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Abstract: In an modern world, image encryption played an vital role to prevent our
data from illegal abuser entre. Based on this, in this paper the Markowiam neural
networks for synchronization of sampled-data control systems with twibhazdelay
components are used on the looped functional method and its direct applisatip-
plied in image encryption. On the basis of generalized Lyapunov functapaioach
involves the states information suchag;) andx(t;41) with few slack variables and a
tuning parameter are introduced . Furthermore, the sampled-data corigralésigned
to contain both the present and delayed state information, thereby enfpémeicontrol
performance and design flexibility. Finally by using the new technique, theraleex-
amples are highlighted in the numerical section and also the effectivenassimiage
encryption is studied.
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1 Introduction

During the last few decades, synchronization plays an important role gretleopment of computer
and communication technology. Since Pecora and Carrol [1] initially intreditice drive response
systems, then it is extended for chaos synchronization and have besasiegly attracted in many
application such as biological systems, traffic systems, pathological stétedirain, secure commu-
nication [2, 3], pattern identification [4], image cryptosystem [5], andredWany tentative study and
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computer graphics of chaotic synchronization in unidirectional couplestred cavity semiconduc-
tor lasers have shown the existence of delay time between the drive gmthsedaser’s intensities.
Now a days, synchronization plays an vital role in secret communicatiootued nonlinear fields.
Further, the synchronization of neural networks have been appliedsasitipled data control, time-
delay, fuzzy control and so on. Therefore, the investigation of sgmekation for neural networks
plays a great importance.

It should be noted that, while executing artificial neural networks time-dslafifen came across
in real applications. Further, the signal transmissions among neurotiseafinite switching speed of
amplifiers in the performance of electrical circuits, time delays are an inevitsdtiere to be consid-
ered in real systems. Therefore, synchronization of neural netwuaitk time-delays has strained an
immense deal of attention in recent years [6]- [10]. From the above literf&{+ [10], the transmis-
sion of the signals from the neuron may cause few segments of networle ¢chaacteristic delays
which are named as an additive time-varying delay. Recently, the auth@jglis§ussed the problem
of global asymptotic stability of complex-valued neural networks with additime-varying delays.
Further, the stability analysis of neutral type neural networks with additive-varying delay and
leakage delay is studied in [9]. Therefore, it is of significant to investigaesynchronization for
neural networks with additive delay which is described in [6]- [10].

On the other hand, the dynamical systems may subject to unpredictable ia.néiese kinds of
systems are governed by markovian chain process known as Markomarsystems. The authors
in [11] discussed the problem of stochastic synchronization of markgwmap neural networks with
time-varying delay using sampled data. Recently in [12], the problem of astictstability analysis
for Markovian jump inertial neural networks with mode-dependent timgingrdelay is considered.
In [13], by augmented time-dependent Lyapunov-Krasovskii funet{tulKF) and zero value equal-
ity, the synchronization for Markovian coupled neural networks with nabelays via sampled-data
control have been investigated. The authors in [14], studies the stmclggonential synchroniza-
tion problem for uncertain chaotic neural networks with probabilistic faultsrandomly occurring
time-varying parameters uncertainties. Hence, the study of Markovian juohjems for time-delay
neural networks has received increasing attention.

Meanwhile, in many articles, the synchronization of neural networks &es btudied by using
sampled data control. The sampled data controls have been extensiviedy apgigital technology
to save communication bandwidth. On the other hand, the sampled data coatneirorks have
been great deal of research in the development of communication netvaankputer technology
and micro electronics so on. In the sampled data control, the hybrid sysseraytstanding to the
coexistence of both continuous and discontinuous signals. The sampiedller has many advan-
tages compared with continuous controller such as high reliability, maintematicéow cost, and



efficiency [15, 16]. Thus, the sampled data control method has been atimabted in the sampling
information of the system. Thus, sampled-data control has annoyed iggtattention for different
engineering applications [17]- [19]. In [20], the authors investigatedrtbvel master-slave syn-
chronization criteria of chaotic Lure systems with time delays using samplec:aiati@l. Recently,
in [21] studied the exponential sampled-data control for T-S fuzzy systgpplication to Chua’s
circuit. The main purpose of this paper, therefore, to fulfill a gap, in thislarsynchronization of
Markovian jump neural networks for sampled data control is investigated.

