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Abstract

Radar sensors offer a promising and effective sensing modality for human activity classification. Human activity classification

enables several smart homes applications for energy saving, human-machine interface for gesture controlled appliances and

elderly fall-motion recognition. Present radar-based activity recognition system exploit micro-Doppler signature by generating

Doppler spectrograms or video of range-Doppler images (RDIs), followed by deep neural network or machine learning for

classification. Although, deep convolutional neural networks (DCNN) have been shown to implicitly learn features from raw

sensor data in other fields, such as camera and speech, yet for the case of radar DCNN preprocessing followed by feature

image generation, such as video of RDI or Doppler spectrogram, is required to develop a scalable and robust classification or

regression application. In this paper, we propose a parametric convolutional neural network that mimics the radar preprocessing

across fast-time and slow-time radar data through 2D sinc filter or 2D wavelet filter kernels to extract features for classification

of various human activities. It is demonstrated that our proposed solution shows improved results compared to equivalent

state-of-art DCNN solutions that rely on Doppler spectrogram or video of RDIs as feature images.
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Data-driven Radar Processing Using a
Parametric Convolutional Neural Network for

Human Activity Classification
Thomas Stadelmayer, Avik Santra, Robert Weigel, Fabian Lurz

Abstract— The paper proposes a data-driven pre-processing optimization for radar data using a parametric convolutional
neural network. The proposed method is applied on human activity classification as a use case. Present radar-based
activity recognition system exploit micro-Doppler signature by generating Doppler spectrograms or a temporal series of
range-Doppler maps, followed by deep neural networks or machine learning approaches for classification. Those radar
data representations are typically generated on the basis of short-time Fourier transformations. A Fourier transformation
equally resolves the frequency space, which may be sub-optimal in some applications. Although deep convolutional
neural networks (DCNN) have been shown to implicitly learn features from raw sensor data in other fields, such as
speech recognition, yet, for the case of radar-based DCNNs, pre-processing is required to develop a scalable and robust
classification or regression application. In this paper, we propose a parametric convolutional neural network that mimics
the radar pre-processing across fast-time and slow-time radar data through 2D sinc filter or 2D wavelet filter kernels
to extract features for classification of various human activities. During training only the filter parameters of the 2D sinc
filters or 2D wavelets are learned, leading to optimized feature representation for the classification task. It is demonstrated
that our proposed solution shows improved results compared to equivalent DCNN architectures that rely on Doppler
spectrograms or radar data cubes as input data.

Index Terms— 2D Sinc Filters, 2D Wavelets, Parametric CNN, Deep Learning, Human Activity Classification.

I. INTRODUCTION

PEople sensing and activity classification have increasing
application potential in various areas, such as physical

security, defense and surveillance. In industrial and consumer
space, human activity recognition finds applications in smart
homes, human-machine interfaces and elderly fall-motion
monitoring systems. Knowledge of the performed activity in
a room can enable smart control of the energy consumption,
such as HVAC and lighting [1]–[3]. Furthermore, knowledge
of the performed human activity facilitates true ubiquitous
smart home solution by discerning the user’s intent.

Most of the human activity recognition systems are based
on cameras and computer vision approaches. These systems
have the advantage that they are quite easy to implement and
benefit from several years of research. As a result the accuracy
of such systems is quite high. However, camera systems
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suffer from lack of privacy and are sensitive to illumination
conditions, thus they are not a favorable choice for smart home
solutions. On the other hand, radar sensors have shown to be
an effective sensing modality for human activity classification
[4], [9]–[17], [26]. The radar sensors offer privacy-preserving,
illumination-invariance properties and are capable of being
aesthetically concealed in the operating environment. Recent
innovation in the semiconductor technologies have facilitated
integration and antenna-in-package solutions making the radar
sensor into a small form factor [18].

Radar sensors can sense and recognize human activities
utilizing micro-Doppler signatures [24] that are generated by
non-rigid-body motions of moving targets. To efficiently clas-
sify different human activities, meaningful features have to be
extracted from the micro-Doppler signatures. In [4] the authors
extract features, such as the total bandwidth of the Doppler
signal and the normalized standard deviation of the Doppler
signal strength among others, from the Doppler-spectrogram
of different human activities. Also, in more recent works
handcrafted features are used. The authors in [5] propose
the extraction of median Doppler frequency, total bandwidth
of the Doppler signal and the standard deviation in signal
strength to name a few, whereas in [6] the envelope of micro-
Doppler signatures is used as basis for classification. The
classification result using handcrafted features highly depends
on their discriminative characteristics and requires expert
knowledge in designing them. Extracting such features from
Doppler spectrograms inevitably removes information from
the signal. In order to remove as little information as possible
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while compressing the data to meaningful features, the usage
of a principle component analysis (PCA) was proposed in
[7] and [8]. Whereas the PCA is a linear transformation,
in recent years neural networks, which provide a non-linear
transformation, were widely used for feature extraction in
the radar domain. In [22], authors propose a novel deep
auto-encoder based solution to sense elderly fall-motion from
Doppler spectrograms and in [17], authors have used various
deep convolutional neural network architectures to learn from
range spectrogram, Doppler spectrogram and radar data cubes
for different activity classification.

However, a predominant number of papers extracts features
on the basis of short-time Fourier transformed (STFT) radar
data such as Doppler spectrograms or radar data cubes. This
holds for the handcrafted feature approaches as well as the
dimensionality reduction approaches using a PCA as well
as for the deep learning based approaches. The fact that
for radar-based human-motion recognition and classification
nearly all publications so far are based on pre-processed data
is underlined by the survey of Gurbuz and Amin [25].

