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Abstract

We reflect on the progress in the area of Explainable AI (XAI) Program relative to previous work in the area of intelligent

tutoring systems (ITS). A great deal was learned about explanation—and many challenges uncovered—in research that is

directly relevant to XAI. We suggest opportunities for future XAI research deriving from ITS methods, as well as the challenges

shared by both ITS and XAI in using AI to assist people in solving difficult problems effectively and efficiently.

INTRODUCTION

The general objective of XAI is to develop methods that enable practical use of an AI tool, including
understanding the system’s capabilities and vulnerabilities. This knowledge makes it possible for users to act
appropriately, such as cross-checking and complementing the automated work to accomplish the intended
function within a broader established activity. “Explanation” is one way to assist people in gaining this
expertise.

What are the best ways to explain complex systems? Can we facilitate learning by promoting self-explaining?
What pedagogical approaches should computer-based tutoring systems use, and should they be derived from
studies teachers interacting with students? These were among the questions driving AI research in the area
of Intelligent Tutoring Systems (ITSs) since the 1970s [23, 24, 27]. We illustrate this work with an ITS for
image interpretation that uses statistical analysis to relate features of images, MR Tutor [22]. In MR Tutor
“explanation” is framed as an instructional activity for learning how to carry out a diagnostic task using an
AI program as an aid. The following sections outline how models in this program and other ITS systems
are created and used, followed by comparison to XAI objectives and methods.

OVERVIEW OF INTELLIGENT TUTORING SYSTEMS

Intelligent Tutoring Systems research—more broadly known as the field of “AI and Education” [1]—has
been concerned with individualized instruction in many different domains, with a variety of representational
media and interactive methods [27]. It should be mentioned at the outset that ITS systems work, and they
can work quite well at teaching STEM topics compared to teacher-to-student tutoring [1]. Furthermore, it
is important to note that ITS systems generally have not been intended as replacements for human teachers
or tutors, but rather designed as tools to assist in classwork and for independent learning.

ITS work can be traced to the 1960s with the development of AI programs that represent knowledge in struc-
tured models , especially semantic nets, production rules, and schemas/frames. Programs using such models
can solve problems, such as answering factual questions, proving theorems, and manipulating mathematical
equations. Subsequent research in the 1970s added a reasoning module that interprets the structured model
in particular situations for professional tasks, such as diagnosis, planning, design, and process control; these
programs were called “expert systems.”
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In general, an intelligent tutoring program contains such an AI problem-solving program, using it to interact
with and instruct a student. Thus ITS is contrasted with computer-based instruction programs that do not
have a built-in capability to solve the problems that are presented to students.

Most intelligent tutoring programs engage the student in a learning activity in which the program serves
as an instructor; they use distinct models of the domain, the student, and curriculum; and the interactive
design is based on a theory of the pedagogical process [13, 23, 24, 27].

ITS research has been concerned with teaching mathematics [1] and basic science, as well as professional
expertise relating to complicated systems, such as electro-mechanical troubleshooting [3], engineering opera-
tions [16], and medicine [9]. Insofar as machine learning programs are complicated systems whose capabilities
and, to some extent, methods we want users to understand, the techniques and lessons from ITS research
and development over nearly 50 years are worth considering for adoption in XAI research.

COMPARISON OF ITS AND XAI APPROACHES TO EXPLANATION

The most obvious distinction between ITS and XAI programs in general is that ITS programs manipulate
and interpret three essential models: 1) the formalization of what is to be learned (domain model ); 2)
hypotheses about the user’s knowledge and cognitive activity (student model ); and 3) a pedagogical method
(e.g., applying acurriculum model ).

Strikingly, XAI programs attempt to help users learn—which is after all the intent of providing explanations—
without similar models and interactive capabilities. In effect, ITS and XAI researchers have proceeded with
different perspectives on the learning activity, the nature of explanation, importance of understanding the
user/student’s mental model and reasoning method, and following a comprehensive pedagogical plan for
instructing the student. We consider each of these aspects briefly here.

