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Abstract

Abstract Fractional O-U process is a very classical stochastic process which is used to describe the time series of financial

volatility. Three parameters need to be estimated in this process, and the estimation method based on discrete observations

can be realized by machine learning optimization algorithm. In this study, the parameter estimation method of fractional O-U

process is briefly described, and three optimization algorithms, Newton method, quasi Newton method and genetic algorithm,

are used to estimate the parameters. The comparison shows that genetic algorithm is relatively accurate and efficient. Finally,

the minute data of stock index futures are estimated based on fractional O-U process. The results show that the estimation of

theta and Hurst index is relatively accurate, and the estimation error of volatility is large.
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1. Introduction 

Many mechanisms or dynamical systems in nature and social life obey fractional O-U 

process, so it is of positive significance to study fractional O-U process for understanding these 

mechanisms. In view of the importance of fractional O-U process, how to estimate its parameters 

is a very important problem. El Mehdi Haress, Yao Zhong Hu [1] used Newton method to estimate 

the parameters of fractional O-U, and proved the convergence of the estimator. Ana prior, Marina 

kleptsyna, Paula milheiro Oliveira [2] for 2-D O-U process, they use the polar nature estimation 

method to estimate the drift term of random process. Yao Zhong Hu, David nualart, Hong Jun 

Zhou [3] used a least square estimator to estimate the drift term of O-U process, proved the 

convergence of H ∈ (0,0.75) by using central limit theorem, and proved the convergence of H 

∈ (0.75,1) by using a non central limit theorem. Yao Zhong Hu, David nualart [4] also used a 

least square estimator to estimate the drift term of fractional O-U process. Weilin Xiao, Weiguo 

Zhang, Weidong Xu [5] estimate the drift term and diffusion term for discrete fractional O-U 

process on the premise that Hurst parameter is known. Istas and Lang [6] estimates three 

parameters of O-U process by quadratic variation methods. Kleptsyna and Le Breton [7] use MLE 
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to estimate parameters for H ∈ (0.5,1). Tudor and Viens [8] have also obtained the almost sure 

convergence of both the MLE and a version of the MLE using discrete observations for all H∈

(0,1). Irrespectively of the stability of the process, the MLE is known to be unbiased and 

consistent, by Basak and Lee [9] and Lin and Lototsky [10]. Proofs of asymptotic normality 

require certain regularity and ergodicity conditions under which the estimator is asymptotically 

normal with the rate of convergence T , by Rao[11], Kutoyants[12]. 

At present, most of the literatures estimate the parameters of fractional O-U process based on 

mathematical methods and require some conditions for convergence. This paper continues the 

Newton method of El Mehdi Haress, Yaozhong Hu [1], further adopts the quasi Newton method, 

and creatively adds the swarm particle artificial intelligence algorithm such as genetic algorithm to 

estimate the parameters, and comprehensively compares the efficiency of Newton method, quasi 

Newton method and genetic algorithm in estimating the parameters. 

The second part of this paper introduces the parameter estimation theory of fractional O-U 

process, proves the mathematical theory of Newton method and quasi Newton method, and 

introduces the algorithm flow of genetic algorithm. In the third part of the paper, the fractional 

O-U process is used to generate random simulation data under specific parameters, and then the 

above three methods are used to estimate the given parameters, and analysis the error of 

estimation. The fourth part is an empirical study, which estimates the fractional O-U process of 

real volatility series based on stock index futures data, and observes the estimation error of each 

quantile in the series. The fifth part is the conclusion, which summarizes the contribution of this 

paper. 

 

2. Model and algorithm 

2.1 parameter estimation method of fractional O-U process 

A fractional O-U process  
0t t

X


, describe the process of the following form: 

d H

t t tX X dt dB   
 

Among three parameters 0  , for the sake of simplicity, set 0X 0 . Then discretize 

 
0t t

X


, set h as time interval, we get  h 2 3, ,h h nhX X X X . Finally, three unknown 

parameters , , H   are estimated by the discretized series  h 2 3, ,h h nhX X X X . 