A STFT resolves the frequency space with equal resolution.
However, when classifying between different human activities,
the frequency regions representative of the different activities
are of higher interest. Therefore, in [23], authors propose
a deep deformable convolutional to focus on certain time-
frequency areas in the Doppler spectrograms, which helps
to handle the small inter-class differences and large intra-
class variations of human fall-motion in a real-world situation.
Further, in recent years different approaches feeding the raw
radar data provided by the ADC, which is referred to as raw
ADC data in this paper, directly to the neural network came up.
In [27], the authors train a long-short term memory (LSTM)
network directly with time series of complex-valued raw ADC
data, which on the contrary leads to a very high network
complexity. An approach based on the in-quase/quadrature
(I/Q) trajectories is presented in [28]. First the I/Q trajectories
are transformed into low-resolution images, which are then
classified using a DCNN. Thus, the network extract features
from the image rather than from the I/Q data directly. Further,
in [29], a DCNN including a Fourier layer and using raw ADC
data as input is proposed. The Fourier layer is a convolutional
layer with its kernels initialized to the Fourier coefficients.
However, those weights are adapted during training and thus
after training the transformation in the Fourier layer most
likely differs from a Fourier transformation. In audio signal
processing, where the information is also encoded in the time-
frequency domain, a neural network called SincNet operating
directly on the raw data is proposed in [30]. The core idea of
the SincNet is to restrict the first layer of the neural network
to the usage of 1D bandpass sinc filters and only allow the
optimization of their cutoff frequencies during training. By
doing this restriction and therefore putting prior knowledge
into the system, the network converges faster to its optimum
solution. Further, the outcome of this layer remains physically
interpretable since only the parameters of the filters, and not
the single filter weights independently, are optimized.

Inspired from the 1D SincNet in speech processing, we
propose two DCNN architectures based on 2D sinc filters and

(a) Photo of the radar chipset

(b) Typical FMCW block diagram

Fig. 1: (a) Infineon’s BGT60TR13C 60-GHz radar sensor. (b)
Functional block diagram of FMCW radar RF signal chain
depicting 1TX, 1RX channel

2D wavelet filters that directly learn joint fast-time-slow-time-
frequency features from the raw ADC radar data. The proposed
model classifies among different human activities using radar
data captured by Infineon’s 60-GHz frequency modulated
continuous wave (FMCW) radar chipset BGT60TR13C. We
demonstrate that the proposed trained DCNN architectures
are able to achieve classification accuracy equal or better
than equivalent DCNNs using STFT-based pre-processing
techniques in form of Doppler spectrograms or radar data
cubes as input. This is the first paper to the best of author’s
knowledge that deals with data-driven radar pre-processing
optimization, thus allowing the network to learn implicitly
better representation for classification of the particular task,
which is human activity classification in this paper.

The rest of the paper is organized as follows, we present the
radar system design and system parameters in Section II, the
conventional signal processing involving Doppler spectrogram
and range-Doppler-time or data-cube processing is presented
in Section III, the contribution is also presented in Section III.
The proposed solution is presented in section IV, the proposed
architecture & learning in section V. The results and discussion
along with the associated setup is presented in section VI, and
we conclude in Section VII.

II. RADAR SYSTEM DESIGN

The work in this paper is based on Infineon’s BGT60TR13C
FMCW radar chipset. Its operating frequency ranges from
57 GHz to 64 GHz with an adjustable chirp duration. Its block
diagram is shown in Fig. 1. The transmit path consists of a
voltage controlled oscillator (VCO) that is regulated by a phase
locked loop (PLL) to a reference frequency of fref = 80 MHz.
Highly linear frequency chirps between 57 GHz and 64 GHz
are produced by adjusting the divider value and an additional
tuning voltage ranging from 1 V to 4.5 V. In the receive path
the echo returning from the target object is down-converted
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with a replica of the transmitted frequency chirp. Therewith
the baseband frequency spectrum can be sampled by the 12 bit
analog-digital converter (ADC). Moreover the receive path
contains an intermediate frequency (IF) buffer amplifier and
an analog IF-filter that can be adjusted corresponding to the
received frequency range. The radar chip is package in an
embedded waver level ball grid array package including 4
integrated patch antennas realized by a metal redistribution
layer. Three of them are receive antennas having an antenna
gain of 10 dBi and one is the transmit antenna with a gain of
6 dBi. Consequently, the radar sensor contains three identically
structured receive paths and one transmit path. The radio fre-
quency (RF) signal is distributed by an active RF distribution
network to the receive paths.

The transmitted up-chirp from the FMCW radar’s ramp
generator is reflected by a moving object and is received at
the receiver after round trip delay caused by the target’s range
from the radar and the velocity of the target. The received
signal is mixed at the receiver with the transmitted signal
and the resultant signal is low-pass filtered, thus performing
the matched filtering operation. The phase of the resultant
intermediate frequency or IF signal due to single point target
can be expressed as

Φ(t) = 2π

(
fminτ +

B

Tc
tτ − B

2Tc
τ2
)

(1)

where fmin is the ramp start frequency, B and Tc denote
the chirp bandwidth and the chirp time respectively, and
τ =

2(x+
∑I

i=1 vit)

c is the round trip propagation delay between
the transmitted and received signal after reflection from the
point target with range x and radial velocity components
vi. The Doppler frequency relates with radial velocity vi
as νi = 2vi/λ = 2vfmin/c, the Doppler is represented by
the centroid Doppler of the Doppler components due to the
target νc =

∑I
i=1 νi, while micro-Doppler components are

represented as {νi − νc}I
i=1. The signal of an extended target

is defined by the super-position of point target signals.
For our demonstrator, we configured the chip to transmit

chirps using a pulse repetition interval (PRI) of TPRI =
1 ms resulting in unambiguous maximum velocity of vmax =
1.25 m s−1 which is sufficient in most indoor activity sensing
applications. Figure 2 presents the chirp configuration. From
the equidistant stream of chirps individual slices across slow-
time can be extracted seamlessly. This provides maximum
flexibility in further processing.

