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Abstract

Climate change and disease are threats to biodiversity that may compound and interact with one another in ways that are

difficult to predict. White-nose syndrome (WNS), caused by a cold-loving fungus (Pseudogymnoascus destructans), has had

devastating impacts on North American hibernating bats, and impact severity has been linked to hibernaculum microclimate

conditions. As WNS spreads across the continent and climate conditions change, anticipating these stressors’ combined impacts

may improve conservation outcomes for bats. We build on the recent development of winter species distribution models for

five North American bat species, which used a hybrid correlative-mechanistic approach to integrate spatially explicit winter

survivorship estimates from a bioenergetic model of hibernation physiology. We apply this bioenergetic model given the presence

of P. destructans , including parameters capturing its climate-dependent growth as well as its climate-dependent effects on host

physiology, under both current climate conditions and scenarios of future climate change. We then update species distribution

models with the resulting survivorship estimates to predict changes in winter hibernacula suitability under future conditions.

Exposure to P. destructans is generally projected to decrease bats’ winter occurrence probability, but in many areas, changes in

climate are projected to lessen the detrimental impacts of WNS. This rescue effect is not predicted for all species or geographies

and may arrive too late to benefit many hibernacula. However, our findings offer hope that proactive conservation strategies to

minimize other sources of mortality could allow bat populations exposed to P. destructans to persist long enough for conditions

to improve.
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Introduction

Climate change and infectious disease emergence are major threats to biodiversity (Dawson et al. 2011,
Fisher et al. 2012). Increasing temperatures, changes in the amount and timing of precipitation, increased
frequency and severity of extreme conditions, and other changes in climate conditions (Pachauri et al. 2014)
impact species and communities in a variety of ways. Climate change has already shifted distributions of a
diverse range of species (Parmesan 2006) and is projected to drive future shifts (Lawler et al. 2009). Some
species’ fundamental niches are moving or disappearing altogether (Colwell & Rangel 2009, Thomas et al.
2004, Thuiller et al. 2006), while others may expand beyond range limits previously imposed by unsuitable
climate conditions (e.g., Melles et al. 2011, Battisti & Larsson 2015). These range shifts may in turn drive
changes in interspecific co-occurrence and population dynamics among competitors, predators, and prey
(e.g., Alexander et al. 2016, Urban et al. 2013) as well as diseases, parasites, and hosts (Gallana et al. 2013,
Adlard et al. 2015, Metcalf et al. 2017).

All of these climate change impacts may be at play for bats and are expected to interact with the impacts
of white-nose syndrome (WNS). WNS, caused by a cold-loving fungus (Pseudogymnoascus destructans )
introduced to New York state in 2006, has killed millions of hibernating bats across eastern and central
North America by disrupting hibernation physiology (Leopardi et al. 2015, Frick et al. 2016). It continues
to spread widely and rapidly from its introduction site, including a 2016 novel introduction to Washington
state (USFWS 2020), and is now invading western North America (herein the West). P. destructans grows
on the skin of hibernating bats and, through a number of physiological mechanisms, causes them to arouse
from their torpid state more frequently than healthy bats (Frick et al. 2016). These arousals are energetically
expensive (Thomas et al. 1990), causing infected bats to expend fat stores before the end of winter. Impact
severity varies geographically and among species, and has been linked to microclimate-dependent fungal
growth (Verant et al. 2012, Marroquin et al. 2017), interspecific and microclimate-dependent differences in
host physiology (Johnson et al. 2014, Moore et al. 2017, McGuire et al. in review), as well as interspecific
differences in hibernation behavior, including microclimate preferences (Langwig et al. 2012, 2016).

