Predicting range shifts of Davidia involucrata Ball. under future climate change

Teng Long¹, Junfeng Tang¹, Nicholas Pilfold², Xuzhe Zhao¹, and Tingfa Dong¹

¹China West Normal University ²San Diego Zoo Institute for Conservation Research

May 1, 2021

Abstract

Understanding and predicting how species will response to future climate change is crucial for biodiversity conservation. Here, we conducted an assessment of future climate change impacts on the distribution of D. involucrate in China, using the most recent global circulation models developed in the sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC6). We assessed the potential range shifts in this species by using an ensemble of species distribution models (SDMs). The ensemble SDMs exhibited high predictive ability and suggested that the temperature annual range, annual mean temperature, and precipitation of the driest month are the most influential predictors in shaping distribution patterns of this species. The projections of the ensemble SDMs also suggested that D. involucrate is very vulnerable to future climate change, with at least one-third of its suitable range expected to be lost in all future climate change scenarios and will shift to the northward of high-latitude regions. These findings suggest that it is of great urgent and significance to adaptive management strategies to mitigate the impacts of climate change on D. involucrate.

Hosted file

Long_etal_2021_ms1.pdf available at https://authorea.com/users/411270/articles/520365predicting-range-shifts-of-davidia-involucrata-ball-under-future-climate-change