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Abstract: In an modern world, image encryption played an vital role to prevent our

data from illegal abuser entre. Based on this, in this paper the Markovian jump neural

networks for synchronization of sampled-data control systems with two additive delay

components are used on the looped functional method and its direct application is ap-

plied in image encryption. On the basis of generalized Lyapunov functionalapproach

involves the states information such asx(tk) andx(tk+1) with few slack variables and a

tuning parameter are introduced . Furthermore, the sampled-data controlleris designed

to contain both the present and delayed state information, thereby enhancing the control

performance and design flexibility. Finally by using the new technique, the several ex-

amples are highlighted in the numerical section and also the effectiveness ofan image

encryption is studied.

Keywords: Synchronization, looped functional method, Markov jump systems, Linear

matrix inequality, Sampled-data control.

1 Introduction

During the last few decades, synchronization plays an important role in thedevelopment of computer

and communication technology. Since Pecora and Carrol [1] initially introduced the drive response

systems, then it is extended for chaos synchronization and have been extensively attracted in many

application such as biological systems, traffic systems, pathological states inthe brain, secure commu-

nication [2,3], pattern identification [4], image cryptosystem [5], and so on. Many tentative study and
1Corresponding authors-E-Mail addresses: chandrudhana28@gmail.com (A. Chandrasekar), caoyeacy@seu.edu.cn

(Yang Cao)
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computer graphics of chaotic synchronization in unidirectional coupled external cavity semiconduc-

tor lasers have shown the existence of delay time between the drive and response laser’s intensities.

Now a days, synchronization plays an vital role in secret communication andother nonlinear fields.

Further, the synchronization of neural networks have been applied withsampled data control, time-

delay, fuzzy control and so on. Therefore, the investigation of synchronization for neural networks

plays a great importance.

It should be noted that, while executing artificial neural networks time-delayis often came across

in real applications. Further, the signal transmissions among neurons andthe finite switching speed of

amplifiers in the performance of electrical circuits, time delays are an inevitablefeature to be consid-

ered in real systems. Therefore, synchronization of neural networks with time-delays has strained an

immense deal of attention in recent years [6]- [10]. From the above literature [6]- [10], the transmis-

sion of the signals from the neuron may cause few segments of networks in the characteristic delays

which are named as an additive time-varying delay. Recently, the authors in [8] discussed the problem

of global asymptotic stability of complex-valued neural networks with additivetime-varying delays.

Further, the stability analysis of neutral type neural networks with additivetime-varying delay and

leakage delay is studied in [9]. Therefore, it is of significant to investigatethe synchronization for

neural networks with additive delay which is described in [6]- [10].

On the other hand, the dynamical systems may subject to unpredictable in nature. These kinds of

systems are governed by markovian chain process known as Markovianjump systems. The authors

in [11] discussed the problem of stochastic synchronization of markovianjump neural networks with

time-varying delay using sampled data. Recently in [12], the problem of stochastic stability analysis

for Markovian jump inertial neural networks with mode-dependent time-varying delay is considered.

In [13], by augmented time-dependent Lyapunov-Krasovskii functional(LKF) and zero value equal-

ity, the synchronization for Markovian coupled neural networks with modedelays via sampled-data

control have been investigated. The authors in [14], studies the stochastic exponential synchroniza-

tion problem for uncertain chaotic neural networks with probabilistic faults and randomly occurring

time-varying parameters uncertainties. Hence, the study of Markovian jump problems for time-delay

neural networks has received increasing attention.

Meanwhile, in many articles, the synchronization of neural networks has been studied by using

sampled data control. The sampled data controls have been extensively applied in digital technology

to save communication bandwidth. On the other hand, the sampled data control frameworks have

been great deal of research in the development of communication networks, computer technology

and micro electronics so on. In the sampled data control, the hybrid system grant outstanding to the

coexistence of both continuous and discontinuous signals. The sampled controller has many advan-

tages compared with continuous controller such as high reliability, maintenancewith low cost, and
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efficiency [15, 16]. Thus, the sampled data control method has been muchattracted in the sampling

information of the system. Thus, sampled-data control has annoyed extensive attention for different

engineering applications [17]- [19]. In [20], the authors investigated the novel master-slave syn-

chronization criteria of chaotic Lure systems with time delays using sampled-datacontrol. Recently,

in [21] studied the exponential sampled-data control for T–S fuzzy systems application to Chua’s

circuit. The main purpose of this paper, therefore, to fulfill a gap, in this article synchronization of

Markovian jump neural networks for sampled data control is investigated.

According to the above discussion, the main contributions of this paper are summarized as fol-

lows:

a) Initially, the neural network model is constructed with additive time-varyingdelay.

b) Synchronization condition for Markovian jump neural networks with sampled data control is de-

rived in terms of linear matrix inequalities(LMIs) which can be effectively solved by using MATLAB

LMI toolbox.

c) The synchronization criteria are derived by using suitable LKF and some integral inequality tech-

nique.

d) Further, a looped functional approach is utilized to found the upper bounds of some integral terms

which gave the less conservative results.

e) Results of numerical example show the effectiveness of the proposedmethod and the reduced

conservativeness.