Learning Activity and Instructional Setting

In general, a student is presented by an ITS program with some question or problem that he or she must
solve—a form of “learning by doing.” A great deal of ITS research since 1990 has explored different kinds
and aspects of a learning activity: the setting (e.g., “job-embedded” tutors; museum displays), media (e.g.,
web-based presentations; virtual worlds with role-playing simulations; animated agents), instructional mode
(e.g., “collaborative inquiry”),human-machine interaction (e.g., recognizing and conveying emotion; speech
understanding), theories of learning , a central theme in the “learning sciences” (e.g., cognitive processes,
situated learning, apprenticeship), educational data-mining (e.g., learning patterns from web-based databases
of student performance), andsupporting teachers (e.g., calling attention to a student requiring remedial work).

Woolf [27] surveyed recent perspectives about ITS applications, emphasizing interactive approaches in which
the student is not just a passive recipient of instruction, aka “active learning.” Clancey and Soloway [13]
edited a journal, Interactive Learning Environments , which also emphasized theory-based design of an
instructional setting and the role of viewing and manipulating media in the learning process.

The Nature of Explanation

XAI research generally assumed at first that “explanation” only involves the process of providing an expla-
nation to the user, on the assumption that an explanation consists of text or a graphic, which is good and
sufficient in itself. But ITS research clearly demonstrated how explanation must be understood from the
user’s perspective as alearning process , and thus from the program’s perspective as an instructive process
(which includes explaining) rather than a “one-off,” stand-alone question-answer interaction. This is true
whether the learning process is an activity involving a person and machine, a group of people, or process
of self-explanation by a person or program. For some XAI applications, explanation will be part of an
activity that extends over multiple uses and interactions, especially because a neural network program can
continually evolve. XAI researchers have thus begun to consider ways in which the user can explore how the
AI program works and its vulnerabilities (a concern ignored by that ITS programs that focus on textbook
knowledge).
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ITS research demonstrated that “explanation” is an interaction among the user, the artifact, and their
activity in a task context. In particular, the format/medium, content, and timing of explanations may
differ to support different information needs for different tasks. In critical, time-pressed situations the only
practical support may be directing the user’s attention; in activities over hours or days, such long-term
care for a patient, the program may serve more as an assistant in constructing situation-specific models and
action plans.

The process of instruction, including explaining, necessarily involves shared languages and methods for
communicating. The earliest ITSs demonstrated some form of natural language capability, such as mixed-
initiative question-answering, case-method dialogue, Socratic discourse, or customized narrative presenta-
tions. ITSs have also used graphic presentations and animated simulations to convey relationships and
causality. Similarly, a general consensus has emerged among XAI researchers that the explanation process
must involve the exchange of meaningful (versus computationally formal) information.

Domain Model

The domain model is a representation of the subject material to be taught. Generally, this model represents
some process or system in a computationally interpretable form. This is a defining characteristic of “symbolic
AI”; such models are variously described as qualitative, relational, and/or semantic. Clancey [7] presented
evidence that all expert systems were “model-based.” In effect, a fundamental contribution of expert systems
research has been to extend modeling formalisms beyond mathematical constructs in conventional science
and engineering to include qualitative/relational models and associated modeling operations [10].

By design, an ITS domain model can be interpreted to solve problems presented to the student. This model
constitutes the knowledge to be learned: facts, formalisms, causal processes, and reasoning processes (e.g., a
diagnostic strategy). Typically, the program that applies the domain model to solve problems is called the
inference engine(e.g., a rule interpreter), which applied to particular circumstances (e.g., a patient’s history
and symptoms), produces a (partial) solution called a situation-specific model .