According to the above discussion, the main contributions of this papeuamnarized as fol-
lows:
a) Initially, the neural network model is constructed with additive time-vardigigy.
b) Synchronization condition for Markovian jump neural networks with dachgata control is de-
rived in terms of linear matrix inequalities(LMIs) which can be effectivellyed by using MATLAB
LMI toolbox.
¢) The synchronization criteria are derived by using suitable LKF antesategral inequality tech-
nique.
d) Further, a looped functional approach is utilized to found the uppendsof some integral terms
which gave the less conservative results.
e) Results of numerical example show the effectiveness of the propostitbd and the reduced
conservativeness.

2 Problem Description and preliminaries

In an right-continuous Markov chain the complete probability sp&zer, P) with {7(¢),t > 0},
taking values in a finite state spaﬁe: {1,2,..., N} with generatof = (mij) NV xA given by

P{F(t+ At) = j[F(t) = i} :{ 1+ mAt+o(At),  i=j

whereAt > 0 andlimg, ., "(ﬁt) = 0, m;; > 0 is the transition rate fromto j, if ¢ # j while
N
Ti=— Y, Tij
J=1, j#i

The model of Markovian jump parameters with delayed neural networkses iy

2(t) = —AiFE)Z() + A(F(1))FE(H)) + As(F(1))GE(t — di (1) — da(1)))

t
AG) [ G+ 1) )



wherez(t) = [#1(t), Za(t), ..., Z,(t)]" € R™ is the neuron state vector afig,(¢) is the state of the
wth neuron attime ; §(Z(t)) = [g1(Z1(t)), G2(F2(1)), . . ., Gn(Zn(t))]" € R™ denotes the neuron ac-
tivation function;. A4, (7(¢)) is a known diagonal matrix satisfyind; (7(¢)) > 0. A2(7(t)), As(7(t))
and.A4(7(t)) are the connection weight matrix, the delay connection weight matrix and distely
delayed connection weight matrix, respectively aﬁi](:k) andcfz(t) are two time-varying delays sat-
isfying
0<di <di(t) <dia, 0<dy <dolt) <doo, di(t) <p, da(t) <po
Where(flg > c?n, d~22 > 521 and 1 and uo are known constants Witﬁn and c?gl not equal to
zero. Here, we denot&t) = Jl(t) + Jg(t),CE =dy + 6721,672 = dig + CTQQ,/L = p1 + po,dp =
dio — di1,dy = doy — doy. 7(t) is the distributed time-varying delay that satisfc 7(¢) < 7, where
7 is a constant.
Assumption 1:Each activation functio@;(-) is continuous and bounded, and there exist constants
F; andF;" such that
~_9i(M) —Gi(xe

Fr < B =000 g

where\1, A2 € R and\; # \s.

The following equation represents the slave system for (1) is considsred

(1) = —AF0)E) + A (F(£)GF(1) + As(F()G(E (¢t — di(t) — da(t))

t

WWGO) / G(F(s))ds + I(t) + a(t), @

t—7(t)
where A, (7(t)) for v = 1,2, 3,4 are matrices given in (1) ant{t) € R" is the appropriate control
input.