2 Problem Description and preliminaries

In an right-continuous Markov chain the complete probability space(Ω,F ,P) with {r̃(t), t ≥ 0},

taking values in a finite state spacẽS = {1, 2, . . . ,N} with generator̃Γ = (πij)N×N given by

P{r̃(t+ ∆̃t) = j|r̃(t) = i} =

{
πij∆̃t+ o(∆̃t), i 6= j,

1 + πii∆̃t+ o(∆̃t), i = j,

where∆̃t > 0 and lim
∆̃t→0

o(∆̃t)

∆̃t
= 0, πij ≥ 0 is the transition rate fromi to j, if i 6= j while

πii = −
N∑

j=1, j 6=i

πij .

The model of Markovian jump parameters with delayed neural networks is given by

˙̃x(t) = −A1(r̃(t))x̃(t) +A2(r̃(t))ĝ(x̃(t)) +A3(r̃(t))ĝ(x̃(t− d̃1(t)− d̃2(t)))

+A4(r̃(t))

∫ t

t−τ̃(t)
ĝ(x̃(s))ds+ I(t), (1)
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wherex̃(t) = [x̃1(t), x̃2(t), . . . , x̃n(t)]
T ∈ Rn is the neuron state vector andx̟̃(t) is the state of the

̟th neuron at timet ; ĝ(x̃(t)) = [ĝ1(x̃1(t)), ĝ2(x̃2(t)), . . . , ĝn(x̃n(t))]
T ∈ Rn denotes the neuron ac-

tivation function;A1(r̃(t)) is a known diagonal matrix satisfyingA1(r̃(t)) > 0. A2(r̃(t)),A3(r̃(t))

andA4(r̃(t)) are the connection weight matrix, the delay connection weight matrix and distributively

delayed connection weight matrix, respectively andd̃1(t) andd̃2(t) are two time-varying delays sat-

isfying

0 ≤ d̃11 ≤ d̃1(t) ≤ d̃12, 0 ≤ d̃21 ≤ d̃2(t) ≤ d̃22,
˙̃
d1(t) ≤ µ1,

˙̃
d2(t) ≤ µ2

where d̃12 ≥ d̃11, d̃22 ≥ d̃21 andµ1 andµ2 are known constants with̃d11 and d̃21 not equal to

zero. Here, we denotẽd(t) = d̃1(t) + d̃2(t), d̃1 = d̃11 + d̃21, d̃2 = d̃12 + d̃22, µ = µ1 + µ2, d̄1 =

d̃12− d̃11, d̄2 = d̃22− d̃21. τ̃(t) is the distributed time-varying delay that satisfy0 ≤ τ̃(t) ≤ τ̃ , where

τ̃ is a constant.

Assumption 1:Each activation function̂gi(·) is continuous and bounded, and there exist constants

F−
i andF+

i such that

F−
i ≤ ĝi(λ1)− ĝi(λ2)

λ1 − λ2
≤ F+

i , i = 1, 2, . . . , n

whereλ1, λ2 ∈ R andλ1 6= λ2.

The following equation represents the slave system for (1) is consideredas

˙̃y(t) = −A1(r̃(t))ỹ(t) +A2(r̃(t))ĝ(ỹ(t)) +A3(r̃(t))ĝ(ỹ(t− d̃1(t)− d̃2(t)))

+A4(r̃(t))

∫ t

t−τ̃(t)
ĝ(ỹ(s))ds+ I(t) + û(t), (2)

whereAν(r̃(t)) for ν = 1, 2, 3, 4 are matrices given in (1) and̂u(t) ∈ Rn is the appropriate control

input.

In order to investigate the problem of synchronization between systems (1)and (2), we define the

error signal̃e(t) = ỹ(t) − x̃(t). Therefore, the error dynamical system between (1) and (2) is given

as follows:

˙̃e(t) = −A1(r̃(t))ẽ(t) +A2(r̃(t))(r̃(t))f̂(ẽ(t)) +A3(r̃(t))f̂(ẽ(t− d̃1(t)− d̃2(t)))

+A4(r̃(t))

∫ t

t−τ̃(t)
f̂(ẽ(s))ds+ û(t), (3)

wheref̂(ẽ(t)) = ĝ(ỹ(t)) − ĝ(x̃(t)). It can be found that the functionŝfi(.) satisfy the following

condition:

F−
i ≤ f̂i(α)

α
≤ F+

i , i = 1, 2, . . . , n (4)
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whereα ∈ R andα 6= 0.

The control input for sampled data system with state feedback control is given by

û(t) = Kẽ(tk), tk ≤ t < tk+1, k = 0, 1, 2, · · · (5)

whereK represents the control gain matrix.

