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Abstract

Species-environment relationships were studied between the occurrence of 13 fish and lamprey species and 9 mainly map-based

environmental variables of Finnish boreal small streams. A self-organizing map (SOM) analysis showed strong relationships

between the fish species and environmental variables in a single model (explained variance 55.9%). Besides basic environmental

variables such as altitude, catchment size, and mean temperature, landcover variables were also explored. A logistic regression

analysis indicated that the occurrence probability of brown trout, Salmo trutta L., decreased with an increasing percentage of

peatland ditch drainage in the upper catchment. Ninespine stickleback, Pungitius pungitius (L.), and three-spined stickleback,

Gasterosteus aculeatus L., seemed to benefit from urban areas in the upper catchment. Discovered relationships between fish

species occurrence and land-use attributes are encouraging for the development of fish-based bioassessment for small streams.

The presented ordination of the fish species in the mean temperature gradient will help in predicting fish community responses

to climate change.
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Abstract

Species-environment relationships were studied between the occurrence of 13 fish and lamprey species and
9 mainly map-based environmental variables of Finnish boreal small streams. A self-organizing map (SOM)
analysis showed strong relationships between the fish species and environmental variables in a single model
(explained variance 55.9%). Besides basic environmental variables such as altitude, catchment size, and
mean temperature, landcover variables were also explored. A logistic regression analysis indicated that the
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. occurrence probability of brown trout, Salmo trutta L., decreased with an increasing percentage of peatland
ditch drainage in the upper catchment. Ninespine stickleback, Pungitius pungitius (L.), and three-spined
stickleback, Gasterosteus aculeatus L., seemed to benefit from urban areas in the upper catchment. Discovered
relationships between fish species occurrence and land-use attributes are encouraging for the development
of fish-based bioassessment for small streams. The presented ordination of the fish species in the mean
temperature gradient will help in predicting fish community responses to climate change.
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Introduction

Studying the relationship between species and their environment is at the core of ecology. Modelling this
relationship has long been performed, using a wide array of methods (Franklin, 1995; Guisan & Zimmermann,
2000; Domisch, Jähnig, Simaika, Kuemmerlen, & Stoll, 2015). The focus in developing these models may be
to study species-environment relationships or to predict the occurrence of the studied species. In fisheries
research, the identification of the environmental variables that characterize fish distributions has been one
of the main objectives (e.g. Nelson, Plaits, Larsen, & Jensen, 1992; Rieman & McIntyre, 1995). Predictive
models may help in fish-based bioassessment (Brosse, Lek, & Townsend, 2001; Oberdorff, Pont, Hugueny,
& Chessel, 2001; Oberdorff, Pont, Hugueny, & Porcher, 2002), and in focusing inventory and management
activities on areas where species are considered likely to occur (Porter, Rosenfeld, & Parkinson, 2000).

Several studies have indicated that field-measured site-scale (local) variables such as stream width, water
depth, water chemistry, riverbed substrate, flowrate, undercut banks, canopy cover, riparian vegetation, and
the slope at the sampling site can predict the occurrence of fish species (e.g. Gorman & Karr, 1978; Watson
& Hillman, 1997; Terra, Hughes, & Araujo, 2016). However, these field measurements are laborious and thus
demanding for adoption as predictors of species occurrence in fisheries management, for example. An easier
way to predict species occurrence would be to use large-scale map-based (regional) variables such as the size
of the upper catchment, the elevation and land use in the upper catchment (Porter et al., 2000). Indeed,
catchment-scale variables can have a greater impact than site-scale variables on stream fish assemblages
(DeRolph, Nelson, Kwak, & Hain, 2015; Mitsuo, 2017).

The process of taking natural landscapes for human use can cause detrimental effects on terrestrial and aqua-
tic ecosystems (Huston, 2005; Pugh, Pandolfi, Franklin, & Gangloff, 2020). For example, increased land use
for agriculture, urban areas, and forestry can impact fish populations through alterations in stream hydrolo-
gy, geomorphology, water quality, sedimentation, riparian vegetation, and habitat heterogeneity, eventually
leading to species loss or replacement (Allan, Erickson, & Fay, 1997; Lange, Townsend, Gabrielsson, Chanut,
& Matthaei, 2014; Pugh et al., 2020). Recent developments in geographical information systems (GIS) tech-
nology (Lü, Batty, Strobl, Lin, Zhu, & Chen, 2019) have facilitated easy access to a wide range of catchment
characteristics above any site of a stream network. These catchment characteristics, typically expressed as
the percentage coverage of the upper catchment, are extensively used in studying the effects of land use on
stream biota.

About 80% of the millions of kilometers of European river networks consist of small streams, commonly
known as brooks, creeks, or headwaters (Kristensen & Globevnik, 2014). Small headwater streams are im-
portant contributors to aquatic biodiversity and may suppress the negative impacts of anthropogenic stress
on downstream reaches (Burdon et al., 2016; Baattrup-Pedersen, Larsen, Andersen, Jepsen, Nielsen, & Ras-
mussen, 2018). However, in the European Water Framework Directive (WFD; European Commission 2000),
small streams with a catchment size of less than 10 km2 are mostly omitted from river basin management
plans or merged into larger water bodies (Kristensen & Globevnik, 2014, Baatturp-Pedersen et al., 2018).

In this study, we chose to examine fish in small streams for some specific reasons. We inferred that in
small streams/catchments, a single land-use attribute such as an urban area can easily reach high coverage,
and therefore, the effect of land use on fish species occurrence should be relatively easy to trace. In small

2



P
os

te
d

on
A

u
th

or
ea

11
J
u
n

20
21

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

34
00

63
.3

59
91

58
0/

v
1

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. streams, the upstream catchment area is always located relatively near the sampling site, and the impact of
land use should therefore be more direct. Indeed, proximity to the stream has appeared an important factor
in estimating the impact of land use on stream biota (Wang, Lyons, & Kanehl, 2001). Small streams with a
small volume of water also have only a limited ability to dilute pollutants such as nutrients from agriculture
(Kristensen & Globevnik, 2014). Small tributary streams have appeared to be particularly sensitive to
nutrient enrichment (Bussi et al., 2018). The impact of human activities is therefore potentially greater on
small water bodies than on larger ones (Kristensen & Globevnik, 2014).

Our main aims in this study were (1) to explore the relationship of map-based environmental variables
and the occurrence of fish species in small boreal streams; (2) extract fish species clusters and evaluate
their ecological relevance; (3) study species occurrence in relation to annual mean temperature from the
perspective of the climate change in this region; and (4) identify species-specific responses to man-induced
pressures for the future development of diagnostic indices in bioassessment of small boreal streams.