In order to investigate the problem of synchronization between systenan{l}2), we define the
error signak(t) = y(t) — z(t). Therefore, the error dynamical system between (1) and (2) is given
as follows:

~ ~

) = —AFD)E) + A7) F ) F@(1)) + Az (7(8) f(@(t — du(t) — da(1))

t

L AF() / F@(s)ds + a(t), 3)

t—7(t)

where f(€(t)) = §(5(t)) — §(Z(t)). It can be found that the function(.) satisfy the following
condition:

<F i=1,2,....,n (4)



wherea € R anda # 0.
The control input for sampled data system with state feedback contreian by

a(t) = Ke(ty), tp<t<tpy1, k=0,1,2,-- (5)

whereK represents the control gain matrix.
Then, the sampling interval satisfies the following condition

0<tk+1_tk:Ek€[El,Eu}, k=0,1,2,--- (6)

whereh; andh,, are lower and upper bounds of the sampling periods with known positiarsc By
substituting (5) in (3), we obtain

~ ~

) = —AiF()E) + A7) (F(1)) F(E(1) + Az (F(0) (@t — di () — da (1))

t

L AF(D) / F(@(s))ds + Ka(ty). @)

t—7(t)

In our convenience, the following each possible valug(of is denoted by, i € S. Then the system
(7) can be written as

~ o~

é(t) = —Aye(t) + A f(e(t)) + Asi f(e(t — Jl(t) - 672(75)))
A / F(@(s))ds + Ka(ty). (8)

(1)

Definition 1: The system (1) and (2) are said to be stochastically synchronousiifsgstem (8) is
stochastically stable with the initial conditiai) = v(t) defined on the interva--max{ds, h,,} 0]
andé(0) € S, the following condition is satisfied:

T
Jim & { / |€<s>||2ds\<¢<t>,€<o>>} <. ©)

Lemma 1 (Jensen’s inequality) [22]: For any constant matlixe R"™*", a scalary > 0, a vector
functionw : [0,~v] — R™ such that the integrations concerned are well defined, then

7/OVWT(S)J\M(S)CZS > (/va(s)ds)TM</07w(s)ds).

3 Main results

In this section, by using time-dependent Lyapunov functional apprdhetstochastic synchroniza-
tion of system (8) is investigated and a sufficient condition is derived tcagtee the error system to



synchronize and synthesize the stochastic sampled-data controllersanrtheff(5).
In order to derive our main results, the following notations are used:

. ) I — ~+ — +
Fi=diag(Fy Fi' Fy Fo oo F FE L ]-"Q:dlag{]:l T8 Fy T i}

5 , 5 ey 5
Theorem 1 Given a positive scalara;, h,,, v, if there exist matrices?, > 0, @1 > 0, @2 >
0,03 > 0,04 > 0,05 > 0,06 > 0,07 > 0,03 > 0,09 > 0,019 > 0,7 > 0, any matrices
X, Y1,Y5, Y3, Y, satisfying the following inequalities

= +EkH1 <0,

E+h® VAN
R M <o, (10)
* —

Z

where

N
= =sym{el Pies} + elT[Z mi;P; + Q1 4 O3 + Q5 + Qg + d39 Qs + d2g Q9 — F1Vis — Fi1Va;
j=1

— FiVsiler — eX Qres(1 — p1) — el Qoes(1 — p1) — elgQzern(1 — pa) — ef3Que1z(1 — pa)

- €6Té5€6 —ef) Qsern — 65@769(1 — p1 = p2) — 6?@867 - 6{2@9612 + ef[@z + 04+ Qs
+72Q10)es — eF,Q10e14 — aT Va + sym{eT N(ey — e2) + [e] + el 1G[—e3 — Asier + Asies
+ Asieg + Agiera] + ef Leg + ek yLeo) + sym{el FoViseq + e FoVases + ef FoVisiers}

— e4TV1ie4 — engieg — elT3V3,~613, II; = Sym{éTyél} + 62TX62 + e3TZeg, P = —62TX62
=lef €3], 1 =les 01", €z =[Opu(e—1yn In Opx(ra—eyn), €=1,...,14.

then the system (1) and (2) are stochastically synchronous. Meanidlegesired controller gain
matrix in (5) can be given b}t = G~ L.
Proof: Constructing the following appropriate LKF:

6
V(t) =) Vel(t), (11)
k=1
where

Vit) = (1) P(t),

Vy(t) = /t el(s)Q1e(s)ds + /  FT(@E(s)Qaf(E(s))ds + / T (s)O3¢(s)ds

—di(t) t—dy () t—da (t)

+ /t FT(e(s))Quf(&(s))ds ~&l(s)Qse(s)ds + /t _el(s)Qge(s)ds

—EQ (t) t—dy —do



+ / @) 0 f(E(s)ds
t—d (t)—da(t)
- 0 t _ _ 0 t _
Vs(t) =dia | _ el (5)Qge(s)dsdf + dao / - / el (5)Qge(s)dsde,
—d12 t+60 _d22 t+0
0yt o
Vi) =7 [ [ FE) @) asae,
—7 Jt+0
Vs(t) = (tis1 — t)cT( HYVS(t) + (tr1 — t)(t — te)e” (tr) Xe(tr),
Vot) = (teas 1) [ 6" (s)2(5)ds,

ty

Ay syl - vs —ws vl | o T
s W Uy [t et .
* Y2t Yo T yst Yy

By using its trajectory, the weak infinitesimal generafasf the foregoing LKF is calculated, and the

and) =

following equations will be obtained easily:
N
LVi(t) =2e" () Pie(t) + e (1) > mij Pe(t) (12)
=1

LVs(t) =" (1)[Q1 + Qs + Qs + Qgle(t) — &7 (t — dy (£)) Que(t — dy (£))(L — 1)
+ FTE() Qo f(E(t) — FL(E(t — di(t)) Qo f(e(t — di(t))(1 — 1)
—&l(t — da(t)) Qse(t — da(t)) (1 — o

FRE0))Quf(E(1) — Tt — da(t))) Qaf (Bt — da(t)))(1 — p2)
et —dy)Ose(t — dy

)
)

_l’_
™

—e ) — &7 (t — d2) Qe(t — da) + FT(e(t)) Qr f(E(1))
FE(E(t — di(t) — do(t))) Qr F(E(t — di(t) — da () (1 — pu1 — puz) (13)
TVs(t) =227 (1) Oge(t) + a2 () Bod(t) — / " T(5)ds0s / " s
t—dia t—d12
— e (5)dsO t e(s)ds
| 70 [ dsa (14

LVa(t) <7 FT (@) Qo f (E(1)) — ( / ) P(’é(s))ds> Q10 ( / ) f('é(s))ds> (15)
t—7(t) t—7(t)
LV5(t) = = T () Vs(t) + 2(tger — t)s" ()VS(t) — (£ — tr)e” (tr) Xe(t)

+ (b1 — e’ (t) Xe(ty) (16)
LVs(t) =(trp1 — 1) (1) ZE(t) — /t ST () Z8(s)ds. (17)

We consider the following zero equation,

0 = 27 ()N [E(t) e — /t : é(s)ds] . (18)



From (18), we can obtain the following inequalities:

Lo N [ Es)ds < (t — )T (BN Z-INTE(E) + /

tr tr

ST () Z8(s)ds. (19)

Furthermore,
2 [F7(0) +7E ()] GI-E(t) — Auelt) + AnsF(@0) + AaiF (@t - du(t) = do(1)))
+ Ay /t~ f('é(s))ds + Ke(ty)] = 0. (20)
t—7(t)

Thus, for any approximately dimensional diagonal matritgs > 0,V5; > 0 andV3; > 0 the
following inequality holds:

o< e e ] [ e fgz»] @)
- [ —FVe FaVai | @

o<[e free-aoy ]| T PR 0 e
- [ —FVa FaVa | @

o< [ e free-doy || T N 0 e

From (12)—(17) and adding (18)—(23) ahg < [k, h,], the following inequality is obtained:

— t —1 — t—1 _ _
LY(t) < o (t) <’€+}1 (2 + hyIl) + . B2+ + hkNZlNT)> olt).  (24)
k k

t

(1) FT@@®) Tt —di(t) (¢ — ) / & (5)ds

_5712

Hence, (10) guarantees that
LV(t) < —lle(®)]? (25)

for somey > 0. Now, using Dynkin’s formula, we have that, for &ll> 0

T
EV(1)) — EV(0)} < € { / ||€<s>u2ds}. (26)