Then, the sampling interval satisfies the following condition

0 < tk+1 − tk = hk ∈ [hl, hu], k = 0, 1, 2, · · · (6)

wherehl andhu are lower and upper bounds of the sampling periods with known positive scalars. By

substituting (5) in (3), we obtain

˙̃e(t) = −A1(r̃(t))ẽ(t) +A2(r̃(t))(r̃(t))f̂(ẽ(t)) +A3(r̃(t))f̂(ẽ(t− d̃1(t)− d̃2(t)))

+A4(r̃(t))

∫ t

t−τ̃(t)
f̂(ẽ(s))ds+Kẽ(tk). (7)

In our convenience, the following each possible value ofẽ(t) is denoted byi, i ∈ S̃. Then the system

(7) can be written as

˙̃e(t) = −A1iẽ(t) +A2if̂(ẽ(t)) +A3if̂(ẽ(t− d̃1(t)− d̃2(t)))

+A4i

∫ t

t−τ̃(t)
f̂(ẽ(s))ds+Kẽ(tk). (8)

Definition 1: The system (1) and (2) are said to be stochastically synchronous if error system (8) is

stochastically stable with the initial conditioñe(t) = ψ(t) defined on the interval[−max{d2, hu} 0]

andẽ(0) ∈ S̃, the following condition is satisfied:

lim
T→∞

E
{∫ T

0
‖ẽ(s)‖2ds|(ψ(t), ẽ(0))

}
<∞. (9)

Lemma 1 (Jensen’s inequality) [22]: For any constant matrixM ∈ Rn×n, a scalarγ > 0, a vector

functionω : [0, γ] → Rn such that the integrations concerned are well defined, then

γ

∫ γ

0
ωT (s)Mω(s)ds ≥

(∫ γ

0
ω(s)ds

)T
M
(∫ γ

0
ω(s)ds

)
.

3 Main results

In this section, by using time-dependent Lyapunov functional approach, the stochastic synchroniza-

tion of system (8) is investigated and a sufficient condition is derived to guarantee the error system to
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synchronize and synthesize the stochastic sampled-data controllers in the form of (5).

In order to derive our main results, the following notations are used:

F1 = diag{F−
1 F+

1 ,F−
2 F+

2 , . . . ,F−
n F+

n }, F2 = diag
{F−

1 + F+
1

2
,
F−
2 + F+

2

2
, . . . ,

F−
n + F+

n

2

}
.

Theorem 1: Given a positive scalarshl, hu, γ, if there exist matricesPi > 0, Q̃1 > 0, Q̃2 >

0, Q̃3 > 0, Q̃4 > 0, Q̃5 > 0, Q̃6 > 0, Q̃7 > 0, Q̃8 > 0, Q̃9 > 0, Q̃10 > 0, Z > 0, any matrices

X,Y1, Y2, Y3, Y4 satisfying the following inequalities

Ξ + hkΠ1 < 0,

[
Ξ + hkΦ1

√
hkN

∗ −Z

]
< 0, (10)

where

Ξ =sym{eT1 Pie3}+ eT1 [
N∑

j=1

πijPj + Q̃1 + Q̃3 + Q̃5 + Q̃6 + d̃212Q̃8 + d̃222Q̃9 −F1V1i −F1V2i

−F1V3i]e1 − eT5 Q̃1e5(1− µ1)− eT8 Q̃2e8(1− µ1)− eT10Q̃3e10(1− µ2)− eT13Q̃4e13(1− µ2)

− eT6 Q̃5e6 − eT11Q̃6e11 − eT9 Q̃7e9(1− µ1 − µ2)− eT7 Q̃8e7 − eT12Q̃9e12 + eT4 [Q̃2 + Q̃4 + Q̃7

+ τ2Q̃10]e4 − eT14Q̃10e14 − αTYα+ sym{eT1N(e1 − e2) + [eT1 + γeT3 ]G[−e3 −A1ie1 +A2ie4

+A3ie9 +A4ie14] + eT1 Le2 + eT3 γLe2}+ sym{eT1 F2V1ie4 + eT1 F2V2ie8 + eT1 F2V3ie13}

− eT4 V1ie4 − eT8 V2ie8 − eT13V3ie13, Π1 = sym{ςTYς1}+ eT2Xe2 + eT3 Ze3, Φ1 = −eT2Xe2

ςT = [eT1 eT2 ], ς
T
1 = [e3 0]T , eε = [0n×(ε−1)n In 0n×(14−ε)n], ε = 1, . . . , 14.

then the system (1) and (2) are stochastically synchronous. Meanwhile,the desired controller gain

matrix in (5) can be given byK = G−1L.