Material and methods

Altogether, 11 environmental variables were measured (Table 1). The studied area covered Southern and
Central Finland in the boreal region from about 60 o to 67 o, which are mostly covered with coniferous
forest. The highest altitude among sampling sites was about 300 m in the studied territory characterized
by lowlands (Table 1). The variables were map-based, with the exception of one field-collected variable,
water temperature at sampling (electrofishing). Upstream catchment boundaries were delineated for each
site with Geographical Information System, using the Digital Elevation Model (DEM) raster database from
National Land Survey of Finland (NLS) and vector data of Drainage Basins in Finland (Finnish Environment
Institute, SYKE). Only sites with a catchment area < 100 km2 were included in the study. The proportions
of different land covers in the catchment areas were extracted from the CORINE Land Cover 2012 data.
The quantity of forest drainage by ditching was estimated as a percentage of ditched peatlands from the
drainage data of the Finnish Environment Institute. Annual air temperature and precipitation data were
derived from the WorldClim database (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005).

Electrofishing data from small Finnish streams were gathered mainly from a national database (Hert-
ta/Koekalastusrekisteri) managed by the Natural Resources Institute Finland (Luke) and hosted by the
SYKE. Additional data were acquired from Metsähallitus (a state-owned enterprise responsible for the ma-
nagement of state-owned land and water areas). The total number of single-run electrofishing samples was
776, conducted at 487 sites, indicating that some of the sites were sampled more than once. As a rule, repea-
ted sampling at the same site was performed at different years. Most of the sampling had been performed at
the period 2000–2020. The electrofishing sites usually represented wadable riffles with stony bottoms. Escape
nets were not used at any of the sampling sites, which typically covered 50–150 m2. As the electrofishing
sampling had been performed in July–October, natural seasonal decline in stream water temperatures was
reflected in the measured temperatures. European standard EN 14011:2003 (Water quality—sampling of
fish with electricity) was followed in sampling. Fish data were converted to species presence/absence for all
analyses in this study.

2.1 Statistical methods

The occurrence of the fish and lamprey species in relation to the environmental variables was modelled using
binary logistic regression (BLR) analysis. In the preprocessing phase, highly (>0.7) multicollinear predic-
tors (latitude and precipitation) were removed from the BLR analysis. The final number of environmental
variables (predictors) accepted for BLR analyses was therefore nine (Table 1). To avoid pseudoreplication,
only one randomly selected electrofishing sample per site was included (N=487). Rare species, present in less
than 3% of the sites, were excluded from the analysis, resulting in 13 species for the modelling (Table 2).
The statistical significance of each predictor was assessed by a chi-square test, with p-value <0.05 indicating
a significant impact. To assess the fit of the models to our data, Nagelkerke (pseudo) R2 was calculated for
each model. Also Hosmer-Lemeshow goodness-of-fit test (Hosmer & Lemeshow, 1989) was used with p-value
>0.05 indicating an acceptable model fit. Accuracy of the BLR model was calculated as the percentage (%)
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. of the studied sites where the presence or absence of a fish species was predicted correctly. BLR analyses
were conducted by IBM SPSS Statistics 26.

The interactions between 13 species occurrences and 9 environmental variables were further studied using a
self-organizing map (SOM, Kohonen, 1982, 2001). In contrast to BLR, all species were processed in a single
model. In general, SOM is an unsupervised dimensionality reduction method that visualizes high-dimensional
data in a low-dimensional map. In ecology, SOM has been extensively implemented for information extraction,
visualization, and clustering of community data (Chon, 2011). Compared to some conventional statistical
methods (e.g. PCA, NMDS) used for community ordination, SOM has performed well, for example, by
allowing the visualization of interspecific association even if it differs in different parts of the data space
(Giraudel & Lek, 2001). In addition, the network tolerates noise (Vesanto, Himberg, Siponen, & Simula,
1998) by allowing outlying samples to affect only one map unit and its neighborhood. The other areas of the
map are not affected by these data (Kaski, 1997). In this study, unsupervised SOM was used to patternize
22 predictors (13 species + 9 environmental variables) and 487 samples with a two-dimensional map which
were then grouped, i.e. clustered. This two-stage procedure, first using SOM to produce the prototypes that
are then clustered in the second stage, has been found to perform well compared with direct clustering of the
data (Vesanto & Alhoniemi, 2000). The two dimensions of SOM were clustered using the k-means algorithm
(Kohonen, 2014). The Davies Bouldin validity index (Davies & Bouldin 1979), which measures between-
and intra-cluster distances, was used as a performance criterion. In the parameter optimization, SOM net
sizes (number of nodes in x and y dimensions) and the number of clusters in parameter k were altered,
using a grid search until the minimum of the Davies Bouldin index was found, using the elbow criterion.
In parameter optimization, the SOM net size roughly followed the map size rule (of thumb) of Vesanto
& Alhoniemi (2000; N(nodes) = 5 x sqrt(Nrows)). Each trial SOM consisted of 10,000 training rounds. In
the preprocessing phase, the occurrence of each fish species was dummy (zero or one, absence or presence)
coded. All predictors were then normalized with a zeroed mean and variance of one. The learning rate
function was inverse of time, which ensures that all samples have an approximately equal influence on the
results. The statistical analyses were performed using RapidMiner software (version Studio Large 9.7.000.,
https://rapidminer.com /, Mierswa, Wurst, Klinkenberg, Scholz, & Euler, 2006).

Results

As anticipated for the small catchment areas of this study, there was high variation among sites in the
catchment land-cover variables (Table 1). The average catchment size and altitude at the sites occupied
by each of the fish species varied considerably. To illustrate this, the positioning of three species in the
catchment size – altitude space suggests that three-spined stickleback occupied small low-altitude brooks,
whereas brook trout, Salvelinus fontinalis (Mitchill 1814), dwelled in tributaries, and grayling, Thymallus
thymallusL., in larger streams (Figure 1).

The BLR models were statistically significant (?2 (9)= 35.4 – 154.7, p<0.005) for all fish species, with the
exception of brook lamprey, Lampetra planeri (Bloch), (?2 (9) = 10.1, p=0.340). The highest Nagelkerke R2

values were recorded for the two stickleback species (Table 2). In Hosmer-Lemeshow goodness-of-fit tests,
the p-values were >0.08 for all the models, indicating an acceptable model fit for the data. The accuracy
of the models was usually high, ranging from 96.9% with ninespine stickleback to 62.8% with brown trout.
The absence of fish species was predicted by the models much more correctly than presence, as indicated by
specificity (average 94.6%, SD 13.6%) vs. sensitivity (average 28.1%, SD 21.1%) (Table 2).