The bandwidth is set to B =1 GHz and the up-chirp time is
set to Tc =64 µs accounting for a range resolution of 15 cm.
The maximum detectable unambiguous range is 9.6 m. The
set system parameters are provided in Tab. I.

III. CONVENTIONAL PIPELINE & CONTRIBUTIONS

The conventional signal pre-processing involves 1D moving
target indication (MTI) filtering to remove the response from
static targets and also Tx-Rx leakage, which effects the first
few range bins. The reflections from stationary objects such as
chair, tables and wall, etc. can overwhelm the reflections from
the other moving targets limiting their visibility on the RDM or

63 64 2047

64ms

19831982

Up-chirp

Down-chirp

Waiting

between
chirps

time

Chirp ID: 0 1

STFT window 63

Data of a Doppler spectrogram/radar data cube

Chirp

1ms

STFT window 0
2.048 s

64ms

64 µs

repetition

Fig. 2: Chirp sequence in the proposed system configuration

TABLE I: Operating Parameters.

Parameters, Symbol Value
Ramp start frequency fmin 59.5GHz

Ramp stop frequency fmax 60.5GHz

Bandwidth B 1GHz

Range resolution δr 15 cm

Number of samples per chirp Ns 128
Maximum range Rmax 9.6m

Sampling frequency fs 2MHz

Chirp time Tc 64 µs
Chirp repetition time TPRT 1ms

maximum Doppler vmax 1.25m s−1

Elevation θelev per radar 70°
Azimuth θazim per radar 120°

Doppler spectrogram. Thus, MTI filter is used to suppress the
contribution of these stationary objects and leakage. Among
several MTI filters, a simple 1D MTI filter subtracts the mean
along the fast-time to remove the Tx-Rx leakage that perturbs
the first range bins, followed by mean subtraction along the
slow-time to remove the reflections due to static or zero-
Doppler targets.

The range information of the target is extracted by perform-
ing the first FFT after applying 1D windowing along fast-time,
which is the intra-chirp time. The Doppler information of the
target is extracted by monitoring the change of target peak
along slow-time, which is the inter-chirp time. One common
approach is applying FFT along the fast-time as well as slow-
time dimension. The outcome of this operation is a two-
dimensional matrix representing the received power spectrum
over range and velocity, also known as RDM. The received
and deramped IF data is stored in matrices of size Nc × Ns,
where Nc being the number of chirps considered in a slice
across slow-time and Ns is the number of transmit samples
per chirp.

In a conventional processing pipeline, the above pre-
processing is followed by feature image generation, such as a
Doppler spectrogram or a range-Doppler-time radar data cube,
which are then inputs to deep convolutional neural networks
(DCNNs) or LSTM networks for classification.
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A. Radar Data Cube
The radar data cube represents a time series of RDMs.

Before the single RDMs can be generated the static targets
must be removed from the signal as described in the previous
section. This is done by first removing the mean within each
chirp or fast-time and then removing the mean across multiple
chirps or slow-time. A RDM computed at the kth slice across
slow-time can be obtained by applying a 2D STFT on the
mean removed ADC data and is expressed as

vRDM(p, l, k) =∣∣∣∣∑Nst
m=1

∑Nft
n=1 w(m,n)s(m,n, k)e

−j2π(mp
Nst

+ nl
Nft

)

∣∣∣∣
(2)

where w(m,n) is the 2D weighting function along the fast-
time and slow-time, s(m,n, k) is the mean removed ADC data
on the kth slow-time data slice. The index n,m sweep along
the fast-time and slow-time axis respectively, while l, p sweep
along the range and Doppler axeses respectively. Nst and Nft
are the FFT size along the slow-time and fast-time respectively.
Figure 3 presents the radar data cube for walking and working
activity at the slow-time data slice 0, 15 and 30. For the RDMs
showing the walking activity a person is approaching the radar
and then moving away from it. Most interesting for the activity
classification is that the motion in range-Doppler domain and
the spread of the target can clearly be seen. On the other hand
for a person working on the laptop, the signal is mainly visible
in the zero Doppler bin and hardly a variation can be detected,
which makes it hard to assign it to a certain activity class.
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Fig. 3: Example radar data cube representation for walking
and working activities at time steps 0, 15 and 30

B. Doppler Spectrogram Features
The Doppler spectogram is generated by marginalizing the

radar data cube vRDM across the range dimension and can be
expressed as

S(p, k) =

Nft∑
l=1

vRDM(p, l, k). (3)

where l is sweeps along the range axis, Nft is the number
of range bins and p, l, k are the Doppler, range and slow-
time data slice indices respectively. The Doppler spectrum at

slow-time data slice k contains both the Doppler components
as well as micro-Doppler components due to hand and leg
movements while performing an activity. The stacked Doppler
spectrum across consecutive slow-time data slices is referred
as Doppler spectrogram that captures information about the
instantaneous Doppler spectral content and the variation of
the Doppler spectral content over time. Figure 4 presents the
Doppler spectrogram of the different activities, namely empty
room, walking, standing idle, arm movement, waving and
working on laptop.
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Fig. 4: Example Doppler Spectrogram

Figure 5(a) presents the conventional pipeline that involves
explicit pre-processing and feature generation followed by a
neural network such as DCNN or LSTM for classification. The
novel aspect of the proposed architecture implicitly performs
the pre-processing and feature generation in the neural network
itself. Thus the input to the neural network is the raw ADC
data directly as depicted in Fig. 5(b). The initial layer of the
proposed DCNN learns 2D Sinc filter kernels or 2D wavelet
filter kernels, which is representative of the pre-processing and
feature extraction. The capability of DCNN to directly operate
on the raw ADC data helps in reducing the computation
complexity dramatically as well in practical implementation
eliminates the need for digital signal processor (DSP) for pre-
processing.