Proof: Constructing the following appropriate LKF:

V(t) =
6∑

κ=1

Vκ(t), (11)

where

V1(t) = ẽT (t)Piẽ(t),

V2(t) =

∫ t

t−d̃1(t)
ẽT (s)Q̃1ẽ(s)ds+

∫ t

t−d̃1(t)
f̂T (ẽ(s))Q̃2f̂(ẽ(s))ds+

∫ t

t−d̃2(t)
ẽT (s)Q̃3ẽ(s)ds

+

∫ t

t−d̃2(t)
f̂T (ẽ(s))Q̃4f̂(ẽ(s))ds+

∫ t

t−d̃1

ẽT (s)Q̃5ẽ(s)ds+

∫ t

t−d̃2

ẽT (s)Q̃6ẽ(s)ds
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+

∫ t

t−d̃1(t)−d̃2(t)
f̂T (ẽ(s))Q̃7f̂(ẽ(s))ds,

V3(t) = d̃12

∫ 0

−d̃12

∫ t

t+θ

ẽT (s)Q̃8ẽ(s)dsdθ + d̃22

∫ 0

−d̃22

∫ t

t+θ

ẽT (s)Q̃9ẽ(s)dsdθ,

V4(t) = τ̃

∫ 0

−τ̃

∫ t

t+θ

f̂T (ẽ(s))Q̃10f̂(ẽ(s))dsdθ,

V5(t) = (tk+1 − t)ςT (t)Yς(t) + (tk+1 − t)(t− tk)ẽ
T (tk)Xẽ(tk),

V6(t) = (tk+1 − t)

∫ t

tk

˙̃e
T
(s)Z ˙̃e(s)ds,

andY =

[
y1 + yT1 + y3 + yT3 −y1 − yT2 − y3 − yT4

∗ y2 + yT2 + y4 + yT4

]
, ςT (t) =

[
ẽT (t) ẽT (tk)

]
.

By using its trajectory, the weak infinitesimal generatorL of the foregoing LKF is calculated, and the

following equations will be obtained easily:

LV1(t) =2ẽT (t)Piė(t) + ẽT (t)
N∑

j=1

πijPj ẽ(t) (12)

LV2(t) =ẽ
T (t)[Q̃1 + Q̃3 + Q̃5 + Q̃6]ẽ(t)− ẽT (t− d̃1(t))Q̃1ẽ(t− d̃1(t))(1− µ1)

+ f̂T (ẽ(t))Q̃2f̂(ẽ(t))− f̂T (ẽ(t− d̃1(t)))Q̃2f̂(ẽ(t− d̃1(t)))(1− µ1)

− ẽT (t− d̃2(t))Q̃3ẽ(t− d̃2(t))(1− µ2)

+ f̂T (ẽ(t))Q̃4f̂(ẽ(t))− f̂T (ẽ(t− d̃2(t)))Q̃4f̂(ẽ(t− d̃2(t)))(1− µ2)

− ẽT (t− d̃1)Q̃5ẽ(t− d̃1)− ẽT (t− d̃2)Q̃6ẽ(t− d̃2) + f̂T (ẽ(t))Q̃7f̂(ẽ(t))

− f̂T (ẽ(t− d̃1(t)− d̃2(t)))Q̃7f̂(ẽ(t− d̃1(t)− d̃2(t)))(1− µ1 − µ2) (13)

LV3(t) =d̃
2
12ẽ

T (t)Q̃8ẽ(t) + d̃222ẽ
T (t)Q̃9ẽ(t)−

∫ t

t−d̃12

ẽT (s)dsQ̃8

∫ t

t−d̃12

ẽ(s)ds

−
∫ t

t−d̃22

ẽT (s)dsQ̃9

∫ t

t−d̃22

ẽ(s)ds (14)

LV4(t) ≤τ̃2f̂T (ẽ(t))Q̃10f̂(ẽ(t))−
(∫ t

t−τ̃(t)
f̂T (ẽ(s))ds

)
Q̃10

(∫ t

t−τ̃(t)
f̂(ẽ(s))ds

)
(15)

LV5(t) =− ςT (t)Yς(t) + 2(tk+1 − t)ςT (t)Y ς̇(t)− (t− tk)ẽ
T (tk)Xẽ(tk)

+ (tk+1 − t)ẽT (tk)Xẽ(tk) (16)

LV6(t) =(tk+1 − t) ˙̃e
T
(t)Z ˙̃e(t)−

∫ t

tk

˙̃e
T
(s)Z ˙̃e(s)ds. (17)

We consider the following zero equation,

0 = 2ẽT (t)N

[
ẽ(t)− ẽ(tk)−

∫ t

tk

˙̃e(s)ds

]
. (18)
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From (18), we can obtain the following inequalities:

−2ẽT (t)N

∫ t

tk

˙̃e(s)ds ≤ (t− tk)ẽ
T (t)NZ−1NT ẽ(t) +

∫ t

tk

˙̃e
T
(s)Z ˙̃e(s)ds. (19)

Furthermore,

2
[
ẽT (t) + γ ˙̃e

T
(t)
]
G[− ˙̃e(t)−A1iẽ(t) +A2if̂(ẽ(t)) +A3if̂(ẽ(t− d̃1(t)− d̃2(t)))

+A4i

∫ t

t−τ̃(t)
f̂(ẽ(s))ds+Kẽ(tk)] = 0. (20)

Thus, for any approximately dimensional diagonal matricesV1i > 0, V2i > 0 andV3i > 0 the

following inequality holds:

0 ≤
[
ẽT (t) f̂T (ẽ(t))

] [ −F1V1i F2V1i

∗ −V1i

][
ẽ(t)

f̂(ẽ(t))

]
(21)

