Novel XLF/Cernunnos mutation linked to severe combined immunodeficiency, microcephaly and abnormal T and B cell receptor repertoires

Shirly Frizinsky¹, Erez Rechavi², Ortal Barel³, Yu-Nee Lee⁴, Amos Simon¹, Atar Lev⁴, Tali Stauber⁵, and Raz Somech²

¹Sheba Medical Center ²Edmond and Lili Safra Children's Hospital ³The Wohl Institute for Translational Medicine ⁴Tel Aviv University Sackler Faculty of Medicine ⁵Sheba Hospital

April 14, 2021

Abstract

Background: During the process of generating diverse T and B cell receptor (TCR and BCR, respectively) repertoires, double strand DNA breaks are produced. Subsequently, these breaks are corrected by a complexed system led mainly by the nonhomologous end-joining (NHEJ). Mutations in proteins involved in this process, including the XLF/ Cernunnos gene, cause severe combined immunodeficiency syndrome (SCID) along with neurodevelopmental disease and susseptability to inoizing radiation. Objective: To provide new clinical and immunological insights on XLF/Cernunnos deficiency, arising from a newly diagnosed patient with severe immunodeficiency. Methods: A male infant, born to consanguineous parents, suspected of having primary immunodeficiency underwent immunological and genetic work up. This included a thorough assessment of T cell phenotyping and lymphocyte activation by mitogen stimulation tests, whole exome sequencing (WES), TCR repertoire $V\beta$ repertoire via flow cytometry analysis and TCR and BCR via next generation sequencing (NGS). Results: Clinical findings included microcephaly, recurrent bacterial viral pneumonia and failure to thrive. Immune workup revealed lymphopenia, reduced T cell function and hypogammaglubolinemia. A skewed TCR $V\beta$ repertoire, TCR gamma (TRG) repertoire and BCR repertoire were determined in the patient. Genetic analysis identified a novel autosomal recessive homozygous missense mutation in XLF/Cernunnos c. A580Ins.T; p. M194fs. The patient underwent a successful hematopoietic stem cell transplantation (HSCT). Conclusions: A novel XLF/Cernunnos mutation is reported in a patient presented with SCID phenotype that displayed clonally expanded T and B cells. An adjusted HSCT was safe to ensure full T cell immune reconstitution.

Hosted file

XLF-11.4.2021.pdf available at https://authorea.com/users/407752/articles/517989-novel-xlfcernunnos-mutation-linked-to-severe-combined-immunodeficiency-microcephaly-and-abnormalt-and-b-cell-receptor-repertoires

Hosted file

XLF-figures 8.4.21.pptx available at https://authorea.com/users/407752/articles/517989novel-xlf-cernunnos-mutation-linked-to-severe-combined-immunodeficiency-microcephalyand-abnormal-t-and-b-cell-receptor-repertoires