Despite the growing understanding of these mechanisms, WNS impacts on bats remain difficult to predict,
particularly as P. destructansspreads to novel environments supporting diverse species (Harvey et al. 2013).
For example, it is common to find large aggregations of hibernating bats in eastern and central North America,
but this is rarely observed in the West. Instead, western bats tend to hibernate in widely distributed small
groups (Weller et al. 2018, Adams 2003, Bachen et al. 2018). These differences, along with the rugged,
remote landscapes characterizing much of the West, have made the study of western bats challenging. Gaps
therefore remain in our understanding of western bat ecology and the potential impacts of various stressors,
including continued WNS spread.
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. Climate change presents an additional layer of uncertainty regarding WNS impacts on bats. Bat hibernation
physiology and behavior, as well asP. destructans physiology, are closely linked to climate conditions. Hiber-
naculum temperature and humidity, along with winter duration, dictate healthy hibernating bats’ success
in surviving winter on their fat stores (Thomas et al., 1990, Speakman & Thomas, 2003); temperature and
humidity also determine fungal growth rates (Verant et al. 2012, Marroquin et al. 2017). WNS survivorship
largely depends on whether fat stores can sustain bats through winter given increased arousal frequencies
and associated energy costs resulting from P. destructans infection (Langwig et al. 2012, 2016, Hayman
et al. 2016, Haase et al. 2019). A warming climate may shift bats’ winter distributions to track shifts in
preferred hibernaculum conditions. In some hibernacula, higher temperatures may increase fungal loads by
expanding availability of suitable growth conditions, while other hibernacula may experience the opposite
trend. These warming temperatures may simultaneously alter bats’ winter energy expenditures, to their
benefit or detriment. Meanwhile, shorter winters could help to reduce mortality resulting from infected bats
expending fat stores too quickly.

We modeled current winter distributions of five bat species using a hybrid correlative-mechanistic approach
(McClure et al. accepted; Fig. 1). We correlated observed winter occurrence of our focal species with
landscape attributes expected to influence hibernaculum selection (e.g., topography, vegetation cover, water
availability). As an additional predictor, we integrated a spatially explicit estimate of hibernation survivor-
ship derived from a mechanistic bioenergetic model (Haase et al. 2019, Hranac et al. accepted). The
bioenergetic model uses the hypothesized energetic requirements of bats during hibernation to dynamically
model energy expenditure for the duration of a predicted winter under specified hibernaculum conditions.
The model was parameterized for each of our focal species using field measurements of key aspects of hiber-
nation physiology, and was run under current climate conditions, including model-based estimates of mean
winter ambient temperatures experienced in hibernacula (McClure et al. 2020) and winter duration at a
given location (Hranac et al. accepted).

Here, we apply this bioenergetic model given the presence of P. destructans : we include parameters capturing
P. destructans’climate-dependent growth as well as its climate-dependent effects on host physiology, under
both current climate conditions and scenarios of future climate change (Fig. 1). We then update our
species distribution models (McClure et al. accepted) with the resulting survivorship estimates to predict
changes in the distribution of suitable winter hibernacula under these projected future conditions. To our
knowledge, there has been no attempt to model changing distributions of winter hibernacula in response to
WNS exposure or climate change, let alone both. Our objective is to understand and predict the individual
and joint effects of these two imminent stressors on North American bat populations. Our goal is to support
researchers and managers in anticipating and planning for future impacts to bats. We expect this work will
support managers in identifying species and geographies that are expected to be most affected by WNS,
identifying populations for which WNS impacts may be either exacerbated or mitigated by climate change,
and allocating monitoring and management resources accordingly.

Methods

We sought to estimate the change in five focal bat species’ probability of occurrence (estimated under current
conditions in McClure et al. accepted) given two future scenarios: a) exposure to P. destructans, and b)
exposure to P. destructans and climate change. These species, including Corynorhinus townsendii, Myotis
californicus, M. lucifugus, M. velifer, and Perimyotis subflavus, were selected based on data availability
and representation of diverse distributions and habitat requirements among hibernating bats. To estimate
bats’ probability of occurrence given exposure to P. destructans , we ran the spatial bioenergetic model
described in Hranac et al. (accepted; also see Haase et al. 2019) to project winter survivorship from
parameters capturing the influence of the hibernaculum environment (temperature and humidity) on fungal
growth and the resulting impact of the fungus on bat hibernation physiology. To estimate bats’ probability
of occurrence given the additional impacts of climate change, we ran the bioenergetic model with the P.
destructans growth parameters above as well as projected future climate parameters (winter duration and
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. ‘best available’ temperatures, identified as the subterranean temperature closest to the species’ preferred
temperature as identified from published literature that was projected to be available in a given location;
Fig. 1). The bioenergetic model, P. destructans growth parameters, and spatial application of the model
are described fully in Haase et al. (2019) and Hranac et al. (accepted) and summarized in Appendix 1. We
therefore focus here on describing integration of future climate scenarios into the bioenergetic model and
subsequently SDMs for our five focal species.