0 ≤
[
ẽT (t) f̂T (ẽ((t− d̃1(t)))

] [ −F1V2i F2V2i

∗ −V2i

][
ẽ(t)

f̂(ẽ(t− d̃1(t)))

]
(22)

0 ≤
[
ẽT (t) f̂T (ẽ((t− d̃2(t)))

] [ −F1V3i F2V3i

∗ −V3i

][
ẽ(t)

f̂(ẽ(t− d̃2(t)))

]
(23)

From (12)–(17) and adding (18)–(23) andhk ∈ [hl, hu], the following inequality is obtained:

LV(t) ≤ ̺T (t)

(
tk+1 − t

hk

(
Ξ + hkΠ1

)
+
t− tk

hk

(
Ξ + hkΦ1 + hkNZ

−1NT
))

̺(t). (24)

where

̺T (t) =
[
ẽT (t) ẽT (tk) ˙̃e

T
(t) f̂T (ẽ(t)) ẽT (t− d̃1(t)) ẽ

T (t− d̃1)

∫ t

t−d̃12

ẽT (s)ds

f̂T (ẽ(t− d̃1(t)) f̂
T (ẽ(t− d̃1(t)− d̃2(t))) ẽ

T (t− d̃2(t)) ẽ
T (t− d̃2)∫ t

t−d̃22

ẽT (s)ds f̂T (ẽ(t− d̃2(t))

∫ t

t−τ(t)
f̂T (ẽ(s))ds

]
.

Hence, (10) guarantees that

LV(t) ≤ −γ‖ẽ(t)‖2 (25)

for someγ > 0. Now, using Dynkin’s formula, we have that, for allT ≥ 0

E{V(t)} − E{V(0)} ≤ −γE
{∫ T

0
‖ẽ(s)‖2ds

}
. (26)
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Hence

E
{∫ T

0
‖ẽ(s)‖2ds

}
≤ γ−1E{V(0)}. (27)

which implies that (9) holds. Therefore, from Definition 1, we have that master system (1) and slave

system (2) are stochastically synchronous. This completes the proof.

Remark 1: It is appropriate to note that Theorem 1, provides a new synchronizationcriterion for

the master and slave system. Our main intention in Theorem 1 is to study the Lyapunov stability

theory by involving looped functional technique. Meanwhile, the proposed conditions in this The-

orem 1 are expressed in the form of LMIs. Further, the computation of theterms in the LMIs can

be simplified by reducing the parameters involved in the LKFs. Thus, the criteria taken in the LKF

which has not been considered in the previous works [11,13,15,23–26], which leaves us much room

to investigate the problem of synchronization for neural networks with additive time-varying delay

by looped-functional technique.

Remark 2: It is note that, the LKF constructed in the proof of Theorem 1 is more different with

those in [13, 15]. Further, in this paper the augmented looped functionalV5(t) andV6(t) have been

introduced in the lyapunov functional, which consider the information of states ζT (t). Due to fewer

constraints on the lyapunov functional the looped functional method proposed in this article can give

less computational burden. Thus, the LKF taken in this paper represent amore general form.

Remark 3: In the additive time-varying delay, the information transmitted between the sensors,

actuators and controllers trade information over the system. The planned delay has a physically pow-

erful application background in networked control and long-range control. Such delays persuade

through an assortment of communication modes are usually time-varying and display dissimilar sub-

stantial properties. In the modern trends, it can be professed that synchronization problem of various

neural networks has been paying attention in [11,13,15,23,24]. Therefore, the representation of neu-

ral networks with two additive time varying delay components is proposed dueto practical application

background. On the other hand, in the existing literature [11,13,15,23,24] synchronization methods

does not fully consider the information of two additive time-varying delay components. Based on

the above discussion, it should be pointed out that, the additive delay designed in Theorem 1 is to

investigate a synchronization for Markovian jump neural networks. Thus, the synchronization prob-

lem for Markovian jump neural networks with additive time delays has not been fully discussed, this

motivates our current research.

Specifically, when there is no distributed delay and if we choose single time-delay in (1) (i.e.

d̃1(t) only, d̃2(t) = 0) neural network (1) and (2) reduce to the following systems, respectively

˙̃x(t) = −A1(r̃(t))x̃(t) +A2(r̃(t))ĝ(x̃(t)) +A3(r̃(t))ĝ(x̃(t− d̃1(t)) + I(t) (28)
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and

˙̃y(t) = −A1(r̃(t))ỹ(t) +A2(r̃(t))ĝ(ỹ(t)) +A3(r̃(t))ĝ(ỹ(t− d̃1(t)) + I(t) + û(t) (29)

Correspondingly, the error system (7) reduces to

˙̃e(t) = −A1(r̃(t))ẽ(t) +A2(r̃(t))(r̃(t))f̂(ẽ(t)) +A3(r̃(t))f̂(ẽ(t− d̃1(t))) + û(t). (30)

whered̃1(t) satisfies

0 ≤ d̃11 ≤ d̃1(t) ≤ d̃12,
˙̃
d1(t) ≤ µ1,

Therefore, system (30) is the particular case of system (8). Considerthe following Lyapunov func-

tional for the error system (30)

V2(t) =

∫ t

t−d̃1(t)
ẽT (s)Q̃1ẽ(s)ds+

∫ t

t−d̃1(t)
f̂T (ẽ(s))Q̃2f̂(ẽ(s))ds+

∫ t

t−d̃1

ẽT (s)Q̃5ẽ(s)ds,

V3(t) = d̃12

∫ 0

−d̃12

∫ t

t+θ

ẽT (s)Q̃8ẽ(s)dsdθ

whereV4(t) = 0, V1(t),V5(t),V6(t) follow the same definitions as those in (11). By using the simi-

lar method employed in the proof of Theorem 1, we can easily obtain the following result.

