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Abstract

Background: This study investigates the use of modern machine learning (ML) techniques to improve prediction of survival after

orthotopic heart transplantation (OHT). Methods: Retrospective study of adult patients undergoing primary, isolated OHT

between 2000-2019 as identified in the United Network for Organ Sharing (UNOS) registry. The primary outcome was one-

year post-transplant survival. Patients were randomly divided into training (80%) and validation (20%) sets. Dimensionality

reduction and data re-sampling were employed during training. Multiple machine learning algorithms were combined into a final

ensemble ML model. Discriminatory capability was assessed using area under receiver-operating-characteristic curve (AUROC),

net reclassification index (NRI), and decision curve analysis (DCA). Results: A total of 33,657 OHT patients were evaluated.

One-year mortality was 11% (n=3,738). In the validation cohort, the AUROC of singular logistic regression was 0.649 (95% CI

0.628-0.670) compared to 0.691 (95% CI 0.671-0.711) with random forest, 0.691 (95% CI 0.671-0.712) with deep neural network,

and 0.653 (95% CI 0.632-0.674) with Adaboost. A final ensemble ML model was created that demonstrated the greatest

improvement in AUROC: 0.764 (95% CI 0.745-0.782) (p<0.001). The ensemble ML model improved predictive performance by

72.9% ±3.8% (p<0.001) as assessed by NRI compared to logistic regression. DCA showed the final ensemble method improved

risk prediction across the entire spectrum of predicted risk as compared to all other models (p<0.001). Conclusions: Modern

ML techniques can improve risk prediction in OHT compared to traditional approaches. This may have important implications

in patient selection, programmatic evaluation, allocation policy, and patient counseling and prognostication.
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Abstract:

Background: This study investigates the use of modern machine learning (ML) techniques to improve
prediction of survival after orthotopic heart transplantation (OHT).

Methods: Retrospective study of adult patients undergoing primary, isolated OHT between 2000-2019 as
identified in the United Network for Organ Sharing (UNOS) registry. The primary outcome was one-year
post-transplant survival. Patients were randomly divided into training (80%) and validation (20%) sets.
Dimensionality reduction and data re-sampling were employed during training. Multiple machine learning
algorithms were combined into a final ensemble ML model. Discriminatory capability was assessed using
area under receiver-operating-characteristic curve (AUROC), net reclassification index (NRI), and decision
curve analysis (DCA).

Results: A total of 33,657 OHT patients were evaluated. One-year mortality was 11% (n=3,738). In the
validation cohort, the AUROC of singular logistic regression was 0.649 (95% CI 0.628-0.670) compared to
0.691 (95% CI 0.671-0.711) with random forest, 0.691 (95% CI 0.671-0.712) with deep neural network, and
0.653 (95% CI 0.632-0.674) with Adaboost. A final ensemble ML model was created that demonstrated the
greatest improvement in AUROC: 0.764 (95% CI 0.745-0.782) (p<0.001). The ensemble ML model improved
predictive performance by 72.9% ±3.8% (p<0.001) as assessed by NRI compared to logistic regression. DCA
showed the final ensemble method improved risk prediction across the entire spectrum of predicted risk as
compared to all other models (p<0.001).

Conclusions: Modern ML techniques can improve risk prediction in OHT compared to traditional approa-
ches. This may have important implications in patient selection, programmatic evaluation, allocation policy,
and patient counseling and prognostication.

Words: 248

Non-Standard Abbreviations and Acronyms

AUROC: area under receiver-operating-characteristic curve

DCA: decision curve analysis

DRI: donor risk index

IHTSA: international heart transplant survival algorithm

IMPACT: index for mortality prediction after cardiac transplantation

ML: machine learning

NRI: net reclassification index
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. OHT: orthotopic heart transplantation

RSS: risk stratification score

STS: Society of Thoracic Surgeons

UNOS: United Network for Organ Sharing

Introduction

The clinical management of end-stage heart disease is a continually evolving practice that has changed drasti-
cally over the last decade. Survival after orthotopic heart transplantation (OHT) has continued to improve.1

Despite improving longevity after transplant, donor organ supply remains inadequate to meet demand,2 and
transplant programs face increased public and private scrutiny of their outcomes.3Simultaneously, techno-
logic innovations in mechanical circulatory support platforms have demonstrated parallel improvement in
clinical outcomes,4-6 thus increasing the potential alternative viable treatment options for heart failure pati-
ents. Therefore, an accurate prognostic model using pre-operative data for individualized donor and recipient
selection would be of profound clinical utility in OHT.