El Mehdi Haress, Yaozhong Hu [1], presents a method for estimating three unknown 

parameters by discrete data. 

First, the following estimation formula is constructed: 
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Equation (1) can be written as 
1 2 3f ( , , )=(f ( , , ) f ( , , ) f ( , , ))TH H H H       , , . And
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Therefore, the parameters to be estimated can be solved by equation (3) 

 1

, 2 ,H, , ,n h n h nf     
 

 
， (3) 

2.2 Newton method 

Propose nonlinear multivariate equations (4): 
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The Newton method is used to solve the equation as follows: 

Firstly, Taylor expansion of F( )x  is carried out at 
kx  point, which k represents k times 

iteration of
kx , and the expansion ignores the high order terms: 
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x  ，L( )x is Taylor expansion of F( )x ，so the solution ofL( )x

is also the solution of F( )x 。 

Then, set
k+1L( )=0x , according to equation (5), we can get: 
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According to equation (6), 
k+1x  can be solved as follows: 
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2.3 quasi Newton method 

Although Newton method can approximate the solution of the equations, it is necessary to 

calculate the inverse matrix of Jacobian matrix repeatedly in the process of solving, which makes 

the calculation process very resource consuming. Therefore, a new quasi Newton method is 

proposed. 

suppose K + 1 iteration is performed. The steps of quasi Newton method are as follows: 



1 1 1 2 1 11
( ) ( ) ( )( ) ( ) ( )( )

2

k k k k T k kf f f f           （8）x x x x x x x x x x  

Add a gradient operator   to the left and right of equation (8) 

1

1( ) ( ) H ( )k k

kf f 

    （9）x x x x  

Where 1Hk  is the Hessian matrix with iteration of K + 1. 

In formula (9), set = kx x ,the following is obtained: 

+1 k 1

1( ) ( ) H ( )k k k

kf f 

    （10）x x x x  

set
+1 k( ) ( )k

k f f y x x ，
1k k

k

 s = x x  

Then equation (10) can be rewritten as follows: 

1

-1H
kk k

 （11）s y  

Equation (11) is quasi Newton condition, which constrains the Hessian matrix in the iterative 

process. Then, use 1Dk  approximately substitute for the Hessian matrix, obtain equation (12) as 

follows: 

1=Dk k k （12）s y  

So far, formula (12) is the core iterative formula of quasi Newton method. The famous DFP 

Algorithm is introduced to solve equation (12). In equation (12), 1Dk  can be disassembled into: 

1D =D + D (13)k k k   

0D  is set as an identity matrix at the beginning of iteration, so the key point is how to 

construct the Dk  of each step. 

The conjecture of DFP Algorithm is that Dk  may be related to ks 、 ky 、Dk , so the 

"undetermined method" is used to change the undetermined Dk into a special form, and then the 

quasi Newton condition is used to solve the problem. 

The DFP set Dk to undetermined form 

D = T T

k    （14）uu vv  

In equation (14)  、   are undetermined coefficients, and u、 v  are undetermined 

vectors. Setting this form guarantees symmetry of Dk  (because sum of 
Tuu  and 

T
vv is a 



symmetric matrix). 

Substituting formula (14) into formula (13) and combining with formula (12), we can obtain 

the following formula: 

=D + T T

k k k k k  （15）s y uu y vv y  

The transformation form is as follows: 

   =D + T T

k k k k k  （16）s y u y u v y v  

In equation (16), 
T

ku y  and 
T

kv y are two numbers, so we set =1T

ku y ， =-1T

kv y . 

Substitute it into formula (16), we get that: 

= D (17)k k k u v s y  

If you want to make the above formula meets, you can take = ku s  and =Dk kv y then 

combine =1T

ku y  and =-1T

kv y  to get: 
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substitute 、   and = ku s ， =Dk kv y  into formula (14), we can get: 

D D
D =

D

k

k

TT
k k kk k

k T T

k k k k

  （18）
y ys s

s y y y
 

So far, equation (18) is the iterative increment of formula (13) in DFP Algorithm, and then 

substitute 1Dk  into formula (12)，the solution of quasi Newton method can be obtained. 