Hence

€ {/OT Hg(S)HQdS} <yTIEV(0)} (27)

which implies that (9) holds. Therefore, from Definition 1, we have thatenaystem (1) and slave
system (2) are stochastically synchronous. This completes the proof.
Remark 1: It is appropriate to note that Theorem 1, provides a new synchronizetii@mion for
the master and slave system. Our main intention in Theorem 1 is to study the byagtatility
theory by involving looped functional technique. Meanwhile, the progasmditions in this The-
orem 1 are expressed in the form of LMIs. Further, the computation dfetines in the LMIs can
be simplified by reducing the parameters involved in the LKFs. Thus, theiartsen in the LKF
which has not been considered in the previous works [11, 13, 13623which leaves us much room
to investigate the problem of synchronization for neural networks witltigedime-varying delay
by looped-functional technique.
Remark 2: It is note that, the LKF constructed in the proof of Theorem 1 is more differéth
those in [13, 15]. Further, in this paper the augmented looped funcfityta) and Ve (t) have been
introduced in the lyapunov functional, which consider the information of stdté). Due to fewer
constraints on the lyapunov functional the looped functional method peapia this article can give
less computational burden. Thus, the LKF taken in this paper represamteageneral form.
Remark 3: In the additive time-varying delay, the information transmitted between the isenso
actuators and controllers trade information over the system. The planizgthds a physically pow-
erful application background in networked control and long-rangdrob Such delays persuade
through an assortment of communication modes are usually time-varying galydisssimilar sub-
stantial properties. In the modern trends, it can be professed thdtreyiiwation problem of various
neural networks has been paying attention in [11,13, 15, 23, 24}efdre, the representation of neu-
ral networks with two additive time varying delay components is proposetbduractical application
background. On the other hand, in the existing literature [11, 13, 18423ynchronization methods
does not fully consider the information of two additive time-varying delay comepts. Based on
the above discussion, it should be pointed out that, the additive delaynddsig Theorem 1 is to
investigate a synchronization for Markovian jump neural networks. Tih@ssynchronization prob-
lem for Markovian jump neural networks with additive time delays has nat bdly discussed, this
motivates our current research.

Specifically, when there is no distributed delay and if we choose single titag-ae(1) (i.e.
Jl(t) only, Zi}(t) = 0) neural network (1) and (2) reduce to the following systems, resghgtiv

B(t) = —AF0))FE) + A (F(0))GE (1)) + A3 (F(£)G(E(t — da (1)) + 1(1) (28)
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and

(1) = —AFD)IE) + As(F(£)F() + As(F(0)G(E(t — da(t) + I(t) +a(t)  (29)

Correspondingly, the error system (7) reduces to

~ o~

) = —AiF)E) + A2 (F() (7)) FE(1) + As(F(1) F(E(t — du (1)) + at).  (30)
whered, (t) satisfies
0<dn <di(t) < dio, di(t) <,

Therefore, system (30) is the particular case of system (8). Cortsieldollowing Lyapunov func-
tional for the error system (30)

Vy(t) = / o s ¢ / R UCOLCRITE / 0 (s)052(s)ds

—dq
= dy» / / Qge )dsdf
dia Jt+0

whereV,(t) = 0, V1(t), Vs(t), Vs(t) follow the same definitions as those in (11). By using the simi-
lar method employed in the proof of Theorem 1, we can easily obtain the fobjoesult.