We first projected daily temperatures at midcentury (2050) under a range of possible climate futures at
high spatial resolution (1 km), which were then used to derive our climate parameters of interest. Global
circulation models (GCMs) represent the energy budget of the earth system and the impact of external
factors such as solar input and greenhouse gas emissions, simulating global patternsand processes across the
earth’s major climate system components (atmosphere,ocean, sea ice, and land surface) to project future
climate attributes (e.g., temperature,-recipitation) under possible future scenarios of carbon and other heat-
trapping gas concentrations (Kiel & Ramanathan 2006). regional climate models (RCMs) dynamically (i.e.,
mechanistically) downscale coarse GCM projections by resolving processes that occur at finer resolutions
than GCM grid sizes ([?]100 km) within a more limited geographic sco-e (Kotamarthi et al. 2016). They
account for the effects of local complexity, e.g., topography and coastlines, and simulate hydrologic processes
at scales more relevant to decision-making (25-50 km). However, these outputs are still too coarse for
many applications. GCM and RCM projections can be further statistically downscaled using a variety of
approaches. Although many methods exist and vary considerably in their complexity, they all fundamentally
aim to account for differences between model simulations applied to historical periods and observed climate
attributes during those periods, then apply those statistical adjustments to future projections (Kotamarthi
et al. 2016).

The NA-CORDEX Program data archive (Mearns et al. 2017), hosted by the National Center for Atmo-
spheric Research , contains output from RCMs run over a domain covering most of North America using
boundary conditions from multiple CMIP5 GCMs (Appendix 2, Fig. A1). These projections span a range of
possible climate futures in terms of greenhouse gas concentration scenarios and projected severity of future
change, as well as performance in capturing regionally important drivers and processes.

The NA-CORDEX data archive includes outputs from two RCMs that offer 25 km spatial resolution and
span the complete range (2.4 - 4.6°C) of GCM equilibrium climate sensitivity (ECS), an emergent property of
GCMs that serves as a metric of relative severity of projected change. These are the RegCM4 model (Giorgi
et al. 2012) and the WRF model (Skamarock et al. 2008) (Fig. 2). These models differ in their underlying
sub-models and -processes (see https://na-cordex.org/rcm-characteristics), which may mean that each best
represents the meteorological phenomena driving future climate change in different subregions of North
America. Kotamarthi et al. (2016) suggest that it is critical to understand the phenomena that are most
relevant to climate impacts of interest when selecting the most appropriate downscaling tool. In the Mountain
West, complex terrain is the primary driver of climate, with midlatitude cyclones, katabatic winds, monsoons,
and associated air-mass thunderstorms being the most prominent resulting phenomena. The maritime climate
along the Pacific coast also produces midlatitude cyclones, as well as orographic lifting and atmospheric rivers
(Kotamarthi et al. 2016).

For each of the above RCMs, we selected downscaled outputs run on boundary conditions from two GCMs
- GFDL-ESM2M (ECS = 2.4°C) and HadGEM2-ES (ECS = 4.6°C) - to span the range of available models’
climate sensitivity (Appendix 2, Fig. A1). This approach is in keeping with the recommendation from Ko-
tamarthi et al. (2016) to use output from multiple GCMs with different physical parameterizations to cover
a broader range of model uncertainty. Thus, in total, we consider four possible climate futures (2 RCMs x 2
GCMs).

We used versions of these outputs that were bias-corrected using a multivariate quantile mapping method
(MBCn; Cannon 2018) with Daymet temperatures as the observed dataset (Thornton et al. 2019). Because
the dynamically downscaled RCMs were still considerably coarser (25 km) than our desired spatial resolution
(1 km), we further statistically downscaled them by spatially interpolating the data to 1 km and applying
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. an adiabatic lapse rate correction based on elevation (Wallace & Hobbs 2006).