2.4 genetic algorithm 

Genetic algorithm (GA) follows the principle of "survival of the fittest". It is a kind of 

randomized search algorithm which draws lessons from natural selection and natural genetic 

mechanism in biological world. Genetic algorithm simulates the evolution process of an artificial 

population. Through the selection, crossover and mutation mechanisms, a group of candidate 

individuals are retained in each iteration, and the process is repeated. After several generations of 

evolution, the fitness of the population reaches the "approximate optimal" state under ideal 

conditions. 

The main steps of the algorithm are as follows: 

1. Initialization population: initialization population is to generate a series of solutions 

randomly for target problems. 

2. Calculate the given fitness: substitute the randomly generated solution into the target 

problem, calculate the result of the problem, and then evaluate the result of the solution based on 

some criteria suitable for the target problem. 

3. Ranking according to individual fitness: ranking the evaluation results of solutions, the 



solutions with high fitness rank first, and the solutions with poor fitness rank second. 

4. Selection operation: select the superior individuals and eliminate some poor individuals. 

5. Crossover operation: gene crossover operation is carried out on the selected dominant 

individuals, that is to say, the dominant solutions are fused in accordance with the target problem. 

6. Mutation operation: to a certain extent, the combined dominant solution is randomly 

perturbed, so that the perturbed combined solution has a certain probability to deviate from the 

original dominant solution, but still can roughly retain the performance of the dominant solution. 

7. Judge whether the iteration of the dominant solution reaches the convergence condition. If 

convergence condition meets, stop iteration, otherwise return back to step 2 and loop step 2-7. 

Through the above eight steps of the cycle, the final randomly generated solution will reach 

the convergence condition after several rounds of iteration, that is, the fitness of the dominant 

solution will not change, which means that the solution at this time at least reaches the local 

optimal. In this way, the objective of the optimization problem is approximately obtained. 

 

3. Simulation 

The simulation is to give the parameters of fractional O-U, randomly generate the sequence, 

and then calculate n 、 ,h n 、 2 ,h n , and estimate the three unknown parameters , , H 

according to the steps in the parameter estimation method of 2.1 fractional O-U process, by using 

2.2 Newton method, 2.3 quasi Newton method, and 2.4 genetic algorithm according to equations 

(1), (2), (3). 

El Mehdi Haress, Yao Zhong Hu [1] used Newton's method to test and simulate two groups 

of parameters =6, =2, =0.7H   and =6, =2, =0.4H  . Therefore, this study also uses 

three different algorithms to simulate these two groups of parameters for comparison. 

First, 100 groups of random fractional O-U processes based on parameters 

=6, =2, =0.7H  are randomly generated. As shown in Figure 1. 



 

Figure 1 100 groups of the fractional U-O process based on parameters =6, =2, =0.7H   

 

From 100 groups of the fractional U-O process based on parameters =6, =2, =0.7H  , 

we get 100 groups of n 、 ,h n 、 2 ,h n , which are used to estimate , , H  . Statistics of n 、

,h n 、 2 ,h n  showed in Table 1. 

 

 

 

 

 

Table 1 n 、 ,h n 、 2 ,h n  calculated from parameters =6, =2, =0.7H   

 
n  ,h n  2 ,h n  

mean 0.003958 0.003955 0.00395 

std 0.001196 0.001196 0.001196 

 

According to the parameter estimation method based on 2.1 fractional O-U process, we use 

n 、 ,h n 、 2 ,h n  in Table 1, Newton method, quasi Newton method and genetic algorithm are 

used to estimate the fractional U-O process parameters, and the results are shown in Table 2. 

