DNA evolution depends on differential methylation patterns in rat speciation

Xiao-Hui Liu¹, Ying Song¹, Ning Li¹, Dawei Wang¹, Fei Ling², Jin-Min Lian³, Qiye Li³, Yabin Jin², Zhiyong Feng⁴, Lin Cong⁵, Dandan Yao⁴, Chan Luo⁶, and Ming D. Li⁷

¹Chinese Academy of Agricultural Sciences Institute of Plant Protection
²South China University of Technology School of Bioscience and Bioengineering
³China National GeneBank
⁴Guangdong Academy of Agricultural Sciences
⁵Plant Protection Institute, Heilongjiang Academy of Agricultural Sciences
⁶Heilongjiang Academy of Agricultural Sciences
⁷Zhejiang University School of Medicine First Affiliated Hospital

June 1, 2021

Abstract

The fixation of phenotypes and underlying alleles is a typical evolutionary process in speciation. As the primary molecular basis of phenotypic plasticity, epigenetic mechanisms also play an essential role in maintaining phenotypes. However, whether and how DNA evolution was shaped by epigenetic alteration remains unknown, especially accompanied DNA fixation in speciation. We used sperm methylomes of three rat subspecies as epigenetic markers and screened out genomic regions that experienced distinct differential methylation. To obtain independent results, they were further filtrated according to genomic locations to guarantee that their evolutionary features were not interactively affected by nearby DMRs (differentially methylated regions) of other datasets. By analyzing intraspecies and interspecies phylogenetic relationships, we showed that, in the same genomic regions, the significantly accelerated DNA evolution only occurred in individuals or lineages that experienced differential methylation. Across the same genomes, differential methylation led to a significant increase of F_{ST} only in lineage-specific DMRs and a significant increase of π in both individual-specific and lineage-specific DMRs. Correlations among methylation, π and F_{ST} showed that it was methylation consistency rather than the absolute methylation difference that significantly influenced both π and F_{ST} . The change of both π and DNA fixation depended on the degree of intraspecies methylation consistency. While the breakdown of methylation consistency facilitated the promotion of π , the maintenance of methylation consistency facilitated the promotion of π , the maintenance of methylation consistency facilitated the acceleration of DNA fixation.

Hosted file

MS_20210514.pdf available at https://authorea.com/users/417310/articles/524459-dna-evolution-depends-on-differential-methylation-patterns-in-rat-speciation