Theorem 2: Given a positive scalarshl, hu, γ, if there exist matricesPi > 0, Q̃1 > 0, Q̃2 > 0, Q̃5 >

0, Q̃8 > 0, Z > 0, any matricesX,Y1, Y2, Y3, Y4 satisfying the following inequalities

Ξ + hkΠ1 < 0,

[
Ξ + hkΦ1

√
hkN

∗ −Z

]
< 0, (31)

where

Ξ =sym{eT1 Pie3}+ eT1 [
N∑

j=1

πijPj + Q̃1 + Q̃5 + d̃212Q̃8 −F1V1i −F1V2i]e1 − eT5 Q̃1e5(1− µ1)

− eT8 Q̃2e8(1− µ1)− eT6 Q̃5e6 − eT7 Q̃8e7 − αTYα+ sym{eT1N(e1 − e2)

+ [eT1 + γeT3 ]G[−e3 −A1ie1 +A2ie4 +A3ie8 + eT1 Le2 + eT3 γLe2]}

+ sym{eT1 F2V1ie4 + eT1 F2V2ie8} − eT4 V1ie4 − eT8 V2ie8,

Π1 = sym{ςTYς1}+ eT2Xe2 + eT3 Ze3, Φ1 = −eT2Xe2, ςT = [eT1 eT2 ], ς
T
1 = [e3 0]T ,

eε = [0n×(ε−1)n In 0n×(8−ε)n], ε = 1, . . . , 8.

then master system (28) and slave system (29) are stochastically synchronous. Moreover, the desired

controller gain matrix in (5) can be given byK = G−1L.
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4 Illustrative Examples

In this section, numerical examples are given to demonstrate the effectiveness and applicability of the

considered system.

Example 1: Consider the following master system and slave system of Markovian jump delayed

neural networks as follows:

˙̃x(t) = −A1ix̃(t) +A2iĝ(x̃(t)) +A3iĝ(x̃(t− d̃1(t)− d̃2(t)))

+A4i

∫ t

t−τ̃(t)
ĝ(x̃(s))ds+ I(t), (32)

˙̃y(t) = −A1iỹ(t) +A2iĝ(ỹ(t)) +A3iĝ(ỹ(t− d̃1(t)− d̃2(t)))

+A4i

∫ t

t−τ̃(t)
ĝ(ỹ(s))ds+ I(t) + û(t) (i = 1, 2) (33)

where

A11 =

[
2.01 0

0 1.28

]
, A12 =

[
4 0

0 3.33

]
, A21 =

[
1 −0.17

−2.8 2.3

]
,

A22 =

[
1.17 −0.26

−3.4 2.5

]
, A31 =

[
−1.36 −0.26

−0.2 −2.24

]
, A32 =

[
−1.9 −0.1

−0.9 −2.02

]
,

A41 =

[
0.2 1.32

2.28 −0.18

]
, A42 =

[
0.8 1.1

2.22 −0.25

]
.

The nonlinear activation functions are taken as

ĝ1(κ) = ĝ2(κ) =
|κ+ 1| − |κ− 1|

2

with F−
1 = F−

2 = 0 andF+
1 = F+

2 = 1. Thus,

F1 =

[
0 0

0 0

]
, F2 =

[
0.5 0

0 0.5

]
.

The transition probability matrix is given by

Γ̃ =

[
−5 5

5 −5

]
.

AssumeI(t) = 0, γ = 0.03 and discrete delay as̃d1(t) = 4et/(10et + 10), d̃2(t) = 6et/(10et +

10) and distributed delaỹτ(t) = 1.2| cos(t)|. Hence, a straightforward calculation gives̃d11 =

0.2, d̃12 = 0.4, µ1 = 0.1, d̃21 = 0.3, d̃22 = 0.6, µ2 = 0.15 and τ̃ = 1.2. By using Theorem 1
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and MATLAB LMI toolbox, the feasible solution is obtained for the given valuesd̃11 = 0.2, d̃12 =

0.4, d̃21 = 0.3, d̃22 = 0.6 with the initial conditions as̃x(t) = {[−0.2 − 0.2]T , [0.2 0.2]T } and

ỹ(t) = {[0.4 0.4]T , [−0.2 − 0.2]T }, t ∈ [−1 0] respectively. In addition, Figure 1 and Figure 2

represent the chaotic behavior of the system (1) without control input. The gain matrix for Theorem

1 is shown in Table 1 by using LMI toolbox. Figure 3, shows the synchronization of master and slave

Table 1: The Control gain Matrix for Example 1

Allowable values ofµ1, µ2 and sampling periods gain matrix

By Theorem 1,µ1 = 0.1, µ2 = 0.15, hl = 0.1, hu = 0.5 K =

[
−43.3850 5.8849

22.9808 −37.3222

]

system with the action of the gain matrixK. The state responses of the error system (8) without

and withû(t) are displayed in Figures 3 and 4, respectively. controllerû(tk) (5) are demonstrated in

Figure 5.