Fig. 5: (a) Conventional processing pipeline, involving explicit
pre-processing, feature generation and neural network (b)
Proposed processing pipeline, involving 2D Sinc filter DCNN
or 2D Wavelet filter DCNN for implicit pre-processing, feature
generation and classification.
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IV. PROPOSED PARAMETRIC CONVOLUTIONAL LAYER

Different activities can be distinguished by analyzing their
unique range-velocity profiles. Some activities may have a
very different profile such as walking and standing idle, but
some may have only slight differences. For example working
on the laptop and sitting idle on a chair only differ from
slight hand movements to control the laptop. Thus, a higher
resolution on specific frequency bands is required in order to
accurately distinguish these actions. However, when applying
a 2D STFT the whole observable range-velocity space is
discretized in equal bins. By feeding the raw ADC radar data
directly to a neural network, the neural network can learn filter
kernels that extract more meaningful features than what can
be achieved by fixed pre-processing steps. However, unlike
as in computer vision or other domains, the feature is not
spatially present in the raw ADC radar data. Therefore, a small
filter kernel size of (3x3) or (5x5), which is typically used in
convolutional layers, is not able to extract meaningful features.
This is why larger filter sizes such as (64x32) have to be
considered. As a result the number of trainable filter weights
increase drastically leading to overfitting and getting stuck in
local minimum. However, by constraining the filter kernels to
a parametric filter function, which is specifically designed for
radar feature learning, facilities convergence to global minima
while requiring only a small set of filter parameter. Thus, we
refer to the proposed layer as parametric convolutional neural
network. In this way, by using prior knowledge of the radar
signal, pre-processing is integrated into the neural network and
can be optimized according to the training data. The benefit
of integrating pre-processing into the neural network itself by
learning the filter parameters of a set of time domain filters
was already shown in [30] for 1D audio signal processing. In
the paper constraining the first convolutional layer to the use
of 1D band-pass filters defined as the difference of two low-
pass sinc filters with different cutoff frequencies is proposed.
While training the lower and higher cutoff frequencies are
optimized for the needs of the application. Replacing classical
pre-processing by this layer shows improved results in speaker
recognition. In this paper the extension from 1D audio signals
to 2D radar signals is proposed. Additionally, the Morlet
wavelet is evaluated as a second possible parametric filter
function.

A. 2D Sinc Filters
Besides applying a STFT, time domain bandpass filters can

be used to analyze the frequency composition of a signal. Time
domain bandpass filters yield the ability to adjust the cutoff
frequencies according to the needs of the application and can
therefore be learned within a neural network. Thus, similar
to the proposal of Ravanelli et al. a sinc filter is chosen as
parametric filter function. However, it has to be extended to
the 2D radar domain. The 1D sinc filter is defined as

hK,fs(k, fl, b) =

2(fl + b)sinc(2(fl + b)
k−bK2 c
fs

)− 2flsinc(2fl
k−bK2 c
fs

) (4)

where K is the filter length, fs the sampling frequency of the
signal, fl the lower cutoff frequency, b the bandwidth and k

the filter parameter index. The parameters of this filter are the
lower cutoff frequency fl and the bandwidth b that implicitly
defines the higher cutoff frequency. By defining a lower cutoff
frequency and bandwidth in slow-time as well as in fast-time
direction, a 2D bandpass filter that is able to extract joint range
and velocity features can be created. The 2D sinc filter is
defined as

sinc2D(n,m; f st
l , bst, f

ft
l , bft) =

w(n,m)hN,f st
s
(n, fl,st, bst)hM,f ft

s
(m, fl,ft, bft) (5)

where N and M are the filter-lengths, f st
s and f ft

s the sampling
frequencies, f st

l and f ft
l the lower cutoff frequencies, bst and

bft the filter bandwidths respectively in slow-time and fast-
time direction. Furthermore, w(n,m) is a 2D cosine weighting
function. n is sweeping along slow-time and m along fast-
time. An exemplary 2D sinc filter is shown in Fig. 6 in
time as well as in frequency domain. In frequency domain
the rectangular shape with clear cutoff frequencies can be
seen. The first layer of a CNN is initialized according to the
definition of 2D sinc filters and only the filter parameters are
allowed to be learned during training.
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Fig. 6: Exemplary 2D sinc filter in time and frequency domain

B. 2D Morlet Wavelets
The range-velocity profile is not only defined by its com-

posed frequencies but also by the change of frequencies over
time. When transforming a signal to frequency domain the
time information is lost. This can be overcome by windowing
the time domain signal. However, smaller window sizes mean
higher time resolution but to the cost of worse frequency
resolution and vice versa. Especially for time varying signals
wavelets have several advantages over fourier transformations
as they provide a time and frequency resolution [31]. Due
to the fact that radar signals are highly time varying, the
usage of a 2D wavelet transformation using Morlet wavelets
is proposed. The 2D Morlet wavelet is defined as

gN,M (n,m;σst, σft) =

1
2πσstσft

exp(−( (n/N−bN/2c)2
2σ2

st
+ (m/M−bM/2c)2

2σ2
ft

)) (6)

