
P
os
te
d
on

21
O
ct

20
20

—
C
C
-B

Y
-N

C
-S
A

4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
31
0
83
13
.v
1
—

T
h
is

is
a
p
re
p
ri
n
t.

V
er
si
on

of
R
ec
or
d
av
ai
la
b
le

at
h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
16
/j
.c
os
e.
20
20
.1
02
12
4

Continuous Auditing & Threat Detection in Multi-Cloud

Infrastructure

Kennedy Torkura 1, Muhammad I.H. Sukmana 2, Feng Cheng 2, and Christoph Meinel 2

1Hasso Plattner Institute
2Affiliation not available

October 30, 2023

Abstract

Efficient change control and configuration management is imperative for addressing the emerging

security threats in cloud infrastructure. These threats majorly exploit misconfiguration vulnerabilities

e.g. excessive permissions, disabled logging features and publicly accessible cloud storage buckets.

Traditional security tools and mechanisms are unable to effectively and continuously track changes in

cloud infrastructure owing to transience and unpredictability of cloud events. Therefore, novel tools

that are proactive, agile and continuous are imperative. This paper proposes CSBAuditor, a novel cloud

security system that continuously monitors cloud infrastructure, to detect malicious activities and

unauthorized changes. CSBAuditor leverages two concepts: state transition analysis and reconciler

pattern to overcome the aforementioned security issues. Furthermore, security metrics are used to

compute severity scores for detected vulnerabilities using a novel scoring system: Cloud Security

Scoring System. CSBAuditor has been evaluated using various strategies including security chaos

engineering fault injection strategies on Amazon Web Services (AWS) and Google Cloud Platform

(GCP). CSBAuditor effectively detects misconfigurations in real-time with a detection rate of over

98%. Also, the performance overhead is within acceptable limits.
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ABSTRACT
Efficient change control and configuration management is imperative for addressing the emerging
security threats in cloud infrastructure. These threats majorly exploit misconfiguration vulnerabilities
e.g. excessive permissions, disabled logging features and publicly accessible cloud storage buckets.
Traditional security tools and mechanisms are unable to effectively and continuously track changes in
cloud infrastructure owing to transience and unpredictability of cloud events. Therefore, novel tools
that are proactive, agile and continuous are imperative. This paper proposesCSBAuditor, a novel cloud
security system that continuously monitors cloud infrastructure, to detect malicious activities and
unauthorized changes. CSBAuditor leverages two concepts: state transition analysis and reconciler
pattern to overcome the aforementioned security issues. Furthermore, security metrics are used to
compute severity scores for detected vulnerabilities using a novel scoring system: Cloud Security
Scoring System. CSBAuditor has been evaluated using various strategies including security chaos
engineering fault injection strategies on Amazon Web Services (AWS) and Google Cloud Platform
(GCP). CSBAuditor effectively detects misconfigurations in real-time with a detection rate of over
98%. Also, the performance overhead is within acceptable limits.

1. Introduction
In recent years, cyber-attacks against cloud infrastruc-

ture have increased resulting in massive data breaches that
cost billions of dollars and exposedmillions of sensitive doc-
uments [61, 58, 12]. Most of these attacks are caused by cus-
tomer misconfigured cloud resources e.g. over-privileged
users, publicly exposed databases, and lack of audit logging
[34]. Consequently, the Cloud Security Alliance (CSA)’s
Top Cloud Computing Threats 2019 report [12] identified
data breaches due tomisconfiguration and inadequate change
control as the most severe cloud security threats. Similarly,
the Ponemon Institute’s Data Breach Report 2019, asserts
that 49% of breaches are caused by system glitches and hu-
man errors [23]. Over the years, the CSPs have improved
the security of the underlying cloud infrastructure, hence
attacks at this layer of abstraction are no longer common.
However, the upper layer of cloud infrastructure, which cus-
tomers are responsible for securing has increasingly become
vulnerable to attacks due to misconfigurations and human
errors. According to Gartner, until 2025, 99% of cloud fail-
ures will be directly caused by customer errors. This further
highlights the importance of cloud security mechanisms that
focus on addressing human errors and are customer-centric.
Suchmechanisms should be designed to aid cloud customers
in identifying and fulfilling designated security responsibil-
ities efficiently. Important features for such mechanisms in-
clude secure configuration of cloud resources during orches-
tration and subsequently enforce Security-Focused Configu-
ration Management (SecCM) processes via continuous au-
diting and monitoring [28, 9]. Other important features in-
clude automated incident response and cloud resource track-
ing.