To estimate survivorship under future conditions, we first derived 30-year means centered on the year 2050
for mean annual surface temperature (MAST) and duration of the frost-free period for each of the four
climate scenarios. We then used projected MAST and a model linking surface and subterranean temperatures
(McClure et al. 2020) to estimate the best available hibernaculum temperature likely to be available (i.e.,
the temperature closest to the mean ambient temperature at which each species has been observed during
hibernation in the published literature) in any given location for a given species (see Appendix 1 for details).
Similarly, projected frost-free period was used to estimate hibernation-specific winter duration (i.e., time
between immergence and emergence from hibernacula) as described in Hranac et al. (accepted; also see
Appendix 1). We then ran the bioenergetic survivorship model for each of our five focal species under each
future scenario using these projected future climate parameters.

Projections of future winter survivorship under each scenario were then used as predictors in species-specific
SDMs that were previously derived under current conditions. These SDMs are fully described in McClure
et al. (accepted), but briefly, we brought model-based, spatially-explicit estimates of winter survivorship
together with landscape attributes hypothesized to influence hibernaculum selection (e.g., topography, pre-
cipitation, presence of karst and mines) as predictors of relative probability of occurrence throughout the
states and territories encompassing each species’ known range (National Atlas of the United States 2011). We
used boosted regression trees (Elith et al. 2008) to link these predictors to our response data, which consisted
of species occurrence records compiled from multiple sources (e.g., online databases of museum records and
vetted observations, Natural Heritage Programs, our own field studies). The influence of each predictor on
final predictive models for each species are summarized in Fig. 2. We then applied the final model for each
species to predictor values in each 1-km cell to predict and map relative probability of occurrence. Here, we
essentially updated these models by replacing survivorship estimates under current conditions with projected
survivorship under future scenarios. We then estimated and mapped the change in occurrence probability
between current conditions and each future scenario as the difference in estimated occurrence probability for
each raster cell.

Results & Discussion

Mean projected climate parameters (MAST and frost-free period) among the four climate scenarios assessed
are mapped in Fig. 3, along with the inter-scenario range and the mean projected change in each parameter
from current conditions. Spatial patterns in the mean parameter values reflect latitudinal, topographic, and
coastal influences on temperature and frost-free period, as expected. We observed high agreement among
climate scenarios (i.e., low inter-scenario range) for projected MAST, with increasing disagreement at very
high latitudes. Disagreement among climate scenarios in length of the frost-free period was higher in some
areas and more sporadic than that seen in MAST projections, which may reflect a stronger influence of
topography. Projected change in MAST increased with latitude and with elevation, while projected change
in frost-free period was more spatially variable, with the largest increases in the Appalachian region and
localized portions of the West coast.

Projected changes in probability of occurrence for each of five focal species under future scenarios are mapped
in Figs. 4-6 and Figs. A2-A3 (Appendix 2). We focus on projections from SDMs in which the survivorship
predictor accounted for at least 5% of the boosted regression tree model fit under current conditions (McClure
et al. accepted; Fig. 2), which included models for M. californicus, M. lucifugus, and P. subflavus. Projections
from SDMs to which survivorship contributed less than 5% (C. townsendii, M. velifer) are expected to be
less useful because little clear relationship between known species occurrences and survivorship emerged.

Generally, probability of occurrence was projected to decline following exposure to P. destructans (with
the exception of C. townsendii, Appendix 2, Fig. A2). However, projected occurrence probability increased
for most species in most places when climate change was also considered. The greatest projected declines
withP. destructans exposure were typically in areas with the highest occurrence probability under current
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. conditions (i.e., the areas currently expected to be most suitable for a given species). Spatial patterns in
change in occurrence probability after considering climate impacts were more variable. For M. californicus
, we projected moderate declines in occurrence probability in British Columbia, but a strong increase in
other high occurrence probability portions of the range (Fig. 4). For M. lucifugus, we projected decreases
in the severity of declines, but climate change had little impact on areas already expected to remain stable
or experience increased occurrence probability (Fig. 5). In contrast, we observed thresholding behavior inP.
subflavus such that projected rangewide declines underP. destructans exposure were replaced by a marked
increase in occurrence probability in the southeast given climate change (Fig. 6). This threshold appears to
follow and is thus probably driven by spatial patterns in the frost-free period (Fig. 3). We do not interpret
projected changes under each future scenario for C. townsendii orM. velifer because the low contribution
of winter survivorship estimates to SDM fits appear to result in unreliable and counterintuitive behavior of
models for these species (Appendix 2, Figs. A2-A3).