The statistical performance of the best SOM model including all species was good (explained variance 55.94%,
Davies Bouldin index 0.71). The net size (11 x 11 = 121 nodes) of the best-performing SOM model roughly
followed the map size rule of thumb (110 nodes). The smallest Davies Bouldin index was attained with 4
clusters (Figure 2). Cluster 2 at the top right of the SOM was occupied by bullhead, burbot, Lota lota(L.),
grayling, and minnow, Phoxinus phoxinus (L.), and characterized by a large catchment area, high altitude,
and low mean temperature (Figure 2, Table 3). Cluster 1 at the top left of the SOM was occupied by perch,
Perca fluviatilis L., roach, Rutilus rutilus (L.), and northern pike, Esox Lucius L., and characterized by a
high water temperature at sampling, high annual mean temperature, large catchment area, and low altitude
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. (Figure 2, Table 3). Cluster 0 at the bottom left of the SOM was occupied by the two stickleback species,
and characterized by a low altitude, high annual mean temperature, low water temperature at sampling,
and high percentage of urban areas in the catchment. Brook trout was present in sites clustered at the
bottom right of the SOM, indicating preference for cold high-altitude tributaries. Brown trout and stone
loach, Barbatula barbatula (L.), seemed to occupy two clusters simultaneously, whereas the occurrence of
brook lamprey could not be linked with any of the studied environmental variables (Table 3, Figure 2).

The ranking of species in the mean air temperature gradient revealed the two stickleback species favoured a
warm environment, whereas minnow appeared to be the ultimate cold-water species (Figure 3).

Discussion

Modelling fish species occurrence in small boreal streams with a logistic regression and self-organizing map
indicated clear species-environment relationships. The obtained species clusters and their associations with
mainly map-based variables appeared ecologically reasonable and largely concordant with species groupings
in the current bioassessment developed for larger boreal streams (Vehanen, Sutela, & Korhonen, 2010). The
results support the development of fish-based bioassessment for small streams and help in predicting fish
assemblage changes in a warming climate.

The effect of small-scale local factors on controlling the occurrence of lotic fish species has been found in
numerous studies (e.g. Watson & Hillman, 1997; Lamouroux, Capra, Pouilly, & Souchon, 1999; Wang et al.,
2003). However, the dominance of large-scale regional factors affecting riverine fish assemblages has also been
documented (e.g. Koel & Peterka, 2003; DeRolph et al., 2015; Mitsuo, 2017). A wide variety of hypotheses
or theories has been put forward concerning the balance of local and regional factors affecting riverine
fish assemblages. It has been hypothesized that large-scale processes determine the pool of the fish species
available to occur, whereas small-scale processes eventually define the subset of fish species inhabiting a given
site (Pont, Hugueny, & Oberdorff, 2005). Although local habitat conditions may be important determinants
of fish abundance, they may be of limited importance in determining presence and absence (Porter et al.,
2000). Sensitivity to local- and regional-scale processes has been found species-specific (Pont et al., 2005). It
was suggested that local factors were most important to fish in minimally impaired watersheds, but the effects
of landscape-scale factors become increasingly important as watersheds are increasingly modified by human
activities (Wang et al., 2003). However, a combination of local and regional variables has often managed to
explain a great deal of the variance in riverine fish occurrence or density (e.g. Ripley, Scrimgeour, & Boyce,
2005; Pont et al., 2005; Park, Grenouillet, Esperance, & Lek, 2006). Obviously, both local and regional
variables have an effect, and the inclusion of local variables in our models would probably have enhanced the
predictive power. However, our results encourage the use of map-based (regional) variables in modeling the
species-environment relationships in small streams, especially when confronting limited resources to control
site-specific local variables.

The sensitivity of the BLR model was rather poor, at least compared to specificity (Table 2). The relatively
small size of the electrofishing area and the use of a single-run electrofishing sampling in this study may have
decreased the probability of getting all the fish species in the catch. The information generated by single-
visit surveys of fish occurrence cannot account for intra-annual or interannual variation in the upstream
extent of fish distribution (Fransen et al., 2006). Small streams are vulnerable to drought events inducing
temporal variation in fish assemblages (Grossman, Ratajczak, Crawford, & Freeman, 1998; Keaton, Haney,
& Andersen, 2005). Our model’s prediction of species occurrence and absence may be of use in extending
the current fish-based bioassessment (Vehanen et al., 2010) to small brooks. For management and inventory
purposes, we recommend the application of larger data and cross-validation in BLR.

The SOM clusters of fish species and environmental variables appeared plausible. Cluster 0 was occupied
by two stickleback species that seemed to favour warm regions, low altitude, and the high share of urban
areas in the upper catchment. Sticklebacks have been considered to indicate degradation in lowland brooks
(Fieseler & Wolter, 2006). Freshwater fish communities have been found sensitive to watershed urbanization
(Chen & Olden, 2020).
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. The occurrence of perch, roach, and northern pike (Cluster 1 in SOM) was associated with a high annual
mean temperature, a relatively large catchment area, low altitude, and lakes in the upper catchment. These
three fish species are common lake species (Maitland & Campbell, 1992) possibly spreading to small streams
at warm water periods (Degerman & Sers, 1994; Sutela, Vehanen, Huusko, & Maki-Petays, 2017). This trait
was supported by the frequent occurrence of these species with high temperature at sampling (Table 3). The
occurrence of bullhead, burbot, grayling, and minnow was associated with a relatively large catchment area,
a high altitude, a low mean temperature, and open mires in the catchment (Cluster 2). The fish species in
this cluster can be characterized as cold-water species (Logez, Bady, & Pont, 2012) living in forested peatland
regions. The only fish species centering cluster 3, brook trout, favoured cold and small high-altitude streams.
Brook trout is an alien invader species in Europe, having been stocked in many Finnish tributary streams.
Brook trout also prefers small tributary streams in its home district in North America (Kanno, Letcher,
Rosner, & O’Neil, 2015). Alien brook trout has been found to exclude brown trout in small Finnish brooks
(Korsu, Huusko, & Muotka, 2007).