Existing SecCMprocesses [28] are not sufficient for tack-
kennedy.torkura@hpi.de (K. Torkura)

ORCID(s): 0000-0001-8967-1035 (K. Torkura)

ling the contemporary cloud infrastructure challenges. Tra-
ditional mechanisms functioned in environments with well
established protocols for creating and modifying resources,
which normally took days for careful reviews and approvals.
However, cloud infrastructure is abstracted by software and
due to increasing market demands, contemporary practices
e.g. DevOps [33, 16] facilitates agile processes where in-
frastructure is launched into production environments within
seconds. In these scenarios, the traditional orchestrating pro-
cesses are bypassed and the lifespan of infrastructure is highly
unpredictable. Due to these factors, traditional inventory and
auditing mechanisms struggle to keep track of infrastructure
changes [62].

Several cloud-specific mechanisms have been proposed
to overcome the aforementioned challenges, however, most
of these focus on cloud compute and networks [13]. Other
cloud services e.g Cloud Storage Services (CSS) and Iden-
tity andAccessManagement (IAM) are lack efficient SecCM
techniques and the specif requirements for ensuring this dif-
fers. For example, Cloud compute and networks leverage
security control e.g. firewalls and Intrusion Detection Sys-
tems (IDS) [52] to enforce detective and preventive secu-
rity controls, however, these security controls are ineffec-
tive for protecting some cloud services e.g. cloud storage
and IAM. Therefore, novel security mechanisms are imper-
ative to tackle these open security challenges. A promis-
ing cloud security system recently proposed by Gartner to
address these issues is the Cloud Security Posture Manage-
ment (CSPM) [34].

Therefore we propose CSBAuditor, a novel cloud secu-
rity system that continuously monitors and audits cloud in-
frastructure, to detect misconfigurations, malicious activities
and unauthorized changes. CSBAuditor leverages two con-
cepts to achieve these objectives: the reconciler pattern and
state transition analysis. The reconciler pattern [32] enables
tracking of cloud resources using expected-state and cloud-
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state. The expected-state reflects the state at orchestration
time, while the cloud-state refer to the state at anytime af-
ter resource orchestration. The reconciler pattern employs
a Reconciliation Loop to ensure that the cloud-state remains
the same with the expected-state. However, in order to in-
troduce investigative capabilities i.e. how to determine what
changed between the two or more states, we employ the State
Transition Analysis [22]. The ability to detect and analyze
each specific change enables threat detection capabilities,
given unauthorized changes could be Indicator of Compro-
mise (IoC). Combining these two strategies efficiently tack-
les security misconfiguration challenges, configuration drift
[7] and detects threats thereby resulting to a robust cloud se-
curity model.

Furthermore, securitymetrics are used to compute sever-
ity scores for detected vulnerabilities using a novel scoring
system: Cloud Security Scoring System (CSSS). This sever-
ity scoring system, therefore, helps in risk management e.g.
risk prioritization. Ultimately, CSBAuditor is a CSPM, since
it fulfills all the requirements for CSPM as proposed byGart-
ner [34] and CSA [39].

Contributions Initial results on CSBAuditor were pre-
sented in our earlier paper [57]. The focus was proactive
security risk analysis techniques to Cloud Storage Broker
(CSB) using CloudRAID [8, 49, 51] as a reference architec-
ture. In this article, we have extended our initial concepts in
several ways including:

• Implement and evaluate novel techniques for continu-
ously auditing andmonitoring security threats inmulti-
cloud cloud infrastructure.