φ[n,m; fst, σst, fft, σft] =

gN,M (n,m;σst, σft) ·
cos(2πf st

c
n−bN/2c

f st
s

) cos(2πf ft
c
m−bM/2c

f ft
s

) (7)

where N and M are the filter-lengths, σst and σft the standard
deviations, f st

c and f ft
c the center frequencies, fsts and ffts

the sampling frequencies respectively in slow-time and fast-
time direction. The filter parameters that can be optimized by
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the neural network are the center frequency and the standard
deviation of the wavelet. Similar to the previous introduced 2D
sinc filters the frequency area of interest can be adjusted by
the center frequency. But, additionally also the time-frequency
resolution can be optimized by changing the standard deviation
of the gaussian part of the wavelet. Due to the fact that the
defined wavelet is the product of a cosinus and a gaussian
window function also the frequency response has the shape of
a gaussian. That means that it has no clear cutoff frequencies as
it can be seen in Fig. 7, where an exemplary 2D Morlet wavelet
in time and frequency domain is depicted. The standard
deviations of the gaussian in time domain and in frequency
domain are indirect proportional. Consequently, decreasing the
width of the gaussian in time domain will lead to an increased
width of the frequency response, which in turn shows the time-
frequency resolution trade-off.
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Fig. 7: Exemplary 2D Morlet wavelet in time and frequency
domain

V. ARCHITECTURE AND LEARNING

In this paper two state-of-the-art DCNNs evaluating the
preprocessed data, a state-of-the-art DCNN evaluating raw
input data and two novel DCNN architectures using raw ADC
data as input are proposed. All architectures have several
characteristics in common. First, all networks finishing with a
softmax classifier layer of size 6 as six different actions should
be classified. Second, categorical crossentropy is used as loss
function. Third, RMSprop optimizer is used with a learning
rate lr = 0.0001, ρ = 0.9, ε = 10−8 and batches of size
128. Fourth, all unconstrained convolutional and dense layers
are initialized using the ’Glorot’ initialization scheme with an
uniform weight distribution. Fifths, the common convolutional
and dense layers are using a rectifier linear unit as activation.
And sixths, after every common convolutional and dense layer
a dropout with a rate of 0.2 is implemented in order to prevent
over fitting.

A. 2D SincNet
The 2D SincNet uses 2D sinc filter convolutions in the first

convolutional layer as described in chapter IV-A. As parameter
this layer takes the filter lengths, the number of filters, the
sampling frequencies, the padding mode and the stride for
the slow- as well as fast-time direction respectively. Although
there are no separated filters for slow- and fast-time, it is
required to explicitly provide the number of filters in slow-
time Nst and the number of filters in fast-time Nft. According
to this, 2D sinc filters are generated in a way that they form an

Fig. 8: Proposed Parametric CNN learning the filter parame-
ters of 2D sinc filters or wavelets

(a) DSNet (b) RDCNet

Fig. 9: State-of-art DCNN architectures for evaluating (a)
Doppler spectrograms and (b) radar data cubes

equal grid of size Nst×Nft covering the complete observable
range Doppler domain. The trainable weights in this layer are
the lower cutoff frequencies and the bandwidths in slow- as
well as fast-time direction. In order to guarantee equal training
in both filter dimensions the bandwidths and cutoff frequencies
are normalized.

The 2D sinc filter layer is followed by a MaxPool layer
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with a pooling size of 8x2. Afterwards a common two
dimensional convolutional layers using 50 filters of size
3x3 is implemented. As already mentioned above, the
convolutional layer follows a dropout layer with a rate of
0.2. Moreover, after the dropout a max pooling of size of
4x2 is applied to decrease dimensionality. Then the tensor is
flattened and fed into a dense layer of size 32 followed by
the softmax classifier layer. The proposed network is depicted
in Fig. 8

B. 2D WaveConvNet
The 2D WaveConvNet (WCN) is designed similar to the 2D

SincNet. Only the first convolutional layer is initialized by 2D
Morlet wavelets as described in IV-B instead of using 2D sinc
filters. Required parameter for this layer are the filter lengths,
number of filters, sampling frequencies, padding mode and
stride for the slow as well as fast-time direction respectively.
Similar to the 2D sinc filters the number of filters in slow-
time direction Nst as well as the number of filters in fast-
time direction Nft have to be explicitly provided in order
to distribute the frequency response of the wavelets equally
as a grid in the 2D frequency domain. Both time axis were
normalized as already discussed in the previous section. As a
result, the standard deviations is chosen to be 0.06 in both filter
dimensions. In a total Nst times Nft 2D wavelets are created.
Trainable weights of this layer are the center frequencies and
standard deviations in slow- as well as in fast-time dimension.
Also in the 2D WCN the learnable weights are normalized.

C. State-of-art Networks
DSNet: The DSNet is a typical state-of-art 2D DCNN archi-

tecture followed by a dense and softmax layer. It uses already
preprocessed 2D Doppler spectrograms as input. Furthermore,
it contains three common 2D convolutions with 4, 8 and 16
filters respectively. Each filter uses a kernel size of 3x3. After
each convolution a dropout layer with dropout rate of 0.2
is used. Moreover, after the first two convolutional layers a
MaxPooling of size 2x2 is used. Afterwards the tensor is
flattened and fed into a dense layer of size 64 followed by the
softmax classifier. The DSNet architecture is shown in Fig. 9
(a).

