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Abstract

Background. This paper presents, for the first time, the Epidemic Volatility Index (EVI), a conceptually simple, early warning
tool for emerging epidemic waves.

Methods. EVI is based on the volatility of the newly reported cases per unit of time, ideally per day, and issues an early
warning when the rate of the volatility change exceeds a threshold.

Results. Results from the COVID-19 epidemic in Italy and New York are presented here, while daily updated predictions for
all world countries and each of the United States are available online.
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. Interpretation. EVI’s application to data from the current COVID-19 pandemic revealed a consistent and stable perfor-

mance in terms of detecting oncoming waves. The application of EVI to other epidemics and syndromic surveillance tasks in

combination with existing early warning systems will enhance our ability to act fast and optimize containment of outbreaks.

Introduction

Early warning tools are crucial for the timely application of intervention strategies and the mitigation of
the adverse health, social and economic effects associated with epidemics. Sentinel networks in combination
with information technology infrastructures in public health 1 provide data for the detection of spatial and
temporal aberrations in the expected number of cases for groups of clinical signs and symptoms2. Several
modelling frameworks exist for the analysis of such data. For example, the moving epidemic method, an
approach used to monitor, among others, the start of the flu epidemic 3. Further, methods based on
seasonality patterns, the link between pathogens and meteorological parameters 4 and/or the measurement
of vector indices for vector-borne pathogens 5 are also available.

Once an epidemic erupts, growth models can be used to predict the course of the outbreak and quantify its
consequences. The advantages and limitations of these methods have been extensively discussed 6. Machine
learning algorithms have also been utilized with the most recent application being in the current COVID-19
pandemic 7. Correlating the number of COVID-19 cases with parameters obtained using big data approaches
can predict future rise in the number of cases. For example, monitoring of digital data streams can provide
an early indication of a rise in the COVID-19 cases and deaths in the next 2 to 3 weeks 8. All models
have limitations arising from the imperfect nature of the data. The need for open, better, detailed data is
imperative for the deployment of models with improved accuracy, models that will have better predictive
ability and will be more useful for the timely application of appropriate control measures for the COVID-19
pandemic 9.

Our work introduces the Epidemic Volatility Index (EVI), which is inspired by the use of volatility indices
in the stock market 10,11. EVI is based on the moving standard deviation of the newly reported cases during
an epidemic. First we present the rationale of EVI and then provide an example application with COVID-
19 data from Italy and New York. Daily updated predictions - with a 48 hour lag for confirmation purposes
- are available online for all world countries and each of the United States. Results revealed a firm and
consistent ability of EVI to predict the COVID-19 epidemic waves, in all instances.

Methods

The Epidemic Volatility Index

EVI is calculated for a rolling window of time series epidemic data (i.e. the number of new cases per
day). At each step, the observations within the window are obtained by shifting the window forward over
the time series data one observation at a time.

Let xi = {x1, x2, ..., xn} be a time series of length N . The rolling window size - that is the number of
consecutive observations per rolling window - is m. With 0 < m ≤ mmax and 0 < mmax ≤ N , there
are t = N −m+ 1 consecutive rolling windows.

2
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. At each of the t steps, EV I uses the standard deviation (st) of the newly reported
cases (yjt = {y1t , y2t , ... , ymt}) within the specified m

st =

√√√√ 1

m

m∑
it=1

(xit − xt)
2

with xt the mean of the tth window. Subsequently, EVI is calculated as the relative change of (st) between
two consecutive rolling windows:

EV It−1,t =
st − st−1

st

We expect an increase in the future number of cases, if EV It−1,t exceeds a threshold c (c ∈ [0, 1]) and the
observed cases at time point t, (yt) are higher than the average of the reported cases in the previous week:

IndEV It−1,t
=

{
1 if EV It−1,t ≥ c ∧ yt ≥ µt:t−7

0 otherwise

Case definition and desired accuracy

The user should provide the minimum rise in cases that, if present, should be detected. A case definition
can be the rise in mean the number of cases between two consecutive weeks that exceeds a threshold r:

µt:t−7
µt:t+7

≤ r

with 0 ≤ r ≤ 1.

