Emma Petersen-Sonn¹

¹University of Copenhagen

April 12, 2021

Abstract

Theoretical calculations involving singlet molecular oxygen (O2(1g)) are challeng- ing due to their inherent multi-reference character. We have tested the quality of re- stricted and unrestricted DFT geometries obtained for the reaction between singlet oxy- gen and a series of alkenes (propene, 2-methylpropene, trans-butene, 2-methylbutene and 2,3-dimethylbutene) which are able to follow the ene-reaction. The electronic en- ergy of the obtained geometries are rened using 3 dierent methods which account for the multi-reference character of singlet oxygen. The results show that the mechanism for the ene-reaction is qualitatively dierent when either one or two allylic-hydrogen groups are available for the reaction. When one allylic-hydrogen group is available the UDFT calculations predict a stepwise addition forming a biradical intermediate, while, the RDFT calculations predict a concerted reaction where both hydrogen abstraction and oxygen addition occur simultaneously. When two allylic-hydrogen groups are available for the reaction then UDFT and RDFT predict the same reaction mechanism, namely that the reaction occurs as a stepwise addition without a stable intermediate between the two transition states. The calculated rate constants are in reasonable agreement with experimental data, except for trans-butene where the calculated rate constant is three orders of magnitude lower than the experimental one. In conclusion we nd that the simple bypassing scheme tested in this paper is a robust approach for calculations of reaction involving singlet oxygen in the limit that the transition state processes low multi-reference character. 2

Hosted file

Bypassing_the_Multi_reference_Character_of_Singlet_Molecular_Oxygen__Part_2__Ene_reaction.pdf available at https://authorea.com/users/337011/articles/517710-bypassing-the-multireference-character-of-singlet-molecular-oxygen-part-2-ene-reaction