RDCNet: The RDCNet has a temporal sequence of RDMs
in the form of a 3 dimensional radar data cube as input.
Therefore three 3D convolutional layers are used to extract
information from the radar data cube. They all have a kernel
size of 3x3x3 and use 4, 8 and 16 filter kernels respectively.
Also here a dropout layer with a rate of 0.2 is added after
each convolutional layer to prevent overfitting. After the first
two dropout layers a maxpooling of size 2x2x4 is performed.
Afterwards the tensor is flattened and further processed by
a dense layer of size 64 before it is classified by the final
softmax layer. The RDCNet is sketched in Fig. 9 (b).

2D ConvNet: The 2D ConvNet uses the same architecture
as the 2D SincNet and 2D WCN. Only the first layer is
substituted by a unconstrained 2D convolutional layer with
’Glorot’ weight initialization. No predefined time domain

filters are used. Therefore each filter parameter can be learned
individually.

VI. RESULTS AND DISCUSSION

A. Experimental Setup and Dataset

Fig. 10: Experimental setup for data recording with test person
performing activity ”working”

To evaluate the approach presented in this paper, a dataset
was recorded in a real world environment. The radar was
mounted on a tripod at a height of 1.20m and was placed
in the corner of the room. The room has about 20m2 with a
table and chairs inside. The experimental setup is shown in
Fig. 10.
The dataset is chosen in a way that it covers fast moving
activities such as walking, as well as slow moving activities
like standing idle or working on the laptop. Thus, the challenge
is to cover a large Doppler velocity range and simultaneously
yield a high Doppler resolution in certain regions in order
to differentiate similar activities. The dataset contains five
different human activities plus additionally a recording of an
empty room. To record the class ”walking” a single human
was allowed to randomly walk around. The class ”idle” is
split up in two recordings. First, a person was standing in
front of the radar and in the second recording the person was
sitting at the table facing towards the radar. As third activity
random arm movements while standing were recorded. This
class is called ”arm movements”. In order to record the fourth
class called ”waving” a person was waving with its hand at
different positions in the room facing towards the radar. As
last class working at the laptop while sitting at the table was
recorded. The data was acquired in a clean environment, since
the objective is mainly to differentiate activities, that cover a
wide Doppler frequency bandwidth and simultaneously require
high Doppler resolution in certain frequency bands, rather than
to handle disturbances. Each activity was performed by the
same person and recorded for about 18 minutes in total.
Samples containing 2048 chirps with an overlap of 512 chirps
are cut out from the recordings. Given the fact that the
chirp repetition time is 1ms each sample captures 2.048s. For
each sample a Doppler spectrogram and a radar data cube
as described in sec. III-B and III-A is created. Therefore a
dataset with raw ADC data, Doppler spectrograms and radar
data cubes based on exactly the same chirps per sample is
obtained. For each activity about 700 samples are available.
Due to slightly different recording times for each activity,
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TABLE II: Samples per class

empty walking idle arm waving working
room movements
579 695 834 694 687 686

TABLE III: Model sizes of DSNet and RDCNet

Layer DSNet Layer RDCNet
2D Conv (4, 3x3) 40 3D Conv (4, 3x3x3) 112
2D Conv (8, 3x3) 296 3D Conv (8, 3x3x3) 872

2D Conv (16, 3x3) 1168 3D Conv (16, 3x3x3) 3472
Dense (32) 65569 Dense (64) 102432
Softmax (6) 198 Softmax (6) 198

Total 67,270 Total 529,198

the number of samples per class varies. In table II the exact
number of samples per class is stated.

To evaluate the proposed approach, a filter length of 65 in
slow- and 33 in fast-time dimension was chosen for the 2D
sinc filters. The same filter size is used for the constrained
convolutional layer that substitutes the 2D sinc filter layer in
the 2D ConvNet. For the 2D wavelet convolution the filter
length in slow-time direction was doubled in order to allow
the gaussian window function of the Morlet wavelet to expand.
Moreover ”valid” padding is used in both dimensions to obtain
the same output shape after 2D sinc and 2D wavelet layer.
This provides the possibility of substituting both layers one
by one while keeping the remaining network the same. To
reduce computational intensity a stride of 4 and 8 is used in
slow- and in fast-time dimension respectively.
As the filter sizes are specified, the final size of the networks
can be stated. The composition of parameters per layer is
shown in tab. III for the DSNet and the RDCNet and in
tab. IV for the 2D SincNet, 2D WCN and 2D ConvNet.
Given the fact that when evaluating Doppler spectrogram
only velocity information has to be evaluated the network
can be designed accordingly smaller. The RDCNet uses a
radar data cube as input data. Thus, 3D convolutions have
to be used which result in a higher number of parameters.
Moreover, the first layer of the 2D SincNet as well as of the 2D
WCN have significantly less parameters as the corresponding
unconstrained convolutional layer of the 2D ConvNet. This
results from the fact that only the four filter parameter are
trained in the parametric convolutional layer. Since 64 2D
sinc filters or wavelets are used, the parametric layer has
just 64 · 4 = 256 parameters to optimize. The unconstrained
convolutional layer in the 2D ConvNet in contrast has to
learn each single filter weight. As a result the network size
is reduced by more than 50 %. The proposed approach is a
data-driven pre-processing optimization. Hence, besides the
evaluation on the clean dataset, the proposed approach is also
evaluated regarding the impact of limited amount of training
data and the impact of pre-known disturbances, such as a static
50 Hz frequency of a power line, which can be considered
during training.