Theorem 2 Given a positive scalars, h,, 7, if there exist matrice®; > 0, 9 > 0, Qy > 0, é5 >
0, @8 > 0,7 > 0, any matricesX, Y7, Y, Y3, Y, satisfying the following inequalities

_ Z4+ hp®, VhpN
Z4hn <0, | C F 0, (31)
* -7
where
N o~ ~ o~ o~
= =sym{e] Pies} + 6{[2 i Py + Q1+ Qs + A2y Qs — FiVii — FiVailer — ek Qres(1 — )
=1

— el Oaes(1 — 1) — el Oseg — ef Qser — @’ Va + sym{el N(ey — e2)
T T T T
+ [e1 +ye3]G[—es — Avier + Azies + Azies + g Lea + ez yLea]}
+ sym{e{ FoViies + ef FoVhaies} — e Viies — eg Vaies,
I = sym{3? V51 ) + e Xeo + el Zes, @1 = —el Xeo, 7 =[] eI, & = [e3 0],

€ = [OnX(Efl)n In Onx(gﬂg)n], g = 1, .. .,8.

then master system (28) and slave system (29) are stochastically syoabrdloreover, the desired
controller gain matrix in (5) can be given iy = G~ L.
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4 lllustrative Examples

In this section, numerical examples are given to demonstrate the effext&/and applicability of the
considered system.

Example 1: Consider the following master system and slave system of Markovian jumpedila
neural networks as follows:

B(t) = —Aui(t) + AugE() + Asg(F(t — di(t) — da(t)))
P [ g@E)ds + 1), (32)
t—7(t)
g(t) = —Aub(t) + AxG(@(t) + AsG(@(t — di(t) — da(t)))
+Ay; /t_~(t) g(y(s)ds+I(t)+u(t) (i=1,2) (33)

where

(201 0 4 0 1 017
A = ., A= , Ao = ,
0 1.8 0 3.33 —28 23

i 1.17 —-0.26 —-1.36 —0.26 -19 -0.1
Ao = , Az = , Ao = ,
| —-3.4 2.5 —-0.2 =224 —-0.9 -2.02

0.2 1.32 0.8 1.1
-/441 = ] ) »A42 = [ ] .

| 2.28 —0.18 2.22 -0.25

The nonlinear activation functions are taken as

e+ =]k -1
N 2

91(k) = g2(k)

with 7, = F, = 0andF," = 7 = 1. Thus,

0 0 05 0
Fi1= , JFa= :
00 0 0.5

The transition probability matrix is given by

f:[_; _55]

Assumel(t) = 0, y = 0.03 and discrete delay a (t) = 4e!/(10e! + 10), da(t) = 6e’/(10e! +
10) and distributed delay(t) = 1.2|cos(t)|. Hence, a straightforward calculation givés =
0.2, dia = 0.4, gy = 0.1, doy = 0.3, doo = 0.6, 10 = 0.15 and7 = 1.2. By using Theorem 1
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and MATLAB LMI toolbox, the feasible solution is obtained for the given i, = 0.2, dis =
0.4, dy1 = 0.3, dgy = 0.6 with the initial conditions agi(t) = {[-0.2 — 0.2]7, [0.2 0.2]7} and
y(t) = {[0.404)T, [-0.2 —0.2]T}, t € [-1 0] respectively. In addition, Figure 1 and Figure 2
represent the chaotic behavior of the system (1) without control inpng.gain matrix for Theorem
1is shown in Table 1 by using LMI toolbox. Figure 3, shows the synchetioia of master and slave

Table 1: The Control gain Matrix for Example 1
Allowable values ofu;, 112 and sampling periods gain matrix
—43.3850  5.8849
22.9808 —37.3222

By Theorem 1,1 = 0.1, pp = 0.15, by = 0.1, h, = 0.5 K=

system with the action of the gain matiix ~ The state responses of the error system (8) without
and withu(t) are displayed in Figures 3 and 4, respectively. contral(er) (5) are demonstrated in
Figure 5.