The appearance of the most frequently encountered fish species, brown trout, was centered in clusters 0
and 3 with avoidance of ditched peatland in the upper catchment. The drainage ditching of peatland for
forestry causes the erosion and deposition of fine sediments in headwater streams, accompanied by nutrient
loading (Marttila & Klove, 2010; Nieminen et al. 2018). Deposited sediment can diminish salmonid embryo
survival by decreasing redd gravel permeability, interstitial water exchange, and therefore oxygen supply
(Greig, Sear, & Carling, 2007; Louhi, Ovaska, Maki-Petays, Erkinaro, & Muotka, 2011; Michel et al., 2014).
These impacts may have suppressed the occurrence of brown trout in catchments with a high coverage of
ditched peatland in this study.

Climate change scenarios forecast a high increase in the mean air temperature for the European boreal
ecoregion (Schneider, Laize, Acreman, & Florke, 2013). Fish species have evolved to fit distinct thermal
niches where they can optimize physiological, reproductive, and ecological performance (Coutant, 1987;
Graham & Harrod, 2009). Temperature is one of the key abiotic factors affecting fish species distribution
(Matthews, 1998). Globally, fish species living in small headwater streams are especially vulnerable to
climate change (Buisson, Thuillier, Lek, Lim, & Grenouillet, 2008; Buisson & Grenouillet, 2009). The
presented ranking of the fish species along the mean air temperature gradient can help in predicting the
effects of a warming climate on fish assemblages in the studied region. The breadth of the thermal range
largely delineates the ability of fish species to adapt to climate change (Buisson & Grenouillet, 2009; Logez et
al., 2012). In this study, minnow expressed a relatively narrow thermal range at the cold end of the gradient
(Figure 3), suggesting high vulnerability to the warming climate in this region. The thermal ranges of some
fish species (e.g. brown trout, perch, and northern pike) may vary, depending on the size of the catchment
area and stream power (Logez et al., 2012). Accordingly, the inclusion of large rivers in the analyses could
result in a different outcome for fish species ordination along the mean temperature gradient. These findings
suggest that local stream characteristics should be taken into account when predicting the effects of climate
change. Besides the increase in the mean air and river water temperature in the European boreal ecoregion,
future winter discharges are likely to increase from the natural flow regime, while summer flows will be less
impacted (Schneider et al., 2013). The discharge aspect, although probably of minor importance in the
boreal region, should also be taken into account when predicting the effects of a warming climate on boreal
riverine fish assemblages.

The assessment of the ecological status or integrity of surface waters has been widely established around the
world (Karr & Chu, 2000; Xu et al., 2014; Poikane et al., 2020). In Europe, the legislation to achieve a good
ecological status in surface waters is guided by the WFD (European Commission 2000). Bioassessment meth-
ods in rivers have been developed using three biological groups: periphytic diatoms, benthic invertebrates,
and fish fauna. Stream biota is often impaired by multiple pressures interacting in additive, synergistic, or
antagonistic ways (Schinegger, Trautwein, Melcher, & Schmutz, 2012). Diagnostic tools for distinguishing
the impacts of different pressures have been called for to target the diminishing measures in water pollution
control (Lemm, Feld, & Birk, 2019; Poikane et al., 2020). In this study, map-derived pressures of agriculture
(fields), urban land cover, and drainage ditching for forestry seemed to affect the occurrence of certain fish
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. species. These results encourage for the development of diagnostic fish-based pressure-specific metrics for
small boreal streams.

A simple diagnostic tool (index) for evaluating direct effects of climate change could be calculated as an
average of two metrics, the proportion of cold-water species (climate change intolerants, scaled to 0-1),
and the proportion of warm-water species (climate change tolerants, scaled to 0-1, inverse values) of an
electrofishing sample. Referring to Figure 3, in our case the cold-water species could be minnow, grayling
and brook trout, and the warm-water species three-spined stickleback, ninespine stickleback, and stone
loach. For a wider use of this index, temperature preferences could be achieved like in this study, or by using
existing knowledge and references about temperature preferences of fish species, such as Logez et al. (2012).
Possible indirect effects of climate change stemming from flushing of nutrients (Wilby, Orr, Hefger, Forrow,
& Blackmore, 2006), for instance, could be integrated to the index following the basics presented in Hering,
Feld, Moog, & Ofenbock (2006).

In the fish-based integrity indices developed in bioassessment for boreal and northern temperate zone, cool-
or cold-water fish species are often classified as intolerant species (Kanno, Vokoun, & Beauchene, 2010;
Vehanen et al. 2010). This feature is also seen in the Figure 3, where seven species from the left indicating
favour of cold water can be classified as intolerant (grayling, brook trout, bullhead, brook lamprey, and
brown trout) or intermediately tolerant (minnow and burbot) referring to Holzer (2008). Respectively, the
six species on the right-hand side indicating favour of warm water can be classified as tolerant (perch, roach,
ninespine stickleback, and three-spined stickleback) or intermediately tolerant (northern pike and stone
loach). The classification to tolerant and intolerant species by Holzer is highly compatible with those used
in fish integrity indices, such as Pont et al. (2006), Hughes, Howlin, & Kaufman (2004), Vile & Henning
(2018), and Vehanen et al. (2010). Observed pattern in the sequence of species in the temperature gradient
in relation to tolerant–intolerant division of species suggest that the integrity indices developed for regions
inhabited by these species should respond to the water temperature rise in streams on itself, without the
possible influence via indirect effects such as altered discharge regime and flushing of extra nutrients (Wilby
et al., 2006). In other words, the effect of climate change strictly as warming of the streams should be (by
chance) at least to some extent inborn in many of the present fish indices. As an example, cool-water vs.
warm-water species balance obviously affects the FiFI index values, which can be easily approximated or
calculated based on the metrics by Vehanen et al. (2010). At any rate, when aiming to integrate the effect of
global warming to fish indices, the effect of warming on the reference sites should be controlled by referring
to the earliest reliable electrofishing data or other historical fish data. This somewhat different approach
from the more adaptable attitude to the direct effects of climate change in WFD (Noges, Van de Bund,
Cardoso, & Heiskanen, 2007; Kristensen, Whalley, Nery, Zal, & Christiansen, 2018) could be considered also
with other biological quality elements.

Acknowledgments

We utilized data collected in the Life IP project FRESHABIT (LIFE Programme of the European Union)
in this study. The study reflects the views of the authors, and neither the European Commission nor the
EASME is responsible for any use that may be made of the information it contains. We thank Hanna Hentila,
Minna Kuoppala, and Kati Martinmaki-Aulaskari from SYKE and Auli Immonen from Luke for catchment
delineation and other GIS work.

Data availability statement

The data used can be obtained from Dryad (to be specified later)

References

Allan, D., Erickson, D. L., & Fay, J. (1997). The influence of catchment land use on stream integrity across
multiple spatial scales.Freshwater Biology, 37, 149–161.