The accuracy of EVI, given the specified case definition, depends on m and c, which should be selected
in a way to achieve a desired accuracy target. Several strategies are available. One option is the selection
of m and c values that lead to the simultaneous optimization of the sensitivity (Se) and the specificity (Sp)
for EVI, the maximization of the Youden index (J = Se+ Sp− 1)12 and, hence, the overall minimization
of the false results (i.e. both false positive and false negative early warnings). Another approach could
be to select m and c such that the highest Se (or Sp) is achieved with Sp (or Se) = 1 or not dropping
below a critical value (e.g. 95%). Advanced Receiver Operating Characteristic curve analysis can also be
performed 13 and selection of critical values can be based on indices that quantify the relative cost of false
positive (i.e., falsely predicting an upcoming epidemic wave) to false negative (i.e., failing to predict an
upcoming epidemic wave) warnings, like the misclassification cost term (MCT ).

Generation of an early warning

Every time a new time point t is observed, the model uses all of the observed cases up to t to decide
whether it should issue an early warning, at time point t. The steps are:

1. Observed cases up to t are analyzed for all possible values of the window size (m ∈ [1,mmax]) and
threshold (c ∈ [0, 1]).

2. For each of the m and c combinations, the Setm,c
and Sptm,c

are estimated for the predefined case
definition (Eq. 4).

3
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. 3. The m′ and c′ that give the best Setm′,c′ and Sptm′,c′ combination are selected.
4. For m′ and c′, the value of IndEV It,t−1 is determined at the most recent time point t and a decision is

made on whether or not a warning signal is issued.

Accuracy and Predictive Values

Further, at each time point t, the probability of observing a rise or drop in the future cases, given that an
early warning was issued or not, can be calculated as the positive (PVt+) and negative (PVt−) predictive
value, respectively:

PVt+ = P (D+ | T+) =
p1:tSetm′,c′

p1:tSetm′,c′ + (1− p1:t)
(

1− Sptm′,c′
)

PVt− = P (D− | T−) =
(1− p1:t)Sptm′,c′

(1− p1:t)Sptm′,c′ + p1:t

(
1− Setm′,c′

)
where p1:t is the proportion of events satisfying the condition of Eq. 4 up to time point t.

Once the entire time series data have been observed, the overall SeEV I can be estimated as the fraction of
the total number of occurrences for which an early warning has been issued, given that the case definition (Eq.
4 ) holds (P (T+ | D+)), divided by the total number of occurrences that the case definition holds (P (D+)).
Similarly, the overall SpEV I is calculated as the fraction of the total number of occurrences for which an
early warning was not issued given that the expected rise of cases was not observed, that is, the case
definition is not true, (P (T− | D−)) divided by the total number of occurrences that the case definition is
not true (P (D−)):

SeEV I =
P (T+ | D+)

P (D+)
, SpEV I =

P (T− | D−)

P (D−)

Sensitivity analysis

The performance of EVI depends on the specified case definition (i.e., r) and the desired accuracy.
Ideally, in the presence of historical data, various case definitions and r values should be explored to identify
combinations that provide the optimal monitoring of an epidemic.

Example application

The current most serious threat to global health and economy14 is the COVID-19 pandemic that begun
in China and was first reported to the WHO China Country Office on December 31, 201915. Data on the
confirmed cases of COVID-19 were retrieved from the COVID-19 Data Repository, which is maintained by
the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University16. The number of
daily confirmed new cases of COVID-19, for each country, from January 22, 2020 until April 13, 2021 were
analyzed. Due to unnatural variability in the reported cases between working days and weekends, the 7-day
moving average rather than the actual observed cases were analyzed. For the analysis, mmax was restricted
to 30 days in order to avoid the effect of potentially higher volatility from previous epidemic waves on the
volatility estimates of the most recent data and the predictive ability of EVI for upcoming and perhaps
milder epidemic waves.