• Propose innovative techniques for implementing SecCM
for cloud resources using state transition analysis and
reconciler pattern. The affords several advantages in-
cluding efficient change control management, config-
uration drift control, threat detection and reconciler
pattern.

• We propose CSSS, a risk model that leverages em-
ploys the CommonVulnerability Scoring System (CVSS),
to score the severity of configuration vulnerabilities.
CSSS is useful for unifying the risk assessmentmethod-
ologies between several cloud services e.g. cloud com-
pute and cloud storage.

The rest of this paper is structured as follows, a concise
illustration of the problems tackled in this paper is outlined
using a running example, in Section 2, followed by discus-
sion on the design choices for CSBAuditor in Section 3. In
Section 4, we provide implementation details of CSBAudi-
tor, and evaluate its performance in Section 5. Related works
are presented in Section 6 and the article’s conclusion in Sec-
tion 7, while a brief outline of future works is presented in
Section 8.

2. Background and Problem Statement
In this section, we provide background information on

the complexities of employing SecCM in cloud infrastruc-

ture. A representative running example is presented to clearly
depict the challenges introduced by mis-configuration vul-
nerabilities in the cloud. Thereafter, the challenges of ap-
plying risk analysis to the cloud are discussed.

Figure 1: Running Example- an illustration of the Capital One
Data Breach [36]

2.1. Running Example - The Capital One Data
Breach

To provide a concrete illustration of the contemporary
cloud security issues, we present a realistic running exam-
ple based on the Capital One data breach [36, 40]. We used
this running example for a related article [55] and we have
decided to reuse it here since the topics are interrelated. The
running example depicts the cyber-attacks against Capital
One’s AWS infrastructure between April - July 2019. Capi-
tal One became aware of the attack in July 2019 when an in-
dependent security researcher alerted them as part of an on-
going bug bounty program. Figure 1 is an illustration of the
attack scenario. The initial entry point (EP01) was amiscon-
figured reverse proxy, that the attacker identified and lever-
aged to gain access to an Elastic Computing Cloud (EC2)
VM (Step 1), where the reverse proxy server was hosted.
Having gained an initial foothold, the attacker executed a
Server-Side Request Forgery (SSRF) attack against themeta-
data server (Step 2), to obtain valid and extensive permis-
sions. The metadata server, in turn, requested permissions
from the IAM service, as defined in the profile access control
policy (Step 3). These permissions were overly permissive
(EP02), granting access to the entire Simple Storage Ser-
vice (S3). Essentially, the VM (including any user inherit-
ing the permissions scoped within the VM) can make root-
level requests against all S3 assets including storage buckets
and objects, bucket policies, bucket ACLs, S3 static hosted
websites and S3 metadata. The attacker successfully inher-
its these privileges (Step 4), by taking control of the VM.
Thereafter, the attacker gains access to several critical infor-
mation from the S3 buckets (Step 5) e.g. customers’ email
addresses, social security numbers and credit card informa-
tion (EP03). The attacker successfully exfiltrated data out
of the AWS environment, completely unnoticed, leading to
a massive data breach that cost Capital One over In the above
scenario, we notice several security issues due to misconfig-
ured cloud assets and ought to be prevented by implementing
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Figure 2: CSBAuditor Process Workflow

security controls. This security lapses thereby exposed three
entry points EP:

• EP01: Misconfigured reverse proxy
• EP02: Over-privileged profile policy, that does not

satisfy the principle of least privilege

• EP03: Massive ex-filtration of sensitive data from the
S3 bucket without triggering alarms.