Baattrup-Pedersen, A., Larsen, S. E., Andersen, D.K., Jepsen, N., Nielsen, J. & Rasmussen, J. (2018).
Headwater streams in the EU Water Framework Directive: Evidence-based decision support to select

7



P
os

te
d

on
A

u
th

or
ea

11
J
u
n

20
21

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

34
00

63
.3

59
91

58
0/

v
1

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. streams for river basin management plans. Science of the Total Environment, 613–614, 1048–1054.
doi:10.1016/j.scitotenv.2017.09.199

Brosse S., Lek S., & Townsend C. R. (2001) Abundance, diversity, and structure of freshwater invertebrates
and fish communities: an artificial neural network approach. New Zealand Journal of Marine and Freshwater
Research , 35, 135–145. doi:10.1080/00288330.2001.9516983

Buisson, L., Thuillier, W., Lek, S., Lim, P., & Grenouillet, G. (2008). Climate change hastens the turnover
of stream fish assemblages.Global Change Biology , 14, 2232–2248. doi:10.1111/j.1365-2486.2008.01657.x

Buisson, L., & Grenouillet, G. (2009). Contrasted impacts of climate change on stream fish assemblages along
an environmental gradient.Diversity and Distributions , 15, 613–626. doi:10.1111/j.1472-4642.2009.00565.x

Burdon, F. J., Reyes, M., Alder, A.C., Joss, A., Ort, C., Rasanen, K., & Stamm, C. (2016). Environmen-
tal context and magnitude of disturbance influence trait-mediated community responses to wastewater in
streams.Ecology and Evolution , 6, 3923–3939. doi:10.1002/ece3.2165

Bussi, G., Whitehead, P. G., Gutierrez-Canovas, C., Cayetano, P. G., Ledesma, J. L. J., Ormerod,
S. J., & Couture, R.-M. (2018). Modelling the effects of climate and land-use change on the hydro-
chemistry and ecology of the River Wye (Wales). Science of the Total Environment, 627, 733–743.
doi:10.1016/j.scitotenv.2018.01.295

Chen, K., & Olden, J. D. (2020). Threshold responses of riverine fish communities to land use conversion
across regions of the world.Global Change Biology, 26, 4952–4965. doi:10.1111/gcb.15251

Chon, T. S. (2011). Self-organizing maps applied to ecological sciences.Ecological Informatics , 6 (2011),
50–61, doi:10.1016/j.ecoinf.2010.11.002

Coutant, C. C. (1987). Thermal preference: when does an asset become a liability. Environmental Biology
of Fishes, 18, 161–172. doi:10.1007/BF00000356

Davies, D. L., & Bouldin, D. W. (1979). A Cluster Separation Measure.IEEE Transactions on Pattern
Analysis and Machine Intelligence,PAMI-1, 224–227. doi:10.1109/TPAMI.1979.4766909

Degerman, E., & Sers, B. (1994). The effect of lakes on the stream fish fauna. Ecology of Freshwater Fish,
3, 116–122. doi:10.1111/j.1600-0633.1994.tb00113.x

DeRolph, C. R., Nelson, S. A., Kwak, T. J., & Hain, E. F. (2015). Predicting fine-scale distributions of
peripheral aquatic species in headwater streams. Ecology and Evolution 5, 152–163. doi:10.1002/ece3.1331

Domisch, S., Jahnig, S. C., Simaika, J. P., Kuemmerlen, M., & Stoll, S. (2015). Application of species distri-
bution models in stream ecosystems: The challenges of spatial and temporal scale, environmental predictors
and species occurrence data. Fundamental and Applied Limnology , 186, 45–61. doi:10.1127/fal/2015/0627

European Commission, (2000). Directive 2000/60/EC of the European Parliament and of the council of 23rd
October 2000 establishing a framework for community action in the field of water policy.Official Journal of
the European Communities , L327/1.

Fieseler, C., & Wolter, C. (2006). A fish-based typology of small temperate rivers in the northeastern
lowlands of Germany.Limnologica, 36, 2–16.

Franklin, J. (1995). Predictive vegetation mapping: geographic modeling of biospatial patterns in relation
to environmental gradients.Progress in Physical Geography, 19, 474–499. doi:10.1177/030913339501900403

Fransen, B. R., Duke, S. D., McWethy, L. G., Walter, J. K., & Bibly, R. E. (2006). A logistic regression
model for predicting the upstream extent of fish occurrence based on geographical information systems data.
North American Journal of Fisheries Management, 26, 960–975.

8



P
os

te
d

on
A

u
th

or
ea

11
J
u
n

20
21

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

34
00

63
.3

59
91

58
0/

v
1

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. Giraudel, J. J., & Lek, S. (2001). A comparison of self–organizing map algorithm and some conventional
statistical methods for ecological community ordination. Ecological Modelling, 146, 329–339. PII: S0304-
3800(01)00324-6

Gorman, O. T., & Karr, J. R. (1978). Habitat structure and stream fish communities. Ecology, 59, 507–515.

Graham, C. T., & Harrod, C. (2009). Implications of climate change for the fishes of the British Isles.
Journal of Fish Biology, 74, 1143–1205. doi:10.1111/j.1095-8649.2009.02180.x

Greig, S. M., Sear D. A., & Carling, P. A. (2007) A review of factors influencing the availability of dissolved
oxygen to incubating salmonid embryos. Hydrological Processes , 21, 323–334. doi:10.1002/hyp.6188

Grossman, G. D., Ratajczak, R. E., Crawford, M., & Freeman, M. C. (1998). Assemblage organization in
stream fishes: Effects of environmental variation and interspecific interactions. Ecological Monographs, 68,
395–420.

Guisan A., & Zimmermann N. E. (2000). Predictive habitat distribution models in ecology. Ecological
Modelling, 135, 147–186. PII: S0304-3800(00)00354-9

Hering, D., Feld, C. K., Moog, O., & Ofenbock, T. (2006). Cook book for the development of a multimetric
index for biological condition of aquatic ecosystems: Experiences from the European AQEM and STAR
projects and related initiatives. Hydrobiologia , 566, 311–324. doi:10.1007/978-1-4020-5493-8 22

Hijmans, J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution in-
terpolated climate surfaces for global land areas. International Journal of Climatology , 25, 1965–1978.
doi:10.1002/joc.1276

Holzer, S., (2008). European Fish Species: Taxa and guilds classification regarding fish-based assessment
methods. Diplomarbeit. Universitat Wien. 196 pp. doi:10.25365/thesis.2400

Hosmer, D. W. Jr., & Lemeshow, S. (1989). Applied logistic regression . New York, Wiley.