4
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. The case definition was an increase in the mean of expected cases, between two consecutive weeks, equal
or higher than twenty percent, r ≤ 1

1.2 . For sensitivity analysis, the detection of an increase in the mean of
expected cases equal or higher than 50 percent (r ≤ 1

1.5 ) was considered. Data were analyzed separately for
each country and for each of the states of the United States of America that had experienced a total number
of cases higher than 20,000, until April 13, 2021.

Statistical software

All models were run in R17. The packages readxl18, ggplot219, cowplot20 and readr21 were used.

Results

Results for Italy, one of the most severely affected EU countries22, and New York, which was in the
epicenter of the pandemic in the U.S.23, are presented in the main manuscript. Daily updated results for all
world coutnries and each of the United States are available online at http://83.212.174.99:3838.

Confirmed COVID-19 cases for Italy and New York State, from January 22, 2020, until April 13, 2021,
are in Figures 1 and 2, respectively. Red dots correspond to time points that an early warning was issued
according to IndEV It,t−1

, while grey dots to time points without an early warning indication. Further, the
positive and negative predictive values at each time point are in Figures 3 and 4, respectively.

Figure 1: Daily confirmed cases of COVID-19 in Italy, from January 22, 2020 until April 13, 2021. Red dots
correspond to dates that, according to the Epidemic Volatility Index (EVI), an early warning was issued
indicating that a rise in the COVID-19 cases is expected. Data are presented on the original scale (1a) and
the logarithmic scale (1b), which facilitates the comparison of the steepness of the epidemic curve between
the different waves.

5
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.

Figure 2: Daily confirmed cases of COVID-19 in New York, from January 22, 2020 until April 13, 2021. Red
dots correspond to dates that, according to EVI, an early warning was issued indicating that a rise in the
COVID-19 cases is expected. Data are presented on the original scale (1a) and the logarithmic scale (1b),
which facilitates the comparison of the steepness of the epidemic curve between the different waves.

Figure 3: Positive and negative predictive values (PPV in 3a and NPV in 3b), for Italy, depending on
whether or not an early warning was issued. Higher color intensity corresponds to predictive values closer
to the value of 1.

6
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.

Figure 4: Positive and negative predictive values (PPV in 4a and NPV in 4b), for New York, depending on
whether or not an early warning was issued. Higher color intensity corresponds to predictive values closer
to the value of 1.

For Italy, the overall sensitivity for EVI was 0.82 (0.75; 0.89) and the specificity was 0.91 (0.88; 0.94).
For New York, the corresponding values were 0.55 (0.47; 0.64) and 0.88 (0.84; 0.91).

Sensitivity analysis results for Italy, under alternative r specification (i.e., r = 1
1.5 ), are in Figure 5. The

overall sensitivity and specificity, for r = 1
1.5 , were 0.75 (0.66; 0.85) and 0.93 (0.91; 0.96), respectively.

7
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.

Figure 5: Daily confirmed cases of COVID-19 in Italy, from January 22, 2020 until April 13, 2021. Analysis
with r = 1

1.5 . Red dots correspond to dates that, based on EVI, an early warning was issued indicating that
a rise in the COVID-19 cases is expected. Data are presented on the original scale (1a) and the logarithmic
scale (1b) which facilitates the comparison of the steepness of the epidemic curve between the different waves.

A common and consistent finding in the results from all countries was that repetitive early warnings
are linked to the start of a new epidemic wave, while the absence of warnings indicates a stable course or a
future drop in the number of new COVID-19 cases (Fig. 1, 2 and http://83.212.174.99:3838/).

Discussion

EVI is an efficient and easy to implement early-warning tool for an upcoming rise in the number of new
cases. The performance of EVI, as expressed by its overall Se and Sp, was, in all instances, high. A more
important aspect lies in the fact that repetitive issuance of early warnings indicates the beginning of an
epidemic wave. This is a consistent and remarkably stable finding across all countries and each of the United
States (Fig. 1, 2 and http://83.212.174.99:3838/). In a similar manner, the absence of a series of early
warnings implies that the number of new cases will remain stable or drop. The latter was also a consistent
finding. Additionally, false early warnings (i.e. false positives) were isolated instances and did not occur
in a consecutive series. There were few occasions with a consecutive absence of early warnings despite a
continuing rise in the number of cases (i.e. false negatives). Nevertheless, such series of false negatives were
always close to the peak of a wave. This finding is reasonable and could be interpreted as an early sign of
reaching the peak because EVI depends on volatility and the increase in the number of new cases decelerates
when approaching the peak of an epidemic wave. Positive and negative predictive values that are calculated
at each time point can also be used to assess the probability that an early warning, or its absence, is true.
In all instances, predictive values were high with the exception of few instances at the beginning of the time
series due to the absence of enough data.