Example 2: Consider the system (28) and (29) of delayed neural networks witlollog/fng param-

eters:
1 0 0.9+% 19 -1.2v2% 0.3
All - ) 21 — ) -’431 —
0 09 011  09+7% 0.2 —-1.2V/2%
10 1+7T 19 —1.3V2% 0.1
Aig = , Agg = 4 , Agp = 4 )
0 1 0.09 1+7% 0.1 —1.3[%
The nonlinear activation functions are taken as
1=k — 1]

91(r) = g2(r)

with 7, = F, = 0andF;" = 7 = 1. Thus,

00
fl:[ ]7 f2

2

0 0

Il
—
o
S
ja)
'CJTO
.

The transition probability matrix is given by

~ —-0.5 0.5
I'= .
[ 0.8 0.8]
Assumel(t) = 0, v = 0.3 and discrete delay a# (t) = ¢'/(e! + 1). By setting, the values

cTH = 0.5, 312 = 1, pi1 = 0.25 and using Theorem 2 with MATLAB LMI toolbox the feasi-
ble solutions are obtained. The initial conditions of system (28) and (29y@&en byz(t) =
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{[-0.25 — 0.25]7, [-0.35 — 0.35]7} andy(t) = {[0.27 0.27]7, [0.30 0.30]"}, t € [~1 0] re-
—210.1309 —24.4214
~52.4999  —50.1488 |
Meanwhile, the maximum sampling interval is calculated fory = 0.3 are compared to that of [11]

spectively. In addition, the controller gain mat#ixis given by,C =

and [27] and given in Table 2. Furthermore, it is worth pointing out thaofém 2 yields less con-
servative results than the existing literature. Figure 6 and 7, shows th&ahahavior of the given
system without control input. In Figure 8, the synchronization behavitdreomaster and slave sys-
tem with the action of the gain matrix is drawn. Meanwhile, the state responsies efror system
(30) with controllera(t;) are predicted in Figure 8 and 9.

Remark 4: In[11], the synchronization performance of neural networks with timgsing delay and
sampled data control has been investigated by linear matrix inequality. Birectitsy an augmented
Lyapunov functional and combining, a new integral inequality techniquificEent synchronization
conditions are established in [27]. In Table 2, the obtained results for maxsampling intervah;,
using Theorem 2 are compared with those obtained by various apptbpabgosed in [11, 27]. It
is clear from Table 2, one can get that in [11] and [27], the maximum samijpliag/als are 0.2859
and 0.7757, so as to realize the stochastic synchronization of the objegsiteans. By analyzing
with the results obtained in [11], the upper bound of our sampling intérvaan reach the maximum
of 0.9258 under the declaration of establishing the same parameters ofsiheddgystem. It can
be witnessed from Table 2 that the values of sampling intéryaire significantly larger than those
of [11, 27], which clearly indicates that the proposed synchronizatittarion in Theorem 2 lead
to less conservative results than those of [11, 27]. Hence, the stifyeabour results can be fully
shown in Example 2.

Table 2: Maximum sampling interval, for different methods withy = 0.3
Methods Theorem 1/2in[11] Theorem 2in[27] Theorem 2

N 0.1610/0.2859 0.7757 0.9258

Example 3: In the modern days, Security plays a vital role in communication and storagegeés,
and encryption is one of the ways to ensure security. Image encrypt®fasagrowth in digital
image processing and extensive propagation of digital multimedia data ovbrtéineet has made
us to defend this imperative information against illegal copying and distribut#aeording to the
properties of random similarity and parameter sensitivity, a neural netiaslbeen used in Image
encryption. For example, in [28] constructed the image encryption algotidsed on memristor
chaotic system. Inspired by the above application, in this example an imagp®ocis considered.
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In Example 1, the delayed neural networks has been attracted the lygmetitdehavior, and it can be
applied to image encryption. Further, the experimental analysis of theggdpmage encryption has
been done in this example. The dimension of the image is denotedas »n column and 3 number
of pixels. Moreover, the plain image with the sz& x 256 is shown in Figure 10. The encryption
procedure is given as follows

Encryption Procedure for plain image

p=:1;q=:1;r=:1;

for pto mdo

forqgtondo

71(p, q) == (108 x (z1(k) — [21(k)])) mod 256
75(p, q) := (108 x (29(k) — [22(K)])) mod 256
23(p,q) = (10° x (23(k) — [z3(K)])) mod 256
R(p,q) == R(p,q) XOR 21(p, q);