It may be important to consider patterns in projected changes in occurrence probability not just across the
known range of each species, but also more specifically at known hibernacula. We summarized projected
changes in relative probability of occurrence at the points of winter capture or observation that informed
development of species distribution models (Table 1). For M. californicus and P. subflavus,the vast majority
of winter locations are projected to exhibit decreased occurrence probability with exposure to WNS (92.6
and 98.9% of locations, respectively), but climate change scenarios reduce these figures to 43.2 and 65.3%,
respectively, on average. Thus, although climate change is projected to significantly mitigate the impacts of
WNS on these species, approximately half of known hibernaculum locations may still experience declines
in occurrence. In the case of M. lucifugus, WNS exposure is projected to result in decreased occurrence
probability at 41.2% of winter locations, and climate change is anticipated to have little effect on this
pattern (projected declines at 43.1% of locations, on average).

All four climate scenarios showed close agreement regarding future changes in occurrence probability. This
agreement may be driven by one or more factors. First, derived estimates of MAST and frost-free period
may not be sensitive to differences among scenarios in projected daily temperatures. This appears to be
more likely for MAST than for frost-free period (Fig. 3) and is not surprising given that calculation of the
frost-free period is threshold dependent (i.e., definition of the frost-free period is dependent on the first
and last day of the year on which a precise threshold temperature is reached). Second, the subterranean
temperature model and/or winter duration model may not be sensitive to MAST and frost-free period
parameters, respectively (see Fig. 1). This is unlikely in the case of the subterranean temperature model,
given that MAST is the model’s strongest predictor (McClure et al. 2020). It is also unlikely in the case of
the winter duration model given that inclusion of frost-free period as a predictor improved the model by
25.39 AIC units (Hranac et al. accepted). Third, the survivorship model may not be sensitive to variation
in the best available temperature estimate derived from the subterranean temperature model and/or our
estimate of winter duration. We suggest that derivation of the ‘best available’ temperature for a given species
at a given location from the subterranean temperature model likely absorbs the majority of the variability
among climate scenarios (see Appendix 1, Hranac et al. accepted). Finally, for some species, SDMs may not
be sensitive to variation in winter survivorship estimates. SDM sensitivity to survivorship is expected to be
directly related to the contribution of the survivorship predictor to the boosted regression tree model for a
given species (see McClure et al. accepted).

Although all climate scenarios produced very similar projections of future change in occurrence probability,
differences were apparent in some places for most species. For M. californicus, differences were most apparent
along the Pacific coast near the California-Oregon border and around the state of Oklahoma (Fig. 4). For P.
subflavus, the location of the threshold between increasing and decreasing occurrence probability fluctuated
across the Appalachian region among scenarios (Fig. 6). Model disagreement was also evident in Oklahoma
for C. townsendii and M. velifer, as well as the Columbia Plateau of eastern Washington and the Sierra
Nevada range of California, respectively (Appendix 2, Figs. A2-A3).

We suggest that our predictions of species distributions in the presence of P. destructans and future climate
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. conditions can help managers to better anticipate the species- and place-specific impacts of these stressors,
individually and synergistically, across North America. Our results may inform on-the-ground monitoring,
which will be important for efforts to track trends in bat distribution and abundance, such as the North
American Bat Monitoring Program (Loeb et al. 2015). Our results may help to inform placement of passive
acoustic detectors for monitoring as P. destructans continues to spread and the climate continues to warm.
For example, monitoring of bat populations could be targeted in areas where our projections suggest that
suitable hibernation conditions are likely to be lost and that occurrence probability is likely to decline
(vulnerable hibernacula). Conversely, monitoring as well as protection efforts could target hibernacula that
are likely to be retained (potential refugia). Our predictions may also enable assessment of the distribution
of at-risk and stable hibernacula across federal, state, and private lands to guide engagement strategies
for conservation. Additionally, they may help managers to prepare for possible range expansions into or
contractions from their jurisdictions under future climate conditions.