At first, most ITS researchers viewed the domain model as being isomorphic to stored structures and subcon-
scious processes in the brain. This assumption motivated much productive research in which the ITS creates
a model of the student’s knowledge and reasoning. In recent decades, models have been viewed more often
as scientific toolsthat are constructed and applied to understand and manipulate processes and systems in
the world [11, 21], exemplified by the student model in an ITS.

User (Student) Models

The student model represents the student’s knowledge relative to the domain model, in both general and
situation-specific forms [8]. The student model may be constructed using the overlay method (student model
is a subset of the expert domain model), the misconception/bug method (student behavior is matched against
variants/incorrect domain model), or a machine learning method [17].

Some systems can also infer the student’s ongoing approach to solving a problem, such as a diagnostic
strategy. ITS programs infer the student’s model by asking (e.g., “Do you believe X causes Y?”) or by
interpreting reasoning steps. Misconceptions can also be pre-enumerated in the program and available for
matching against student behavior [23]. The creation of models of student knowledge and reasoning remains
an ongoing concern in ITS research.

Given the focus and challenge of adding an explanation capability to the machine learning programs, an
early assumption in the XAI program was that requiring researchers to also incorporate a student model
was a bridge too far. But XAI research conducted to date has been a reminder that explanations need to
be tailored—somehow—to the knowledge and goals of the user. It is certainly unacceptable to assume that
that the user’s understanding of the task is the same as that of the researchers [19]. Furthermore, only
XAI research that utilized post-experimental cognitive interviews shows the kind of awareness this research
requires.

3
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On the other hand, the neural network learning method addresses perceptual cognition, which symbolic
AI, the representational foundation of ITS research, finessed. When images are involved, they are usually
presented to the student as text, in terms of already abstracted categories (e.g., the morphology of cultured
organism is a “rod”). When the focus is image interpretation itself (e.g., x-ray interpretation, [18]), manually
annotated images are presented to the student (e.g., [14]). MR Tutor [22] is a relevant exception in the domain
of Magnetic Resonance Imaging (MRI). Experts used a predefined ontology of features to label images, and
neural network learning was used to relate patient cases. The resulting “typicality” model enabled the
student to view the distribution of disease features across cases, and for the tutoring program to select
appropriate problems and examples from the library ([22], pp. 5–8). However, MR Tutor explanations are
limited to relating cases, rather than explicating the underlying causal processes that give rise to the observed
morphologies—a capability required by specialists for recognizing and discriminating atypical manifestations
of a disease.

Studies of radiological expertise revealed an ability to rapidly and automatically recognize “varied normal
anatomy” coupled with an ability to describe “abnormal appearance” ([22], p. 3-4). By extension, use of
neural network tools for practical applications, a primary objective of XAI research, may require users to
have similar capabilities to distinguish discrepant features of interest from normal variation in appearance.
Training—and by implication explanation—could be oriented accordingly by presenting normal and abnormal
examples and ordering them within a cognitively justified instructional strategy, that is, a pedagogical
method.

Pedagogy

Some developers of XAI systems have recognized the need for XAI systems to have a pedagogical foundation
(e.g., Raytheon/BBN and Rutgers projects). However, most XAI programs don’t base explanations on an
explicit model of the instructional process involving structured methods of interaction, which in turn is based
on a theory of learning. By analogy to ITS, an XAI program should incorporate a model for evaluating and
instructing proper use of the associated AI program.

Early ITS systems that incorporated pedagogical models include Guidon [6, 9] and Meno-Tutor [15, 26]. The
RadTutor [2] for diagnostic interpretation of mammogram images is based on instructional principles (mul-
tiplicity, activeness, accommodation and adaptation, and authenticity) and methods (including modelling,
coaching, fading of assistance, structured problem solving, and situated learning).