 

Table 2 The parameter estimation based on =6, =2, =0.7H   



H=0.7,theta=6,sigma=2 

Panel A: parameter estimation of Newton 

 mean std 

theta 3.783848 21.9009 

H 0.7412 0.2726 

sigma 0.6778 0.9445 

Panel B: parameter estimation of qusi-Newton 

 mean std 

theta 7.6179 1.88 

H 0.9095 0.0125 

sigma 1.5069 2.5492 

Panel C: parameter estimation of GA 

 mean std 

theta 7.0234 1.6905 

H 0.5884 0.0972 

sigma 1.3647 1.1949 

 

From the estimation results in Table 2, the performance of the three algorithms is: genetic 

algorithm > quasi Newton method > Newton method. Based on the theoretical analysis of the 

algorithm, Newton's method and quasi Newton's method are based on the usage of gradient to 

approximate the local optimum. However, the structure of the equations needed to solve the 

optimization problem in this study is more complex, which may be approximated by gradient or 

similar way, and may fall into local optimum or doesn’t converge. In fact, in Newton's method, 

there are many final results that do not converge. The genetic algorithm is a kind of particle swarm 

algorithm, its crossover and mutation operation is conducive to the optimization of the dominant 

population, at the same time, it also has a certain probability to jump out of the local optimal, so it 

is close to the global optimal, so from the results, the performance of genetic algorithm is the best. 

 

Next, make a group of parameter =6, =2, =0.4H  , 0.5H   means that the 100 

groups of random O-U process sequences have anti historical memory, as shown in Figure 2. 



 

Figure 2 100 groups of the fractional U-O process based on parameters =6, =2, =0.4H   

 

From 100 groups of the fractional U-O process based on parameters =6, =2, =0.4H  , 

we get 100 groups of n 、 ,h n 、 2 ,h n  which are used to estimate , , H  . Statistics of n 、 ,h n 、

2 ,h n showed in Table 3 

Table 3 n 、 ,h n 、 2 ,h n  calculated from parameters =6, =2, =0.4H   

 
n  ,h n  2 ,h n  

mean 0.0351 0.0344 0.0338 

std 0.0047 0.0047 0.0047 

 

Then, according to 100 groups of n 、 ,h n 、 2 ,h n  in Table 3, Newton method, quasi 

Newton method and genetic algorithm are used to estimate again, and the results are shown in 

Table 4. 

Table 4 The parameter estimation based on =6, =2, =0.4H   

H=0.4,theta=6,sigma=2 

Panel A: parameter estimation of Newton 

 mean std 



theta Nan Nan 

H Nan Nan 

sigma Nan Nan 

Panel B: parameter estimation of qusi-Newton 

 mean std 

theta 6.712858 2.25364 

H 0.779601 0.020399 

sigma 2.029061 2.754953 

Panel C: parameter estimation of GA 

 mean std 

theta 6.746417 2.129206 

H 0.601235 0.09987 

sigma 3.228041 1.267521 

 

From the results in Table 4, the performance of the algorithm is still genetic algorithm > quasi 

Newton method > Newton method. The reason why Newton method is Nan is that it is not easy to 

converge to the real value through the approximation of first-order Taylor expansion, and the final 

error is large. Although the H  estimation of genetic algorithm is greater than 0.5, compared with 

other algorithms, it still has the smallest error and the fastest running speed. 

To sum up, three algorithms are used to estimate the O-U process of the above two groups of 

parameters. From the results, genetic algorithm is a relatively better parameter estimation 

algorithm, so the following empirical research is carried out with genetic algorithm. 

 

4. Empirical research 

4.1 parameter estimation and prediction of fractional O-U process 

This empirical study uses the RV constructed by the minute data of the closing price of 

Shanghai stock index. The length of time is from November 21, 2016 to November 20, 2019. The 

data characteristics of the whole dataset are shown in Table 5. The formula of RV is (19). 

1 ( 1)

rv log( log( )) t 1,2,3 n (19)
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Where   is the time interval, which is 1 minute in this study, and M is 10 minutes, which 

represents the RV calculated every 10 minutes. 

 

Table 5 statistical characteristics of stock index and logarithmic RV 

 No. of obs mean std skewness kurtosis 

index 176534 3046.46789 251.6178511 -0.408650443 -0.75881 

log(rv) of index 17652 -1.39E+01 1.13E+00 0.902773474 2.027883 

 

The main research object of fractional O-U process is volatility, so this study focuses on 

logarithmic RV. Figure 3 is a linear graph of time series of RV, from which we can see that the 

fluctuation of RV has certain resilience. 