Our findings suggest that by mid-century, changing temperatures may offer a ‘rescue’ effect for many bat
populations from the deleterious effects of P. destructans. However, given the pace of P. destructans’ spread
from the East and its recent detection in New Mexico and Montana (USFWS 2020), this rescue effect may
arrive too late for many hibernacula. Furthermore, a warming climate is not predicted to shield all species
in all areas (e.g., M. californicus in British Columbia, M. lucifugus in mountainous regions, P. subflavus
in the northeastern United States), and climate change may have other deleterious impacts on bats that
are beyond the scope of our models (e.g., increasing aridity, driving declines in insect populations). It is
therefore important that managers continue to strive for effective proactive conservation strategies to combat
the devastating impacts of P. destructans as the fungus continues to spread. Even in the absence of a ‘cure’
for WNS, conservation and management actions that minimize other sources of mortality may allow bat
populations to persist long enough for conditions to improve.
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. Figures

Figure 1. Flowchart schematic detailing steps in development of species distribution models (SDMs) for five
focal bat species under a) current conditions, b) exposure to P. destructans, and c) exposure toP. destructans
and projected climate change. Numbered steps are those detailed in previous related publications that
support the work presented here: 1) McClure et al. 2020, Ecosphere , 2) Hranac et al. accepted, Ecology
and Evolution , and 3) McClure et al. accepted, Journal of Biogeography .
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.

Figure 2. Final predictor influences in boosted regression tree models estimating winter species distributions
of bat speciesCorynorhinus townsendii , Myotis californicus , Myotis lucifugus , Myotis velifer , and Per-
imyotis subflavusacross the United States and Canada. Brighter colors indicate higher influence; predictors
that were dropped from a given model are shown in gray. Variables are ordered by their average influence
across species (decreasing left to right).
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.

Figure 3. Projected mid-century climate conditions (30-year averages centered on 2050) used to parame-
terize bioenergetic survivorship models: mean annual surface temperature (left) and duration of frost-free
period (right). Winter survivorship estimates were subsequently used as predictors of occurrence prob-
ability in species distribution models for five focal bat species. Future climate scenarios were driven by
each combination of two global circulation models (GCMs): GFDL-ESM2M and HadGEM2-ES, and two
dynamically-downscaled regional climate models (RCMs): RegCM4 and WRF. We show the mean (top)
and range (center) among the four scenarios as well as the mean projected change from current conditions
(bottom).
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Figure 4. Projected change in Myotis californicus relative probability of occurrence (a) under multiple future
scenarios: exposure to white-nose syndrome (WNS) under current climate conditions (b) and exposure to
WNS under projected mid-century climate conditions (c-f). Future climate scenarios were driven by each
combination of two global circulation models (GCMs): GFDL-ESM2M (c-d) and HadGEM2-ES (e-f) and
two dynamically-downscaled regional climate models (RCMs): RegCM4 (c,e) and WRF (d,f). Darker green
indicates a projected increase in occurrence probability; darker purple indicates a projected decrease. The
species’ current known range (gray outline) and points of winter captures/observations (gray points) are
overlaid.
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Figure 5. Projected change in Myotis lucifugus relative probability of occurrence (a) under multiple future
scenarios: exposure to white-nose syndrome (WNS) under current climate conditions (b) and exposure to
WNS under projected mid-century climate conditions (c-f). Future climate scenarios were driven by each
combination of two global circulation models (GCMs): GFDL-ESM2M (c-d) and HadGEM2-ES (e-f) and
two dynamically-downscaled regional climate models (RCMs): RegCM4 (c,e) and WRF (d,f). Darker green
indicates a projected increase in occurrence probability; darker purple indicates a projected decrease. The
species’ current known range (gray outline) and points of winter observations/captures (gray points) are
overlaid.
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Figure 6. Projected change in Perimyotis subflavus relative probability of occurrence (a) under multiple
future scenarios: exposure to white-nose syndrome (WNS) under current climate conditions (b) and exposure
to WNS under projected mid-century climate conditions (c-f). Future climate scenarios were driven by each
combination of two global circulation models (GCMs): GFDL-ESM2M (c-d) and HadGEM2-ES (e-f) and
two dynamically-downscaled regional climate models (RCMs): RegCM4 (c,e) and WRF (d,f). Darker green
indicates a projected increase in occurrence probability; darker purple indicates a projected decrease. The
species’ current known range (gray outline) and points of winter captures/observations (gray points) are
overlaid.