Prior risk models for predicting survival after OHT have displayed only modest discriminatory capability.
Examples of such algorithms include The Donor Risk Index (DRI),7 Risk Stratification Score (RSS),8 In-
dex for Mortality Prediction After Cardiac Transplantation (IMPACT)9 and International Heart Transplant
Survival Algorithm (IHTSA)10. With increasing interest in the application of machine learning (ML) to pre-
dictive analytics in clinical medicine,11 we aimed to evaluate whether modern ML techniques could improve
risk prediction in OHT.

Material and Methods

Patient Population

Because of the sensitive nature of the data collected for this study, requests to access the dataset from
qualified researchers trained in human subject confidentiality protocols may be sent to the United Network
for Organ Sharing (UNOS). We conducted a retrospective review of prospectively collected data in the UNOS
database. The database was queried for all patients that underwent orthotopic heart transplantation (OHT)
between 2000-2019. Patients were excluded if they underwent transplantation before the year 2000, were less
than 18 years old, had a history of prior heart transplantation, underwent multiorgan transplant, or had
incomplete survival status at one year. This retrospective analysis of deidentified data was deemed except
from Institutional Review Board approval and patient consent was not required.

Training and Validation Cohorts

Patients were randomly split into training (80%) and validation (20%) cohorts, ensuring equal distribution
of the primary outcome in each cohort. This method of stratifying by primary outcome before randomly
assigning patients to a cohort ensures an equal distribution of mortality between training and validation
datasets to avoid biasing final model performance. The training cohort was used for feature selection, dimen-
sionality reduction, and machine learning model development, keeping the validation cohort entirely separate
and unseen until assessment of the final model performance.

Data Preparation and Feature Selection

All variables in the UNOS database available for the OHT patients were manually reviewed by two inde-
pendent clinicians (N=525 variables). Variables were excluded if they were redundant, free text, or would
not be available in the preoperative setting. Variables with more than 20% missing data were also excluded.
The distribution of data for each remaining categorical variable were again manually reviewed and grouped
into clinically meaningful categories for each variable by two independent physicians. This step decreases
data sparsity by grouping low incidence characteristics into fewer, clinically meaningful categories. Missing
continuous variable data were imputed using feature median and missing categorical data were imputed with
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. the feature mode. Continuous variables were standardized to have a mean of zero and standard deviation of
one. Categorical variables were one-hot encoded ensuring no linear dependencies between columns.

Feature Importance and Dimensionality Reduction

In order to increase the interpretability of the model, we first performed a univariate estimate of feature im-
portance. A random forest classifier was trained with 10-fold cross-validation repeated three times. Univariate
feature importance was estimated using the mean decrease in accuracy. Three separate feature importance
models were developed first with continuous variables only (N=37), then with categorical variables (N=195),
and then with all the variables (N=232). This was done to account for the known tendency for random forest
classifiers to more heavily weight continuous variables in feature importance estimates. The 20 most import-
ant features from each model were combined into a single dataset, consisting of 47 variables after excluding
duplicates. This variable set was subsequently used to develop the machine learning algorithms. Overall, this
methodology of feature selection allows us to combine the best of both manual filtering based on clinical
acumen and automated methods using machine learning techniques. Decreasing the input space used for the
final machine learning model is a critical step that has been shown to improve overall model performance by
decreasing tendency to overfit and increasing training efficiency.12

Training Prediction Models

An ensemble approach was employed in order to create a more stable and reliable model resistant to outliers.
Four different types of algorithms were used: deep neural network, logistic regression, adaboost, and random
forest. We employed over-sampling (SVM Smote) and under-sampling (Repeated Edited Nearest Neighbors)
of the training data in order to better balance the primary outcome within the dataset. For each type of
algorithm, 100 different models were trained using varying degrees of data re-sampling to produce variability
in each model’s underlying training data. The resulting 400 algorithms were subsequently combined into the
final ensemble prognostic model.

Validation and Comparison

Once the models were trained, discriminatory capability was assessed using the previously unseen validation
data. The performance of the full ensemble model (400 algorithms) was compared to that of each type of
algorithm individually (100 algorithms each), as well as a single logistic regression on its own. Model capability
was assessed using area under receiver-operating-characteristic curve (AUROC), net reclassification index
(NRI), and decision curve analysis (DCA). Calibration of the model was evaluated using visual plots of
predicted risk based on the training cohort versus observed risk in the validation cohort stratified by decile
of risk. Two-sided p-value of less than 0.05 was considered significant for all comparisons. All models were
trained in python using Keras with Tensorflow.13 Performance outcome comparisons were conducted with
Stata (StataCorp. 2015. Stata Statistical Software: Release 14. College Station, TX: StataCorp LP).