Hughes, R. M., Howlin, S., & Kaufmann, P. R. (2004). A biointegrity index (IBI) for coldwater streams of
Western Oregon and Washington.Transactions of the American Fisheries Society, 133, 1497–1515.

Huston, M. A. (2005). The three phases of land-use change, Implications for biodiversity. Ecological Appli-
cations , 15, 1864–1878. doi:10.1890/03–5281

Kanno, Y., Letcher, B. H., Rosner A. L., & O’Neil, K. P. (2015). Environmental factors affecting brook
trout occurrence in headwater stream segments. Transactions of the American Fisheries Society,144, 373–
382. doi:10.1080/00028487.2014.991446

Kanno, Y., Vokoun, J. C., & Beauchene, M. (2010). Development of dual fish multi-metric indices of
biological condition for streams with characteristic thermal gradients and low species richness.Ecological
Indicators, 10, 565–571.

Karr, J. R., & Chu, E. W. (2000). Sustaining living rivers.Hydrobiologia, 422–423, 1–14.

Kaski, S. (1997). Data exploration using self-organizing maps.Acta Polytechnica Scandinavica, Mathematics,
Computing and Management in Engineering Series No. 82.

Keaton, M., Haney, D., & Andersen, C. B. (2005). Impact of drought upon fish assemblage structure in two
South Carolina Piedmont streams.Hydrobiologia 545, 209–223. doi:10.1007/s10750-005-2674-z

Koel, T. M., & Peterka, J. J. (2003). Stream fish communities and environmental correlates in the
Red River of the North, Minnesota and North Dakota. Environmental Biology of Fishes 67, 137–155.
doi:10.1023/A:1025699512619

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics,
43, 59–69. doi:10.1007/bf00337288

9



P
os

te
d

on
A

u
th

or
ea

11
J
u
n

20
21

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

34
00

63
.3

59
91

58
0/

v
1

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. Kohonen T. (2001). Self-Organizing Maps . Springer Verlag.

Kohonen, T. (2014). MATLAB Implementations and Applications of the Self-Organizing Map ., Helsinki,
Unigrafia Oy. Available at: http://docs.unigrafia.fi/publications/kohonen teuvo/index.html.

Korsu, K., Huusko, A., & Muotka, T. (2007). Niche characteristics explain the reciprocal invasion success
of stream salmonids in different continents. Proceedings of the National Academy of Sciences of the United
States of America, 104, 9725–9729.

Kristensen, P., Whalley, C., Nery, F., Zal, N., & Christiansen, T. (2018) European waters. Assessment of
status and pressures 2018.EEA Report, 7/2018. doi:10.2800/303664

Kristensen, P., & Globevnik, L. (2014). European small water bodies.Biology and Environment, Proceedings
of the Royal Irish Academy,114B, 281–287. doi:10.3318/BIOE.2014.13

Lamouroux, N., Capra, H., Pouilly, M., & Souchon, Y. (1999). Fish habitat preferences in large streams of
southern France.Freshwater Biology, 42, 673–687.

Lange, K., Townsend, C. R., Gabrielsson, R., Chanut, P. C. M., & Matthaei, C. D. (2014). Responses of
stream fish populations to farming intensity and water abstraction in an agricultural catchment.Freshwater
Biology, 59, 286–299. doi:10.1111/fwb.12264

Lemm, J. U., Feld, C. K., & Birk, S. (2019). Diagnosing the causes of river deterioration using stressor-specific
metrics. Science of the Total Environment, 651, 1105–1113. doi:10.1016/j.scitotenv.2018.09.1570048-9697

Logez, M., Bady, P., & Pont, D. (2012). Modelling the habitat requirement of riverine fish species at
the European scale: sensitivity to temperature and precipitation and associated uncertainty. Ecology of
Freshwater Fish, 21, 266–282. doi:10.1111/j.1600-0633.2011.00545.x

Louhi, P., Ovaska, M., Maki-Petays, A., Erkinaro, J., & Muotka, T. (2011). Does fine sediment constrain
salmonid alevin development and survival? Canadian Journal of Fisheries and Aquatic Sciences , 68, 1819–
1826. doi:10.1139/F2011-106

Lu, G., Batty, M., Strobl, J., Lin, H., Zhu, A.-X., & Chen, M. (2019). Reflections and speculations on
the progress in Geographic Information Systems (GIS): a geographic perspective. International Journal of
Geographical Information Science 33(2): 346–367.doi : 10.1080/13658816.2018.1533136

Maitland, P. S., & Campbell, R. N. (1992). Freshwater Fishes . London, Harper Collins. 368 pp.

Marttila, H., & Klove, B. (2010). Dynamics of erosion and suspended sediment transport from drained
peatland forestry. Journal of Hydrology, 388, 414–425. doi:10.1016/j.jhydrol.2010.05.026

Matthews, W. J. (1998). Patterns in Freshwater Fish Ecology . Chapman & Hall, New York.

Michel, C., Schindler-Wildhaber, Y., Epting, J., Thorpe, K. L., Huggenberger, P., Alewell, C., & Burkhardt-
Holm, P. (2014). Artificial steps mitigate the effect of fine sediment on the survival of brown trout embryos
in a heavily modified river. Freshwater Biology,59, 544–556. doi:10.1111/fwb.12284

Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., & Euler, T. (2006). Yale, Rapid prototyping for complex
data mining tasks.Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery
and data mining (KDD–06).doi:10.1145/1150402.1150531

Mitsuo, Y. (2017). Determining the relative importance of catchment and site-scale factors in structuring
fish assemblages in small coastal streams. Knowledge & Management of Aquatic Ecosystems , 418, 1–6.
doi:10.1051/kmae/2017046.

Nelson, R. L., Plaits, W. S., Larsen, D. P., & Jensen, S. E. (1992). Trout distribution and habi-
tat in relation to geology and geomorphology in the North Fork Humboldt River drainage, northeastern
Nevada.Transactions of the American Fisheries Society, 121, 405–426.