Example 2: Consider the system (28) and (29) of delayed neural networks with the following param-

eters:

A11 =

[
1 0

0 0.9

]
, A21 =

[
0.9 + π

4 19

0.11 0.9 + π
4

]
, A31 =

[
−1.2

√
2π
4 0.3

0.2 −1.2
√
2π
4

]
,

A12 =

[
1 0

0 1

]
, A22 =

[
1 + π

4 19

0.09 1 + π
4

]
, A32 =

[
−1.3

√
2π
4 0.1

0.1 −1.3
√
2π
4

]
.

The nonlinear activation functions are taken as

ĝ1(κ) = ĝ2(κ) =
|κ+ 1| − |κ− 1|

2

with F−
1 = F−

2 = 0 andF+
1 = F+

2 = 1. Thus,

F1 =

[
0 0

0 0

]
, F2 =

[
0.5 0

0 0.5

]
.

The transition probability matrix is given by

Γ̃ =

[
−0.5 0.5

0.8 −0.8

]
.

AssumeI(t) = 0, γ = 0.3 and discrete delay as̃d1(t) = et/(et + 1). By setting, the values

d̃11 = 0.5, d̃12 = 1, µ1 = 0.25 and using Theorem 2 with MATLAB LMI toolbox the feasi-

ble solutions are obtained. The initial conditions of system (28) and (29) are given byx̃(t) =
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{[−0.25 − 0.25]T , [−0.35 − 0.35]T } and ỹ(t) = {[0.27 0.27]T , [0.30 0.30]T }, t ∈ [−1 0] re-

spectively. In addition, the controller gain matrixK is given by,K =

[
−210.1309 −24.4214

−52.4999 −50.1488

]
.

Meanwhile, the maximum sampling intervalhk is calculated forγ = 0.3 are compared to that of [11]

and [27] and given in Table 2. Furthermore, it is worth pointing out that Theorem 2 yields less con-

servative results than the existing literature. Figure 6 and 7, shows the chaotic behavior of the given

system without control input. In Figure 8, the synchronization behavior of the master and slave sys-

tem with the action of the gain matrix is drawn. Meanwhile, the state responses ofthe error system

(30) with controllerû(tk) are predicted in Figure 8 and 9.

Remark 4: In [11], the synchronization performance of neural networks with time-varying delay and

sampled data control has been investigated by linear matrix inequality. By constructing an augmented

Lyapunov functional and combining, a new integral inequality technique, sufficient synchronization

conditions are established in [27]. In Table 2, the obtained results for maximum sampling intervalhk

using Theorem 2 are compared with those obtained by various approached proposed in [11, 27]. It

is clear from Table 2, one can get that in [11] and [27], the maximum samplingintervals are 0.2859

and 0.7757, so as to realize the stochastic synchronization of the objectivesystems. By analyzing

with the results obtained in [11], the upper bound of our sampling intervalhk can reach the maximum

of 0.9258 under the declaration of establishing the same parameters of the desired system. It can

be witnessed from Table 2 that the values of sampling intervalhk are significantly larger than those

of [11, 27], which clearly indicates that the proposed synchronization criterion in Theorem 2 lead

to less conservative results than those of [11, 27]. Hence, the superiority of our results can be fully

shown in Example 2.

Table 2: Maximum sampling intervalhk for different methods withγ = 0.3

Methods Theorem 1/2 in [11] Theorem 2 in [27] Theorem 2

hk 0.1610/0.2859 0.7757 0.9258

Example 3: In the modern days, Security plays a vital role in communication and storage ofimages,

and encryption is one of the ways to ensure security. Image encryption has fast growth in digital

image processing and extensive propagation of digital multimedia data over theInternet has made

us to defend this imperative information against illegal copying and distribution. According to the

properties of random similarity and parameter sensitivity, a neural networkhas been used in Image

encryption. For example, in [28] constructed the image encryption algorithmbased on memristor

chaotic system. Inspired by the above application, in this example an image encryption is considered.
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In Example 1, the delayed neural networks has been attracted the great chaotic behavior, and it can be

applied to image encryption. Further, the experimental analysis of the proposed image encryption has

been done in this example. The dimension of the image is denoted asm row n column and 3 number

of pixels. Moreover, the plain image with the size256 × 256 is shown in Figure 10. The encryption

procedure is given as follows

Encryption Procedure for plain image

p =: 1; q =: 1; r =: 1;

for p to m do

for q to n do

ž1(p, q) := (108 × (ž1(k)− [ž1(k)])) mod 256

ž2(p, q) := (108 × (ž2(k)− [ž2(k)])) mod 256

ž3(p, q) := (108 × (ž3(k)− [ž3(k)])) mod 256

R̆(p, q) := R̆(p, q)XOR ž1(p, q);