Results

Study Cohort

Of the 33,657 patients included in the study, 3,728 (11%) experienced the primary outcome of death within
one year (Figure 1 ). The majority of study participants were male (75%) with an average age of 52.8
±12.4 years. Balancing by primary outcome, patients were randomly split into 80% training cohort and 20%
validation cohort. Patient characteristics were similar between cohorts, including age, sex, etiology of heart
failure, end-organ function, pre-transplant mechanical circulatory support, and days spent on waiting list
(Table 1 ).

Feature Importance and Dimensionality Reduction

After manual and automated variable filtering, the relative importance of each feature in predicting the
primary outcome was assessed using a random forest classifier. Continuous and categorical variables we-
re assessed both separately and together to reduce biases (Supplemental Figure 1 ). In the combined
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. assessment, the most important features included total bilirubin, mechanical ventilation, no ventricular as-
sist device at transplant, serum creatinine, donor age, recipient height, donor cerebrovascular mechanism of
death, prior cardiac surgery, and Karnofsky functional status. The top 20 most important features from each
individual assessment were then combined excluding duplicates, resulting in 47 training variables that were
used for subsequent model training (Supplemental Table 1 ).

Model Training and Performance Comparison

A total of 400 algorithms were trained using varying subsets of training data based on randomly stratified
levels of over and under resampling of the training dataset (Figure 2 ). The final ensemble ML model
contained all 400 underlying algorithms, while smaller sized ensemble models were also combined using the
100 iterations of each type of algorithm individually for comparison. The optimal model performance was the
complete ensemble ML model (Figure 3 ), outperforming all other models with an AUROC of 0.764 (95% CI,
0.745-0.782) (p<0.001). By comparison, the singular logistic regression model had an AUROC of 0.649 (95%
CI, 0.628-0.670). Additionally, the final ensemble ML model demonstrated an improvement of 72.9% ±3.8%
(p<0.001) in predictive performance as assessed by net reclassification index compared to logistic regression.
The decision curve analysis showed the final ensemble method improved risk prediction across the entire
spectrum of predicted risk as compared to all other models (Figure 4 , p<0.001). The final ensemble ML
model was well-calibrated, with the majority of observed risk in the validation cohort falling within range of
predicted risk based on the training cohort after stratifying into deciles of risk (Supplemental Figure 2 ).

Conclusions

Prognostication of clinical outcomes after OHT has profound importance in patient selection and organ
allocation. The present study demonstrates the potential utility of employing modern ML techniques to
improve prognostic model performance at an individual patient level. A final ensemble ML model using
only preoperative variables outperformed all other comparison algorithms in predicting one-year survival,
achieving improved performance by a variety of metrics including AUROC, net reclassification index, and
decision curve analysis. Further, the model demonstrated appropriate calibration.

Cardiac surgery as a field has historically been an early adopter of clinical prognostic models,14 most notably
the widely used Society of Thoracic Surgeons (STS) Short-Term Risk Calculators.15 However, predicting one-
year mortality after OHT has remained a persistent challenge. Early OHT risk models incorporated a select
number of variables with only modest overall performance.7,8,16 More recent models have added an increasing
number of variables into more robust models, such as the IMPACT9 and IHTSA10, but have been able to
achieve only slight improvements in discriminatory performance. In part, this may relate to the challenges
in capturing all granular and potentially predictive elements of post-transplant survival in a multicenter
registry. For example, factors such as anti-rejection medication compliance are not assessed but can have
important implications in survival following transplant. Also, there is a trade-off in assessing longer term
outcomes, such that the event rate will be higher but the impact of pre-operative risk factors on that outcome
will likely diminish as longer-term factors weight more heavily into outcome prediction.

Machine learning techniques have demonstrated clinical utility in a number of different fields.17-21 Within
OHT, the IHTSA score itself employs an artificial neural network approach, and has consistently demons-
trated some of the highest discriminatory values out of all current models in recent studies.22 Moreover, a
recent study recalibrated both the IMPACT and IHTSA models to use only the same subset of variables,
and found the deep learning approach was superior.23 The recent Trees of Predictors model is also an innova-
tive approach that identifies clusters of patients with similar characteristics, and develops machine learning
predictive models specifically for each cluster.24 The success of this approach demonstrates the potential for
developing very individualized prognostic scores, at the risk of overfitting the model to specific retrospective
cohorts that may not translate to prospective clinical practice.