Appendix 1: Winter survivorship model

Full details describing the hibernation energetic model structure and parameterization are described else-
where (Haase et al. 2019, Hranac et al. accepted); here we provide a brief description and details regarding
spatial application of the model across the study extent. The model uses the hypothesized energetic require-
ments of bats in torpor to dynamically model torpor bouts for the duration of a predicted winter under
specified hibernation conditions. Specifically, ambient temperature and water loss are drivers of hibernating
bats’ arousal frequency over the course of the winter, which subsequently drives energy expenditure and fat
loss. Likelihood of winter survivorship can be estimated based on the predicted fat mass remaining at the
end of winter. Key parameters include bat morphometrics and metabolic rates, whether bats are infected
with P. destructans, and hibernaculum climate conditions.

The model (as described in Haase et al. 2019) was applied for bats assumed to be uninfected with P. destruc-
tans using species-specific metabolic and morphometric parameter defaults contained with the batwintor R
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. package (in development: github.com/cReedHranac/batwintor). We then applied the resulting model at
each 1-km2 grid cell across the study extent using spatially explicit estimates of mean ambient temperatures
and winter duration and a fixed relative humidity value of 95%.

Ambient temperature. Hibernating bats are understood to prefer and select particular temperatures from the
range of temperatures that may be available within a given hibernaculum. As subterranean temperatures
in caves and mines are known to deviate from mean annual surface temperature (MAST) due to a variety of
factors (Perry 2013), we developed a model to predict the availability of suitable hibernacula temperatures
(McClure et al. 2020).

We estimated the mean ambient temperature likely to be experienced over the course of hibernation in any
given location across North America should a suitable hibernaculum exist, for each of our five focal species.
We first identified the mean ambient temperature at which each species has been observed during hibernation
from the available published literature (Table S1), and made the assumption that this mean represents
the species’ preferred hibernation temperature. We then used a spatially explicit model of subterranean
winter temperatures to estimate the closest available temperature to this preferred temperature at any given
location (McClure et al. 2020). The model estimates subterranean winter temperature based on MAST,
distance from the site entrance, site type (cave or mine), and several less influential predictors representing
topography, land cover, and presence of water. The model predicts an increase in subterranean temperature
with increasing MAST and distance from the site entrance, and predicts higher temperatures in mines than
in caves.

We bracketed the conditions expected to be available at a given site by assuming, based on field observa-
tions, that bats would hibernate between 50 and 100 meters from the site entrance (except C. townsendii,
which were assumed to hibernate between 10 and 100 meters from the site entrance) (C. Lausen, personal
communication). To estimate the warmest temperature potentially available at a given site, we predicted
subterranean temperatures at 100 m from entrances of mines. To estimate the coldest temperature poten-
tially available, we predicted subterranean temperatures at 50 m (10 m for C. townsendii) from entrances
of caves. We then conditionally selected the best available temperature (i.e., the closest to the species-
specific preferred temperature) for each raster cell across North America. Each cell was assigned the species’
preferred temperature if this temperature was bounded by the coldest and warmest temperature predicted
to be available for that cell. If it was not, the cell was assigned the closest temperature to the preferred
temperature that was predicted to be available. If the available range was too cold, the warmest available
temperature (i.e., the predicted temperature for mines at 100 m) was assigned, and if the available range was
too warm, the coldest available temperature (i.e., the predicted temperature for caves at 50 m/10 m) was
assigned. For cells where the best available temperature differed from the parameterized optimal hibernacula
temperature, the metabolic rate was scaled through the q10 relationship, as fully described in Haase et al.
(2019) and Hayman et al. (2016). In all cases, deviation away from the parameterized temperature will
increase the rate of metabolic expenditure. At the warmest of locations, bats may be unable to fully enter
torpor and therefore require vastly more energy than a torpid individual to survive a hibernation duration
of the same length.