Ğ(p, q) := Ğ(p, q)XOR ž2(p, q);

B̆(p, q) := B̆(p, q)XOR ž3(p, q);

end for

end for

1) The four chaotic sequences are generated in master system (32) andslave system (34) in Ex-

ample 1 is denoted byx1(t), x2(t), y1(t), y2(t). Colors of the plain image P can be represented

with three color components that is red, green and blue, then it separated into three pixel sequences:

R̆(p, q), Ğ(p, q) andB̆(p, q), wherep = 1, 2, . . . ,m, q = 1, 2, . . . , n.

2) The chaotic behaviorx1(t) is arranged in ascending order to obtain the index termpdx of the

sortedx1(t). To apply permutation operation into the considered image, the following procedure is

described:

R̂(k) := R̆(pdx((p− 1)× n+ q)),

Ĝ(k) := Ğ(pdx((p− 1)× n+ q)),

B̂(k) := B̆(pdx((p− 1)× n+ q)),

R̆(p; q) := R̂(k), Ğ(p; q) := Ĝ(k), B̆(p; q) := B̂(k).

wherek = 1, 2, . . . ,mn, p = 1, 2, . . . , n, q = 1, 2, . . . ,m; R̂, Ĝ, B̂ are sequences with the size of

m× n .
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3) The chaotic behaviorx2(t), y1(t), y2(t) are transformed intom× n matricešz1, ž2, ž3 as follows:

ž1(p; q) := X2, ž2(p; q) := Y1, ž3(p; q) := Y2.

4)The Matricešz1, ž2, ž3 is used to cipher the prescribed imagesR̆(p, q), Ğ(p, q) andR̆(p, q) accord-

ing to encryption procedure, respectively. After changing theR̆(p, q), Ğ(p, q) andB̆(p, q) compo-

nents the cipher image[žp(k)] is obtained which is equivalent tofloor(žp(k)).

Hence the encryption process is concluded and the ciphered image is obtained. The simulations

about color image encryption have provided in Figures 10 and 11, respectively. It should be noted

that, the histograms of the test images and their corresponding cipher images are obtained by our

improved encryption algorithm shown in Figure 12. The variances of histograms of the tested plain

images (size of256 × 256) and their corresponding cipher images are listed in Table 3. In Table

3, it can be seen that the plain image has strong correlations between neighborhood pixels, while

correlations of the encrypted image are weak.

Table 3: Correlation coefficients of adjacent pixel in the original image andin the encrypted image

Plain image Encrypted image

horizontal direction 0.9917 0.5508

vertical direction 0.9920 0.5013

diagonal direction 0.9869 0.5006

5 Conclusion

In this article, the synchronization problem of Markovian jump neural networks with additive time

delay has been investigated via sampled-data control. By defining appropriate LKF and using a novel

looped functional approach, a new synchronization criteria have beenderived in terms of LMIs. The
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conditions established in Theorem 1 reduce less computational burden andguarantee the synchro-

nization of Master-Slave systems. Further, the sampled-data controller gainmatrix are solved by the

LMIs, under the allowable maximum sampling period. Finally, the advantages ofthe looped func-

tional method and synchronization involved in image encryption criteria have been demonstrated via

numerical examples.
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Figure 1: Chaotic behavior of master system (1) withu(t) = 0.
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Figure 2: Chaotic behavior of slave system (2) withu(t) = 0.
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Figure 3: State responses of error system (8) with u(t)=0.
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Figure 4: State responses of error system (8).

Figure 5: Control inputu(tk).

Figure 6: Chaotic behavior of master system (28) withu(t) = 0.
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Figure 7: Chaotic behavior of slave system (29) withu(t) = 0.

0 0.05 0.1 0.15 0.2 0.25

Time t

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

e 1(t)
, e

2(t)

e
1
(t)

e
2
(t)

Figure 8: State responses of error system (30).

Figure 9: Control inputu(tk).
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(a) (b)

(c) (d)

Figure 10: (a) The color plain image. (b-c-d) The R, G, B components of plain image
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(a) (b)

(c) (d)

Figure 11: (a) The encrypted image. (b-c-d) the R, G, B components of encrypted image



24

(a)
0

1000

2000

0 100 200 (b)
0

1000

2000

0 100 200

(c)
0

1000

2000

0 100 200 (d)
0

1000

2000

0 100 200

(e)
0

2000

0 100 200 (f)
0

1000

2000

0 100 200

Figure 12: Histogram analysis. (a) Histogram of R components of the plain image. (b) Histogram

of R components of the encrypted image. (c) Histogram of G components of theplain image.(d)

Histogram of G components of the encrypted image. (e)Histogram of B components of the plain

image (f) Histogram of B components of the encrypted image.