G(p.q) == G(p, q) XOR 25(p, q);

B(p, q) := B(p, q) XOR 23(p, q);

end for

end for

1) The four chaotic sequences are generated in master system (38jagadsystem (34) in Ex-
ample 1 is denoted by (t), z2(t), y1(t), y2(t). Colors of the plain image P can be represented
with three color components that is red, green and blue, then it separaiedrize pixel sequences:
R(p,q), G(p,q) andB(p,q), wherep = 1,2, ... ,m,q = 1,2,...,n.

2) The chaotic behaviar;(¢) is arranged in ascending order to obtain the index te#im of the
sortedz(t). To apply permutation operation into the considered image, the following guoeés

described:
R(k) == R(pdz((p — 1) x n +q)),
G(k) == G(pdx((p— 1) x n+q)),
B(k) := B(pdz((p — 1) x n +q)),
R(p;q) := R(k), G(p;q) := G(k), B(p;q) := B(k)
wherek = 1,2,....mn,p = 1,2,...,n, ¢ = 1,2,...,m; R, G, B are sequences with the size of

mXn.
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3) The chaotic behaviar, (), y1 (), y2(t) are transformed intex x n matriceszy, z9, z3 as follows:
21(p; q) := X2, 22(p; q) := Y1, 23(p; q) := Ya.

4)The Matrices, 75, 73 is used to cipher the prescribed imade®, ¢), G(p, ¢) andR(p, q) accord-
ing to encryption procedure, respectively. After changingmp, q), é(p, q) andf?(p, q) compo-
nents the cipher image, (k)] is obtained which is equivalent tloor(z,(k)).

Hence the encryption process is concluded and the ciphered image isedbt@hre simulations
about color image encryption have provided in Figures 10 and 11, sy, It should be noted
that, the histograms of the test images and their corresponding cipher intageistained by our
improved encryption algorithm shown in Figure 12. The variances of histogof the tested plain
images (size o256 x 256) and their corresponding cipher images are listed in Table 3. In Table
3, it can be seen that the plain image has strong correlations between orbigib pixels, while
correlations of the encrypted image are weak.

Table 3: Correlation coefficients of adjacent pixel in the original imagei@tite encrypted image
Plainimage Encrypted image

horizontal direction 0.9917 0.5508
vertical direction 0.9920 0.5013
diagonal direction 0.9869 0.5006

5 Conclusion

In this article, the synchronization problem of Markovian jump neural netsvavith additive time
delay has been investigated via sampled-data control. By defining ajgtedpKF and using a novel
looped functional approach, a new synchronization criteria have deréred in terms of LMIs. The
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conditions established in Theorem 1 reduce less computational burdeguarehtee the synchro-
nization of Master-Slave systems. Further, the sampled-data controllemgaiix are solved by the
LMIls, under the allowable maximum sampling period. Finally, the advantagdsdboped func-
tional method and synchronization involved in image encryption criteria hewe demonstrated via
numerical examples.
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Figure 2: Chaotic behavior of slave system (2) with) = 0.
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Figure 3: State responses of error system (8) with u(t)=0.
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Figure 4: State responses of error system (8).
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Figure 6: Chaotic behavior of master system (28) with) = 0.
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Figure 7: Chaotic behavior of slave system (29) witth) = 0.
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Figure 10: (a) The color plain image. (b-c-d) The R, G, B component$aai pmage
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Figure 11: (a) The encrypted image. (b-c-d) the R, G, B componentsxcojgted image
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Figure 12: Histogram analysis. (@) Histogram of R components of the plaigeim@) Histogram
of R components of the encrypted image. (c) Histogram of G components pldimeimage.(d)
Histogram of G components of the encrypted image. (e)Histogram of B coemp® of the plain
image (f) Histogram of B components of the encrypted image.