This approach best captured our assumption that bats will select microsites within hibernacula that offer
their preferred temperature when possible, but will likely tolerate warmer or cooler temperatures when
necessary, especially at the margins of their ranges.

Table A1. Published literature containing observed ambient hibernaculum temperatures for focal species C.
townsendii, M. californicus, M. lucifugus, M. velifer, and P. subflavus that were used to estimate preferred
hibernation temperatures.

17



P
os

te
d

on
A

u
th

or
ea

26
M

ay
20

21
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

20
71

35
.5

05
28

87
2/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

18



P
os

te
d

on
A

u
th

or
ea

26
M

ay
20

21
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

20
71

35
.5

05
28

87
2/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Winter duration. The duration of winter hibernation is a critical component to understanding the metabolic
demands of many bat species as insect resources typically disappear from the landscape during the coldest
portions of the year. Despite this, relatively little information is available for the duration of this period
and to-date no continuous estimation exists for North American bats. Therefore we estimated the winter
hibernation period based on Myotis lucifugus as it is one of the most abundant and best studied bats in North
America with a distribution spanning across the majority of the temperate zone (below the Arctic Circle
and above the Tropic of Cancer). Records on bats immergence and emergence from hibernacula or duration
of hibernation were collected from the literature, acoustic surveys, and from personal communications with
local bat research groups (Hranac et al. accepted). The duration of hibernation was extracted from each
location and a generalized linear model was used to correlate the number of days bats spend in winter
hibernation with several abiotic variables. The top model selected by Akaike information criterion included
terms for latitude, elevation, and the number of days of frost per year. Results were then projected back
across the study extent to create a continuous estimation of the hibernation period (i.e., duration of winter)
across the entirety of temperate North America (Hranac et al. accepted). All relevant code and products
can be obtained from http://gitub.com/cReedHranac/wintor.
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Figure A1. Matrix overview of projected climate data available via NA-CORDEX (adapted from https:

// na-cordex. org/ simulation-matrix. html ) and projections selected for this analysis (blue). Regional
climate models (RCMs) are arranged as columns, and the global circulation models (GCMs) used to define the
boundary conditions for each RCM run are arranged as rows. The columns at right define the representative
concentration pathway (RCP), i.e., the greenhouse gas emissions scenario assumed for each model run, as
well as the equilibrium climate sensitivity (ECS), a metric of relative severity of projected change suggested
by each model.
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Figure A2. Projected change in Corynorhinus townsendiirelative probability of occurrence (a) under
multiple future scenarios: exposure to white-nose syndrome (WNS) under current climate conditions (b)
and exposure to WNS under projected mid-century climate conditions (c-f). Future climate scenarios were
driven by each combination of two global circulation models (GCMs): GFDL-ESM2M (c-d) and HadGEM2-
ES (e-f) and two dynamically-downscaled regional climate models (RCMs): RegCM4 (c,e) and WRF (d,f).
Darker green indicates a projected increase in occurrence probability; darker purple indicates a projected
decrease. The species’ current known range (gray outline) and points of recorded winter occurrence (gray
points) are overlaid.
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Figure A3. Projected change in Myotis velifer relative probability of occurrence (a) under multiple future
scenarios: exposure to white-nose syndrome (WNS) under current climate conditions (b) and exposure to
WNS under projected mid-century climate conditions (c-f). Future climate scenarios were driven by each
combination of two global circulation models (GCMs): GFDL-ESM2M (c-d) and HadGEM2-ES (e-f) and
two dynamically-downscaled regional climate models (RCMs): RegCM4 (c,e) and WRF (d,f). Darker green
indicates a projected increase in occurrence probability; darker purple indicates a projected decrease. The
species’ current known range (gray outline) and points of recorded winter occurrence (gray points) are
overlaid.
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