10



P
os

te
d

on
A

u
th

or
ea

11
J
u
n

20
21

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

34
00

63
.3

59
91

58
0/

v
1

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. Nieminen, M., Piirainen, S., Sikstrom, U., Lofgren, S., Marttila, H., & Sarkkola, S. (2018). Ditch net-
work maintenance in peat-dominated boreal forests: review and analysis of water quality management
options.Ambio , 47, 535–545. doi:10.1007/s13280–018–1047–6

Noges, P., Van de Bund, W., Cardoso, A. C., & Heiskanen, A.-S. (2007). Impact of climatic variability on
parameters used in typology and ecological quality assessment of surface waters—implications on the Water
Framework Directive. Hydrobiologia, 584, 373–379. doi: 10.1007/s10750-007-0604-y

Oberdorff T., Pont D., Hugueny B., & Chessel D. (2001). A probabilistic model characterizing fish assem-
blages of French rivers: a framework for environmental assessment. Freshwater Biology , 46, 399–415.

Oberdorff T., Pont D., Hugueny B., & Porcher J. (2002). Development and validation of a fish-based index
for the assessment of ‘river health’ in France. Freshwater Biology , 47, 1720–1734.

Park, Y.-S., Grenouillet, G., Esperance, B., & Lek, S. (2006). Stream fish assemblages and basin land cover
in a river network.Science of the Total Environment, 365, 140–153. doi:10.1016/j.scitotenv.2006.02.046

Poikane, S., Salas Herrero, F., Kelly, M. G., Borja, A., Birke, S., & van de Bund, W. (2020). European
aquatic ecological assessment methods, A critical review of their sensitivity to key pressures. Science of the
Total Environment, 740, 140075. doi:10.1016/j.scitotenv.2020.140075

Pont, D., Hugueny, B., & Oberdorff, T. (2005). Modelling habitat requirement of European fishes: do species
have similar responses to local and regional environmental constraints? Canadian Journal of Fisheries and
Aquatic Sciences,62, 163–173. doi:10.1139/F04-183.

Pont, D., Hugueny, B., Beier, U., Goffaux D., Melcher, A., Noble, R., Rogers, C., Roset, N., & Schmutz, S.
(2006). Assessing river biotic condition at a continental scale: a European approach using functional metrics
and fish assemblages. Journal of Applied Ecology, 43, 70–80. doi:10.1111/j.1365-2664.2005.01126.x

Porter, M. S., Rosenfeld, J., & Parkinson, E. A. (2000). Predictive models of fish species distribution in the
Blackwater Drainage, British Columbia. North American Journal of Fisheries Management , 20, 349–359.

Pugh, M. W., Pandolfi, G., Franklin, T., & Gangloff, M. M. (2020). Influences of in-stream habitat and
upstream land–use on site occupancy of the Kanawha darter (Etheostoma kanawhae ), A narrowly dis-
tributed species from the New River (Upper Kanawha Basin).Aquatic Conservation: Marine and Freshwater
Ecosystems 2020, 1–10. doi:10.1002/aqc.3473

Rieman, B. E., & McIntyre, J. D. (1995). Occurrence of bull trout in naturally fragmented habitat patches
of varied size. Transactions of the American Fisheries Society, 124, 285–296.

Ripley, T., Scrimgeour, G., & Boyce, M. S. (2005). Bull trout (Salvelinus confluentus ) occurrence and abun-
dance influenced by cumulative industrial developments in a Canadian boreal forest watershed. Canadian
Journal of Fisheries and Aquatic Sciences,62, 2431–2442. doi:10.1139/F05-150

Schinegger, R., Trautwein, C., Melcher, A., & Schmutz, S. (2012). Multiple human pressures and their spatial
patterns in European running waters. Water and Environment Journal , 26, 261–273. doi:10.1111/j.1747-
6593.2011.00285.x

Schneider, C., Laize, C. L. R., Acreman M. C., & Florke, M. (2013). How will climate change modify river
flow regimes in Europe? Hydrology and Earth System Sciences 17, 325–339. doi:10.5194/hess-17-325-2013

Sutela, T., Vehanen, T., Huusko, A., & Maki-Petays, A. (2017). Seasonal shift in boreal riverine fish
assemblages and associated bias in bioassessment. Hydrobiologia, 787, 193–203. doi:10.1007/s10750-016-
2959-4

Terra, B. F., Hughes, R. M., & Araujo, F. G. (2016). Fish assemblages in Atlantic forest streams: the relative
influence of local and catchment environments on taxonomic and functional species.Ecology of Freshwater
Fish, 25, 527–544. doi:10.1111/eff.12231

11



P
os

te
d

on
A

u
th

or
ea

11
J
u
n

20
21

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
62

34
00

63
.3

59
91

58
0/

v
1

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

. Vehanen, T., Sutela, T., & Korhonen, H. (2010). Environmental assessment of boreal rivers using fish
data – a contribution to the Water Framework Directive. Fisheries Management and Ecology, 17, 165–175.
doi:10.1111/j.1365-2400.2009.00716.x

Vesanto, J., Himberg, J., Siponen, M., & Simula, O. (1998). Enhancing SOM based data visualization.
In Proceedings of the International Conference on Soft Computing and Information/Intelligent Systems
(IIZUKA’98) , pages 64–67, Iizuka, Japan.

Vesanto, J., & Alhoniemi, E. (2000). Clustering of the self-organizing map. IEEE Transactions on Neural
Networks and Learning Systems , 11, 586–600.

Vile, J. S., & Henning, B. F. (2018). Development of indices of biotic integrity for high-gradient wadeable
rivers and headwater streams in New Jersey. Ecological Indicators , 90, 469–484.

Wang, L., Lyons, J., & Kanehl, P. (2001). Impacts of urbanization on stream habitat and fish across multiple
spatial scales.Environmental Management, 28, 255–66.

Wang, L., Lyons, J., Rasmussen, P., Seelbach, P., Simon, T., Wiley, M., Kanehl, P., Baker, E., Niemela,
S., & Stewart, P. M. (2003). Watershed, reach, and riparian influences on stream fish assemblages in the
Northern Lakes and Forest Ecoregion, USA. Canadian Journal of Fisheries and Aquatic Sciences, 60, 491–
505. doi:10.1139/F03-043

Watson, G. W., & Hillman, T. W. (1997). Factors affecting the distribution and abundance of bull trout,
an investigation at hierarchical scales. North American Journal of Fisheries Management, 17, 237–252.

Wilby, R. L., Orr, H. G., Hedger, M., Forrow, D., & Blackmore, M. (2006). Risks posed by climate change to
the delivery of Water Framework Directive objectives in the UK. Environment International 32, 1043–1055.
doi:10.1016/j.envint.2006.06.017

Xu, M., Wang, Z., Duan, X., & Pan, B. (2014). Effects of pollution on macroinvertebrates and water quality
bio-assessment.Hydrobiologia, 729, 247–259. doi:10.1007/s10750-013-1504-y

Tables

Table 1. Basic statistics of the environmental variables studied. The last five variables refer to the percentages
of the catchment area above the electrofishing site.