TABLE IV: Model sizes of 2D SincNet, 2D WCN and 2D
ConvNet

Layer 2D SincNet 2D WCN 2D ConvNet
2D Sinc (64, 65x33) 256 - -

2D Wave (64, 129x33) - 256 -
2D Conv (64, 65x33) - - 137344

2D Conv (50, 3x3) 28850 28850 28850
Dense (32) 102432 102432 102432
Softmax (6) 198 198 198

Total 131,736 131,736 268,824

TABLE V: Accuracies (in %) and F1-scores (in %) for the
evaluated approaches on the clean dataset.

Model Accuracy (± deviation) F1-score
DSNet 90.7 (± 3.2) 90.8 (± 3.0)

RDCNet 95.6 (± 0.7) 95.9 (± 0.6)
2D ConvNet 98.2 (± 2.2) 98.2 (± 2.3)
2D SincNet 99.2 (± 0.6) 99.2 (± 0.6)
2D WCN 99.5 (± 0.3) 99.5 (± 0.3)

B. Clean Dataset

In order to give a proof-of-concept, the proposed idea was
evaluated on the dataset as descibed in the previous section.
The dataset does not contain disturbances and yields enough
training data.

1) Confusion Matrix Classification: For evaluation a 5-fold
cross validation is performed. First, the dataset is split into
5 blocks, whereof each is used once as testing set. Thus, the
model is trained 5 times and leaving out a different test set
each time. Finally, the results of the five runs are averaged. In
this way variations in the results due to unfortunate train and
test data splits are reduced. All models are trained long enough
to reach their saturation. Thus, the DSNet is trained for 100
epochs, the RDCNet is trained for 50 epochs, the 2D ConvNet
is trained for 40 epochs and the proposed 2D SincNet and 2D
WCN are trained for 20 epochs. Afterwards the accuracy as
well as the F1 score are evaluated using the testing part of the
dataset. The obtained accuracies and F1 scores are averaged
over all runs. Additionally, the standard deviation is calculated
for both matrices.
The results are shown in tab. V. The state-of-art approaches
achieve an accuracy of about 90.7 %, 95.6 % and 98.2 %
respectively, whereas the proposed architectures show an im-
proved accuracy of 99.2 % and 99.5 %. In order to analyze
the classification results in more detail the confusion matrices
of RDCNet representing the state-of-art approaches and the
confusion matrix of 2D WCN representing the novel architec-
tures are shown in Fig. 11. The limitation of the state-of-art
approaches is unveiled by looking at the individual accuracy
per class. While most actions are similar well classified by
RDCNet and 2D WCN, a big uncertainty between the class
”idle” and ”working” exists. However, the proposed filter
learning based approaches do not show this limitation and
therefore achieves better accuracy scores.

2) Learned filters: Before training is started the sinc filters
as well as the wavelets are initialized as described in sec. V-A
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Fig. 11: Confusion matrix of (a) RDCNet and (b) 2D WCN.
The values are rounded to three decimals.
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(a) 2D sinc filters (b) 2D Morlet wavelets (c) unconstrained filters
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Fig. 12: Cumulative gain of learned (a) 2D sinc filters, (b) 2D
wavelets and (c) unconstrained filters

and sec. V-B. Moreover, the first unconstrained convolutional
layer of the 2D ConvNet is initialized using ’Glorot’ scheme.
For each approach, cumulating the initial filters leads to an
approximately uniform range and velocity gain over the whole
space. During training the filter parameters are iteratively
optimized. As a result the initial grid structure is dissolved

TABLE VI: F1-scores (in %) of the evaluated approaches under
limited number of training samples S

Model \ S 10 25 50 100 250
DSNet 74.5 (±2.0) 80.9 (±1.1) 83.1 (±3.1) 86.6 (±1.5) 86.5 (±3.0)

RDCNet 86.4 (±1.5) 93.1 (±2.2) 94.1 (±1.5) 94.5 (±1.2) 95.2 (±0.8)
2D ConvNet 91.8 (±1.4) 96.2 (±1.1) 97.2 (±0.6) 95.7 (±3.3) 98.9 (±1.8)
2D SincNet 99.1 (±0.7) 99.4 (±0.3) 99.2 (±0.5) 99.5 (±0.3) 99.6 (±0.2)
2D WCN 99.2 (±0.8) 99.4 (±0.3) 99.7 (±0.2) 99.4 (±0.2) 99.6 (±0.2)
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Fig. 13: F1-Scores over number of training samples per class

by individual shifts and shape changes of the filters.
The cumulative gain of all filters after training is depicted

in Fig. 12. The 2D sinc filters as well as the 2D wavelets
have a bandpass characteristic. Therefore the resulting gain
of cumulative filters look similar except of the fact that the
2D wavelet gain is smoother caused by its smooth filter
shape in frequency domain. However, the resulting weights
of unconstrained convolutional layer are quiet different and
can not be physically interpreted.