Work on the SIR and SIS models has revealed that moving-window estimates of the variance increase
while approaching the emergence of a pathogen as well as during the elimination phase and that it can be
used as an early warning tool 24. EVI is based on the relative rather than the absolute change of the standard

8
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. deviation because the latter depends on the underlying prevalence at each time point of the epidemic. Hence,
a low threshold would be efficient in detecting a surge in the new cases at the beginning of an epidemic,
when the baseline prevalence is low, but would have failed to do so for subsequent epidemic waves that
commence from a higher baseline prevalence. On the other hand, a high absolute threshold would have
failed to capture waves at the beginning of the epidemic. EVI is based on the relative increase in volatility,
which implicitly adjusts for the baseline prevalence at each point of the time series.

In general, the ability of EVI to provide valid predictions does not seem to be affected by the fact
that sampling and testing schemes for COVID-19 are mainly based on passive surveillance systems. EVI
performed equally well among different countries with different control strategies, testing intensity and
reporting accuracy and despite the fact that even within countries sampling and testing has changed over
time and/or differs between regions 25,26. Restriction of the maximum window size (mmax) to one month
plays a key role, because reporting bias is expected to remain similar over short time periods. This form
of non-differential misclassification leads to reporting rates that, though biased, do not have a significant
impact on volatility, EVI and its predictive ability. Crucially, it is important that the data do not exhibit
strong artifacts of recording bias, as there is no way for the method to distinguish between a trend due
to underlying epidemic patterns and an observed trend due to changes in reporting practices or increased
testing capacity or effort27. This could for instance happen when a country changes its general testing regime,
experiences local outbreaks and focus testing in a specific area, or targets other subgroups of the population
than previously. Thus, EVI should preferably be evaluated for use in smaller geographical regions, such as
counties or municipalities, if sufficient, high quality data are available. Undoubtedly, all models are prone
to limitations due to imperfect data 9 but the continuing enhancement of active and passive surveillance
systems - as the testing regimes and methods also improve - will lead to improved data quality.

The performance of EVI depends on the specified case definition and r, parameters which are epidemic-
specific and country-specific. Modifications to allow for different case definition and r, for the different
periods of an epidemic, are rather straightforward to implement. Parameters c and m are allowed to vary
and take values that would satisfy the conditions set by the defined case and the desired accuracy. A point of
concern is the selection of mmax. For an ongoing epidemic with multiple waves, as is the case with COVID-
19, mmax should be limited to a period shorter than the entire observation period. This prevents excess
volatility of past epidemic waves from affecting the most recent volatility estimates and the ability of EVI
to warn for upcoming waves that may be smaller and of lower volatility than previous ones. In our example,
we limited mmax to one month. EVI also depends on data intensity. Detailed data at the lowest time unit
(i.e., days rather than weeks) is preferable in order to detect changes rapidly. In the COVID-19 example
the 7-day moving average was analyzed instead of the daily reported cases because daily data had unnatural
variability due to reporting variations between working days and weekends. Nevertheless, analysis based on
the daily reported cases provided similar results (data not shown here).

Beyond the case of epidemics or rare events, like the COVID-19 pandemic, an important application of
EVI can be in the context of syndromic surveillance 28, not limited to outbreaks from terrorist attacks, but
in its broader sense: the detection of temporal and spatial aberrations in the expected number of cases for
signs and symptoms. Such systems already exist and utilize state-of-the-art information technologies within
the context of public health 1 as well as one health 29,30. EVI can provide an additional early warning tool
for these systems.
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