Mean Median Min. Max.

Latitude (degrees, WGS84) 62.568 62.120 60.103 66.989
Altitude (m) 98.0 84.9 1.9 305.8
Catchment area (km2) 16.2 9.6 0.2 98.9
Water temperature at sampling (oC) 11.0 11.0 1.3 21.7
Annual mean air temperature (oC) 2.8 3.2 -0.8 5.2
Annual precipitation (mm) 599 608 471 674
Urban areas (%) 11.0 1.7 0 78.7
Fields (%) 6.4 1.5 0 53.3
Open mires (%) 4.1 0.7 0 45.2
Lakes (%) 2.1 0.4 0 25.6
Ditched peatland (%) 9.3 7.2 0 49.0

Table 2. Goodness-of-fit statistics for the BLR models by fish species, predicting the probability of fish
species presence (N=487). BLR model was not statistically significant for brook lamprey.
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. Number of
samples with
fish presence Nagelkerke R2

Hosmer-
Lemeshow
t-test value Accuracy (%) Sensitivity (%) Specificity (%)

Three-
spined
stickleback

21 0.668 1.00 96.1 42.9 98.5

Ninespine
stickleback

19 0.466 0.08 96.9 42.1 99.1

Perch 85 0.451 0.55 87.7 49.4 95.3
Minnow 42 0.407 0.82 92.0 11.9 99.6
Bullhead 63 0.381 0.31 89.7 36.5 97.6
Stone loach 64 0.352 0.42 88.3 23.4 98.1
Grayling 28 0.325 0.24 95.3 25.0 99.6
Roach 38 0.275 0.90 92.6 10.5 99.6
Brook trout 18 0.259 0.81 96.3 0.0 100.0
Northern
pike

101 0.192 0.50 80.5 13.9 97.9

Burbot 101 0.174 0.41 79.5 8.9 97.9
Brown trout 255 0.123 0.37 62.8 72.9 51.7
Brook
lamprey

28 0.058 0.08

Table 3. Significance (p) values from the logistic regression analysis run separately for each fish species –
predictor pair. Values in bold indicate positive effect (p<0.05), values in italics negative effect (p<0.05), in
missing values p>0.05. Clusters 0–3 refer to the SOM analysis results presented in Figure 3.

Catch-ment area Altitude Water temperature Annual mean temperature Fields Ditched peatland Urban areas Open mires Lakes Cluster

Bullhead <0.001 0.043 0.001 0.024 0.020 0.003 2
Burbot <0.001 0.001 0.001 <0.001 0.035 0.003 0.001 0.023 2
Grayling <0.001 <0.001 <0.001 0.001 2
Minnow <0.001 <0.001 0.012 <0.001 0.004 0.001 0.001 <0.001 2
Northern pike 0.011 <0.001 0.003 <0.001 0.002 0.024 1
Perch <0.001 0.004 <0.001 0.003 <0.001 1
Roach <0.001 0.002 <0.001 0.002 0.011 1
Stone loach 0.008 <0.001 <0.001 <0.001 <0.001 0.001 0.019 0 ˜ 1
Ninespine stickleback <0.001 0.012 0.001 0.003 <0.001 0.033 0
Three-spined stickleback 0.019 <0.001 0.011 <0.001 <0.001 <0.001 0.011 0
Brook lamprey -
Brook trout 0.031 0.001 0.001 3
Brown trout <0.001 0.002 0 ˜ 3

Figure legends

Figure 1. Occurrence of three fish species as a function of catchment area and altitude.

Figure 2. Self-organizing maps of 22 predictors with four clusters separated by thick black lines in each
figure. For example, in brook trout occurrence is highest in cluster 3, with high-altitude sampling sites and
low annual mean temperatures (see cluster 3 in the figure). Each sample (id, row) remains in the same SOM
node (cell) in each figure. The sample size of brown trout (255, Table 2) was higher than that of grayling
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. (28, Table 2), and hence the general coloring of grayling figure in the topmost row is bluer. The size of grey
circles represents the number of samples in a cell.

Figure 3. Annual average air temperature at the sites where each of the species occurred (N in parenthesis).

Hosted file

Figure1.docx available at https://authorea.com/users/419247/articles/525787-species-

environment-relationships-of-fish-and-map-based-variables-in-small-boreal-streams-

linkages-with-climate-change-and-bioassessment

Hosted file

Figure_2_revised.docx available at https://authorea.com/users/419247/articles/525787-species-
environment-relationships-of-fish-and-map-based-variables-in-small-boreal-streams-

linkages-with-climate-change-and-bioassessment

Hosted file

Figure 3corrected.docx available at https://authorea.com/users/419247/articles/525787-

species-environment-relationships-of-fish-and-map-based-variables-in-small-boreal-

streams-linkages-with-climate-change-and-bioassessment

14

https://authorea.com/users/419247/articles/525787-species-environment-relationships-of-fish-and-map-based-variables-in-small-boreal-streams-linkages-with-climate-change-and-bioassessment
https://authorea.com/users/419247/articles/525787-species-environment-relationships-of-fish-and-map-based-variables-in-small-boreal-streams-linkages-with-climate-change-and-bioassessment
https://authorea.com/users/419247/articles/525787-species-environment-relationships-of-fish-and-map-based-variables-in-small-boreal-streams-linkages-with-climate-change-and-bioassessment
https://authorea.com/users/419247/articles/525787-species-environment-relationships-of-fish-and-map-based-variables-in-small-boreal-streams-linkages-with-climate-change-and-bioassessment
https://authorea.com/users/419247/articles/525787-species-environment-relationships-of-fish-and-map-based-variables-in-small-boreal-streams-linkages-with-climate-change-and-bioassessment
https://authorea.com/users/419247/articles/525787-species-environment-relationships-of-fish-and-map-based-variables-in-small-boreal-streams-linkages-with-climate-change-and-bioassessment
https://authorea.com/users/419247/articles/525787-species-environment-relationships-of-fish-and-map-based-variables-in-small-boreal-streams-linkages-with-climate-change-and-bioassessment
https://authorea.com/users/419247/articles/525787-species-environment-relationships-of-fish-and-map-based-variables-in-small-boreal-streams-linkages-with-climate-change-and-bioassessment
https://authorea.com/users/419247/articles/525787-species-environment-relationships-of-fish-and-map-based-variables-in-small-boreal-streams-linkages-with-climate-change-and-bioassessment