The final ensemble ML model we developed in the present study is an example of using both clinical acumen
and automated machine learning to develop a robust model from a large clinical registry. The statistical
adage of “garbage in produces garbage out” remains especially true for machine learning approaches.25 It
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. is particularly relevant for black box algorithms when used clinically, as there is low interpretability for
clinicians in terms of how the algorithm arrives at its final prognosis. Moreover, registry data is particularly
prone to reporting inaccuracies and missing data, resulting in poor prognostic ability if machine learning
approaches are applied without sufficient data preparation.26 Our approach was to combine both expert
clinician manual review of the variables with automated feature selection techniques in order to arrive at the
final set of variables. While time-consuming, we believe this collaborative approach is necessary in order to
derive utility from registry level data. Moreover, while computationally more expensive, the ensemble machine
learning approach allows for the integration of multiple types of algorithms into one cohesive model, which
has been suggested to produce a more robust final product.27

While this is not the first study to employ machine learning techniques for OHT prediction, it describes the
use of more robust feature selection techniques and the development of a larger scale ensemble ML model
than has been previously reported. This example of applying modern techniques may help to overcome the
registry-level data limitations that have hindered prior studies.

This study has several limitations that need to be considered when interpreting the results. First, it is
retrospective in nature and subject to all inherent limitations of such studies. Most notably, there have been
a number of substantial changes in the allocation system and clinical management of OHT patients over the
timeframe encapsulated by the study period. As such, there is associated bias as risk models including the
one developed in the current study cannot account for individual provider or transplant program decision-
making. Second, the UNOS database, similar to other multicenter registries, has a number of limitations
including variability in data reporting and quality. As such, assumptions are made for missing data that
may introduce bias and there may be clinically important variables not captured in the available dataset.
Finally, while we created a randomly selected validation cohort at the outset of the study, an independent
validation cohort separate from the UNOS database was not available for testing. Further study is warranted
on independent, prospective data not present in the current dataset in order to provide more comprehensive
validation testing of the final model.

In conclusion, an ensemble ML model was able to achieve greater predictive performance as compared to
individual ML models and logistic regression in predicting survival after OHT. This analysis demonstrates
the potential of modern ML techniques in risk prediction for OHT. These approaches may have important
implications in patient selection, programmatic evaluation, policy-making, and patient counseling in OHT.
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10. Nilsson J, Ohlsson M, Höglund P, Ekmehag B, Koul B, Andersson B. The International Heart
Transplant Survival Algorithm (IHTSA): a new model to improve organ sharing and survival. PLoS
ONE.2015;10(3):e0118644.

11. Obermeyer Z, Emanuel EJ. Predicting the Future — Big Data, Machine Learning, and Clinical Medicine.
N Engl J Med.2016;375(13):1216-1219.

12. Cai J, Luo J, Wang S, Yang S. Feature selection in machine learning: A new perspective. Neurocomputing.
2018;300:70-79.

13. Gulli A, Pal S. Deep Learning with Keras. Packt Publishing; 2017.

14. Geissler HJ, Hölzl P, Marohl S, et al. Risk stratification in heart surgery: comparison of six score systems.
Eur J Cardiothorac Surg. 2000;17(4):400-406.

15. O’Brien SM, Feng L, He X, et al. The Society of Thoracic Surgeons 2018 Adult Cardiac Surgery Risk
Models: Part 2-Statistical Methods and Results. Ann Thorac Surg. 2018;105(5):1419-1428.

16. Kilic A, Weiss ES, Allen JG, et al. Simple score to assess the risk of rejection after orthotopic heart
transplantation. Circulation.2012;125(24):3013-3021.

17. Cucchetti A, Vivarelli M, Heaton ND, et al. Artificial neural network is superior to MELD in predicting
mortality of patients with end-stage liver disease. Gut. 2007;56(2):253-258.

18. Ayers B, Wood K, Gosev I, Prasad S. Predicting Survival after Extracorporeal Membrane Oxygenation
using Machine Learning. Ann Thorac Surg. 2020.

19. Kilic A. Artificial Intelligence and Machine Learning in Cardiovascular Health Care. Ann Thorac
Surg.2020;109(5):1323-1329.