The designers of MR Tutor formulated the following requirements for a computer system to train people in
image processing (quoted from [22], p. 4):

• Base the training on a large library of cases representative of [image processing] practice;
• Provide a means of making rapid comparisons between cases by similarity of diagnostically relevant

features [the role of the machine learning program];
• Expose the trainee to cases in an order that promotes understanding and retention;
• Help the trainee to make rapid, accurate initial judgements;
• Help the trainee to integrate fragmentary knowledge into more general structural schemata;
• Help the trainee to reflect on experience gained and to integrate general and situated knowledge;
• Be implemented on a personal computer, for use as part of self-study at home or work.

Also applicable to image categorization in general is the idea of a domain-specific description language. In
MR Tutor, the Image Description Language (IDL) included functional descriptors (e.g., lesion homogeneity,
lesion grouping, interior patterning), and image features (e.g., visibility, location, shape, size, intensity).

We hypothesize that analogous feature categories and feature descriptions are used by people for interpreting
images in general, either formally as standards within a community of practice, or informally by individuals
developing their own conscious method for interpreting and classifying images. The use of such feature
languages in a variety of domains suggests that comprehending and trusting AI program interpretations,
a primary objective of XAI systems, requires an image description language that conforms to the natural

4
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language used in the domain.

Furthermore, instructional research based in cognitive studies suggests that the chain model:

[XAI generates explanations

User comprehends the explanations

User performance improves]

is far too simple—it ignores the active aspect of learning, especially self-explanation. Self-explanation im-
proves learning whether it is prompted or self-motivated [4. 5, 20]. In general, XAI programs do not facilitate
self-explanation. Initial instructions given to participants provides explanatory material and may support the
self-explanation process; but not all XAI projects provide such instructions. Although some of the projects
present examples and tasks that permit displaying boundary conditions (e.g., what the AI gets wrong, false
positives), placing the user in a self-explanation mode, XAI methods have not generally exploited the user’s
active efforts to construct an explanation of the AI system.

CONCLUSION

Some scientific contributions are common to XAI and ITS research. Both seek to promote people’s learning
through automated interaction and explanation. Both represent processes as formal models and algorithms
in a computer program, in application domains relevant to DoD concerns. Both have found that explanations
are more productive when people can respond to them interactively (e.g., by asking follow-up questions),
involving theories about when and what kind of explanations facilitate understanding. Researchers in both
areas also recognize the need for pilot studies to evaluate the instructional methods and procedures for
assessing user understanding.

There have also been contributions of XAI that were not incorporated in the ITS work. Through the use
of a symbolic problem-solving model (the embedded expert system), many ITS programs can solve new
cases, but for pedagogical effectiveness, most use a curriculum of solved problems curated and organized
by specialists (i.e., a “case library”), based on an ontology that has been established within the technical
domain (e.g., MR Tutor [22]). It would be advantageous to couple the MR Tutor’s ability to relate cases
with the ability of neural network systems to add solved cases to the library.

Another advance is the concern in XAI research with the development of appropriate trust and reliance.
Research has demonstrated, for instance, that global explanations alone do not promote trust [19]. ITS
research usually focused on teaching people to solve problems themselves, rather than teaching them how to
use an AI program that assists them in carrying out complicated technical activities.

In conclusion, the objective of the XAI research program—to develop computational aids to promote practical
use of an AI tool, including promoting a user’s understanding of the system’s capabilities and vulnerabilities
in practical situations—is inseparable from the objectives of ITS research involving domains of professional
expertise, such as medicine, electronics troubleshooting, and engineering. We described the principles of
ITS design, in which an explicit pedagogical strategy is based on a cognitive theory of learning in the
domain of interest, which is expressed in a model of the subject material. That is, in ITS the design of
“explanation systems” is guided by a well-developed scientific framework , formalized in process models of
problem solving, learning, and communication. We conclude that it will be productive for XAI researchers
to view “explanation” as an aspect of an instructional process in which the user is a learner and the program
is a tutor, with many of the attendant issues of developing a shared language and understanding of problem-
solving methods that ITS research has considered over the past 50 years.
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