 

 

Figure 3 logarithmic RV linear graph 

Figure 4 is the frequency distribution of RV. It can be seen from the figure that the 

distribution of RV is basically bell shaped in small fluctuation areas, but has a positive long tail. 

 

Figure 4 histogram of logarithmic RV 

Then the data set is divided into training set and test set. The training set is from November 

21, 2016 to December 28, 2018, and the test set is from January 2, 2019 to November 20, 2019. 

The parameters of fractional O-U process are estimated with training set data, and the results are 

shown in Table 6. 

 

Table 6 parameters of fractional O-U process estimated by genetic algorithm in training set 

GA theta H sigma 



mean 6.744176 0.581836414 3.266967513 

std 2.095349 0.114964958 1.177182794 

 

Then, 100 groups of 50 000 samples of fractional O-U process random sequences are 

randomly generated with the parameters in Table 6. The generated fractional O-U process random 

sequences are shown in Figure 5. 

 

Figure 5 random sequence of fractional O-U process generated by training set estimation 

parameters 

 

Take the test set from January 2, 2019 to November 20, 2019 to calculate RV, and normalize 

the initial value to 0, as shown in Figure 6. 

 



Figure 6 RV sequence of test set calculation 

Comparing Figure 5 and Figure 6, the structure of fractional O-U process assumes a mean 

symmetric sequence, but in reality, the RV of stock index futures tends to be longer in positive tail, 

shorter in negative tail and asymmetric in reality. So next, we examine the prediction error of each 

quantile in the test set. 

 

Table 7 prediction of fractional O-U process in each quantile of stock index futures test set 

 Test set  Fractional O-U process 

forecast 

Absolute error percentage 

0%quantile -3.0187602 -23.01062168 6.622540431 

10%quantile -1.0088317 -6.120521524 5.066940123 

20%quantile -0.6799955 -3.971917773 4.841093943 

30%quantile -0.4166668 -2.458337494 4.900007717 

40%quantile -0.1773466 -1.162987505 5.557709034 

50%quantile 0.05762205 0.042818873 0.256901207 

60%quantile 0.33190683 1.261312791 2.800201333 

70%quantile 0.65942546 2.570562692 2.89818538 

80%quantile 1.16846836 4.101424509 2.510086053 

90%quantile 2.61425997 6.203339771 1.372885573 

100%quantile 21.623571 21.54931026 0.003434249 

 

It can be seen from table 7 that the more negative the tail, the worse the prediction effect of 

fractional O-U process, and the more positive the tail, the better the prediction effect. Especially 

for the 100% quantile, which is the position of the maximum value, the absolute value percentage 

of prediction error is only 0.003. It is speculated that this difference is due to the asymmetry of the 

market, because in China's A-share market, we can only do long but not short. Even if there are 

means of securities lending, the source of securities lending is very limited in reality. 

 

5. Conclusion 

In this study, three different optimization algorithms are used to estimate the parameters of 

fractional O-U process. The results show that genetic algorithm is faster and more accurate than 

Newton method and quasi Newton method. Then, the genetic algorithm is used to estimate the 

parameters of fractional O-U process from 2016-11-21 to 2018-12-28 training set data, and then 

the parameters are substituted into the fractional O-U process to generate 100 groups of random 

sequences, which are compared with the test set data from 2016-11-21 to 2019-11-20. Taking 10% 

as the step, from 0% quantile to 100%, the percentage of prediction error of each quantile is 

compared. It is found that fractional O-U process is more accurate in predicting the positive tail of 

real stock index futures RV, but exaggerates the negative tail. The positive and negative tails of 

real stock index futures are not symmetrical, which may be caused by the non formation 

mechanism of China's A-share market. But on the whole, fractional O-U process does well 

describe the basic characteristics of stock index futures RV, which is of great significance to the 

understanding of volatility. 
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