20. Kilic A, Goyal A, Miller JK, et al. Predictive Utility of a Machine Learning Algorithm in Estimating
Mortality Risk in Cardiac Surgery.Ann Thorac Surg. 2020;109(6):1811-1819.

21. Kilic A, Goyal A, Miller JK, Gleason TG, Dubrawksi A. Performance of a Machine Learning Algorithm
in Predicting Outcomes of Aortic Valve Replacement. Ann Thorac Surg. 2020.

22. Aleksova N, Alba AC, Molinero VM, et al. Risk prediction models for survival after heart transplantation:
A systematic review. Am J Transplant. 2020;20(4):1137-1151.
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Figure Legends:

Figure 1. Study cohort.

Figure 2. Schematic of final ensemble ML model training and internal validation methodology.

Figure 3. Area under receiver-operating-characteristic curve comparison of each model’s prognostic ability.

Figure 4. Decision curve analysis demonstrating improved risk prediction of the full ensemble ML model
across the entire spectrum of predicted risk scores.

Table 1. Patient Characteristics of Training and Testing Cohorts

Training
(n=26,926) % or SD

Validation
(n=6,731)

Validation
(n=6,731) % or SD p-value

Recipient Recipient
Age
(years)

52.8 12.5 12.5 52.8 12.3 0.873

Female 6683 25% 25% 1706 25% 0.378
Height
(cm)

173.9 9.8 9.8 173.7 9.9 0.099

BMI
(kg/m2)

27.0 4.8 4.8 27.1 4.8 0.453

White 18819 70% 70% 4723 70% 0.666
Cardiomyopathy
Non-
ischemic

12815 48% 48% 3239 48% 0.445

Ischemic 10986 41% 41% 2703 40% 0.339
Congenital 715 3% 3% 196 3% 0.257
Restrictive 670 2% 2% 171 3% 0.793
Valvular 509 2% 2% 130 2% 0.842
Hypertrophic 580 2% 2% 152 2% 0.607
Prior
Cardiac
Surgery

12012 45% 45% 2975 44% 0.546

History of
Dialysis

596 2% 2% 169 3% 0.144

Karnofsky
Functional
Status
>70%

6748 25% 25% 1704 25% 0.671

Support:
Ventilator

506 2% 2% 115 2% 0.389

Support:
ICU

7789 29% 29% 1967 29% 0.631
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. Training
(n=26,926) % or SD

Validation
(n=6,731)

Validation
(n=6,731) % or SD p-value

Support:
Inotropes

11037 41% 41% 2694 40% 0.149

Support:
ECMO

127 0% 0% 38 1% 0.329

Support:
IABP

1576 6% 6% 379 6% 0.503

Mechanical
Circula-
tory
Support
LVAD 7465 28% 28% 1908 28% 0.309
RVAD 50 0% 0% 9 0% 0.419
TAH 208 1% 1% 43 1% 0.268
LVAD+RVAD 599 2% 2% 149 2% 1.000
Total
Bilirubin

1.1 2.0 2.0 1.1 1.6 0.271

Creatinine 1.3 0.6 0.6 1.3 0.6 0.713
Total days
on waiting
list

224.0 369.9 369.9 225.1 369.2 0.836

Donor Donor
Age
(years)

31.8 11.9 11.9 31.9 12.1 0.413

Female 7830 29% 29% 1986 30% 0.491
Height
(cm)

174.3 9.6 9.6 174.1 9.7 0.290

BMI
(kg/m2)

26.9 5.6 5.6 27.0 5.8 0.336

Mechanism
of Death
Trauma 14513 54% 54% 3634 54% 0.902
Cerebrovascular6859 25% 25% 1741 26% 0.512
Drug
Overdose

1892 7% 7% 456 7% 0.487

Other 3662 14% 14% 900 13% 0.633
Blood
Infection

2081 8% 8% 486 7% 0.166

Other Other
Sex
matched

19891 66% 66% 4987 74% 0.721

Ischemic
time
(hours)

3.2 1.0 1.0 3.2 1.0 0.493

Blood
Type
Incompatible

3931 15% 15% 966 14% 0.615
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. Training
(n=26,926) % or SD

Validation
(n=6,731)

Validation
(n=6,731) % or SD p-value

Transplant
year
2000-2010

13149 49% 49% 3365 50% 0.091

BMI: body mass index; IABP: intra-aortic balloon pump; ICU: intensive care unit; ECMO: extracorporeal
membrane oxygenation; LVAD: left ventricular assist device; MCS: mechanical circulatory support; RVAD:
right ventricular assist device; TAH: total artificial heart
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