C. Limited Dataset

An essential factor in deep learning applications is the
dataset. The neural network can only learn the information
given in a dataset. Thus, data acquisition is an important task.
However, it is also time consuming and challenging to acquire
representative data for the application. If the dataset is too
small, neural networks tend to overfit. Hence, it is evaluated
how the proposed networks perform under low number of
training samples. Thus, the different networks are trained until
convergence using 10, 25, 50, 100 and 250 samples per class.
The training samples are randomly selected. In order to get
more stable results, each network was trained five times for
each number of training samples using different randomly
selected training samples every time. In tab. VI the mean
F1-scores are stated for the different models based on the
number of training samples, which are additionally visualized
in Fig. 13. Especially for low number of training sampels the
2D SincNet and 2D WCN show very good results. Since their
first layers are constrained to the usage of a set of parametric
filters known from signal processing, less parameter have to
be trained and therefore good results are already possible for
little amount of training data. Further, it is noticeable that the
variance in the results of the 2D ConvNet is large, which shows
that it may come up with very good solutions, but sometimes
also gets stuck in a local minimum. In contrary, the 2D SincNet
as well as 2D WCN converge always to very similar scores
due to the guidance of sinc filters and wavelets.
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TABLE VII: Accuracies (in %) and F1-scores (in %) under the
presence of a static 50 Hz interference

Model Accuracy F1-score
DSNet 88.3 (±2.7) 88.3 (±3.7)

RDCNet 95.5 (±0.6) 95.7 (±0.6)
2D ConvNet 93.2 (±4.2) 93.5 (±3.8)
2D SincNet 98.8 (±0.5) 99.5 (±0.5)
2D WCN 98.8 (±1.3) 98.9 (±1.3)

D. Fixed Disturbance
There exist disturbances depending on the application that

are known before and can therefore be included into the
training process. An example is a static 50 Hz interferer due
to the power grid when installing the radar into a ceiling light.
Thus, a 50 Hz sinusoidal signal with −12 dB with respect
to the maximum detectable signal power of the sensor was
added to the dataset. The networks are then re-trained using
the modified dataset.

In Tab. VII the final accuracies and F1-scores are shown.
The models using pre-processing are only slightly effected by
the disturbance. Since the 50 Hz interference is almost static
within a chirp, its influence is almost completely removed
when subtracting the mean of the signal before calculating
the STFT. The architectures operating directly on the raw
ADC data have to learn to suppress the disturbing frequency.
The results show, that the constrained networks, namely 2D
WCN and 2D SincNet, perform better in suppressing the
disturbance. In Fig. 14 the adaption of the sinc filters and
wavelets respectively to suppress the 50 Hz interference, which
corresponds to a velocity of 0.25 m s−1, are depicted. The
learned filters of the unconstrained 2D ConvNet still do not
provide any physical interpretability.
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Fig. 14: Cumulative gain of learned (a) 2D sinc filters, (b) 2D
wavelets and (c) unconstrained filters under the presence of a
static 50 Hz interference.

E. Discussion

The limitation of the state-of-art approaches has its origin
in pre-processing. The STFT for generating the RDMs equally
discretizes the range as well as velocity domain. However, both
activities ”idle” and ”working” contain very slight movements.
As a result their features share similar range-Doppler bins and
thus the STFT processed data of those actions is very similar.
This complicates a classification. However, due to the ability
of learning filters, the 2D WCN as well as the 2D SincNet is
able to mitigate this limitation by adapting the parameter of
its filters accordingly in order to clearly separate features of
similar actions. Furthermore, the lack of range information
gets noticeable when predicting classes based on Doppler
spectrograms. The missing range information is expected to
have an even higher impact when analyzing activities of
multiple humans simultaneously.

The 2D ConvNet is not limited by using preprocessed data.
Therefore, in theory 2D ConvNet can potentially achieve the
same accuracy, though not guaranteed, as SincNet and WCN
by increasing the training effort. The underlying issue for this
is the fact that the learned sinc filters as well as wavelets
are within the search space of the unconstrained convolutional
layer. However, as the number of parameter is significant
higher than the number of parameters of the proposed net-
works, the learning speed is decreased and more training sam-
ples are required to learn the extraction of meaningful features
from the raw data. This was shown in the experiments with
limited amount of training data. The 2D ConvNet achieves
significant lower F1-scores as the 2D SincNet and 2D WCN
and does not always converge to the same result, but shows
high variance in training.

In signal processing static interferences can easily canceled
out. That is why the approaches using pre-processing where
only slightly influenced by the 50 Hz interferer. However,
when the raw ADC data is directly fed into the neural network,
the mitigation has to be learned during training. Due to the
guidance of pre-defined filters, the proposed 2D SincNet and
2D WCN show a faster convergence and better mitigation of
the interferer than the unconstrained counterpart network 2D
ConvNet.

Using a predefined set of filters such as the proposed sinc
filters or wavelets makes the outcome of the convolutional
layer physically interpretable, which helps understanding the
system. Moreover, due to filter learning application dependent
meaningful range Doppler areas are focused.

VII. CONCLUSION

Human activity classification has several applications in
surveillance, human-computer interfaces and smart home ap-
plications. We present an activity classifier based on para-
metric DCNN using 2D sinc filter kernels or 2D wavelet
filter kernels that can seamlessly detect and classify human
activities directly using raw ADC radar data. We demonstrated
the performance of the proposed DCNN in comparison to con-
ventional DCNNs that use Doppler spectrograms or radar data
cubes as input data and demonstrated the proposed solution
offers better classification accuracy. While the pre-processing
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steps in the latter processing are fixed, the parametric DCNN
is able to learn filter parameters specific to the activity classifi-
cation task. Further, the filter parameters can adapt to suppress
fixed disturbances in the signal. Additionally, we demonstrate
that, due to guidance by the parametric filters, the proposed
networks perform better for low number of training samples
than the unconstrained DCNN. Our experiments show, that
the conventional un-parametric DCNN is unable to mimic the
pre-processing operations due to the large search space and
thus is not suitable for a robust solution. As future work, we
aim to extend the proposed DCNN to simultaneously classify
multiple activities from multiple targets in the field of view.
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