2.2. Risk Analysis Challenges - Cloud Perspective
The Shared Security Responsibility Model (SSRM) is a

popular security model employed by public CSPs [24, 6].
It clearly defines security responsibilities for cloud stake-
holders. The ability to detect and mitigate the attacks high-
lighted in the previous subsection is the responsibility of
cloud users, however, most cloud users do not clearly un-
derstand these responsibilities, or lack the tools to imple-
ment commensurate technical and organizational measures.
Consequently, CSPs provide security services to aid cloud
users, however, these services are not completely efficient for
several reasons, hence the recurring security attacks against
cloud infrastructure. A typical example is the implementa-
tion of industry security standards and compliance regula-
tions for the cloud. Currently, the Centre for Internet Secu-
rity (CIS) benchmarks, which define best practices for ensur-
ing security for cloud infrastructure is well-adopted security
and compliance standard. However, there is a gap between
these high-level recommendations and commensurate low-
level implementation [35]. A typical example of this mis-
alignment is the lack of mapping of security metrics to the

CIS benchmarks. Most security metrics are measured based
on qualitative or quantitative metrics such as CVSS and are
useful for guiding security professional in making risk-based
decisions. Thus an implication of this lapse is challenged
in implementing risk assessment techniques for cloud as-
sets. Techniques like probabilistic attack graphs that rely
on CVSS base scores to derive probabilities are difficult to
implement. Risk assessment requires well-scored vulnera-
bility reports for decision making, however, results provided
by CSPs are either qualitative or are computed based on pro-
prietary methods.

3. CSBAuditor: Design and Threat Model
In this Section, we briefly discuss our design choices for

CSBAuditor including the development of secure baselines
and how the two core concepts are leveraged: reconciler pat-
tern and state transition analysis. Thereafter, a discussion
of the proposed CSSS is presented and then, a threat model
unique to our proposal is discussed. Figure 2 is a visualiza-
tion of CSBAuditor’s process flow.
3.1. Developing Secure Baseline Configuration

Secure baseline configuration are important especially
for cloud security as they provide a common denominator for
configuring cloud resources including access control poli-
cies and ACLs. Furthermore, employing secure baselines
enables efficient planning, and prevents errors and miscon-
figurations by aligning infrastructurewith recommended best
practices e.g the CIS cloud security benchmarks [26] [25].
We aim at providing tooling support for the process of ensur-
ing adherence to secure baselines by, this maps to phase one
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and two of the National Institute of Standards and Technol-
ogy (NIST) SecCM phases [28]. There are two categories of
policies to be employed:
3.1.1. Compliance Policies

These types of policies are designed to aid in complying
with one or more security best practices e.g. CSA cloud se-
curity guidelines [1], CIS cloud benchmarks e.g for GCP[26].
3.1.2. Enterprise Security Policies

These category of policies are those that are based on
enterprise security goals and internal policies. Examples
of these includes the access control regulations the various
teams e.g. Finance and Human Resources. Algorithm 1 im-
plements a check to detect buckets that are publicly exposed.
Rather than applying the best practices which recommend
for all buckets to be private, a custom check is initiated since
there serving public content e.g. pictures need to be public
to enable access.
3.2. Expected-State Initialization

ISO 27001 [27] recommends the implementation of ro-
bust asset management and change control mechanisms for
enterprise security. Such mechanisms are even more impor-
tant tackling security issues in cloud platforms due to the
rapid and often unpredictable changes the occur in the cloud.
Therefore, CSBAuditor’s employs an asset control technique
that is initiated by establishing an expected-state, which ide-
ally should be an integral part of the cloud resource orches-
tration system. This approach is based on Infrastructure-as-
Software (IaS), a cloud operating model that allows for effi-
cient manipulation of cloud resources [18, 15].

Figure 3: CSBAuditor Discovering Resources in an AWS Ac-
count

3.2.1. Initialization via Infrastructure-as-Software
According to Fitzgerald et.al [15], IaS is based on the

principle that all the data that defines a piece of infrastruc-

ture can be programmed in a language that allows it to be
versionable, repeatable and testable in a similar manner to
software code. IaS differs from Infrastructure-as-Code (IaC)
in three major ways: (1) programmers are able to manipulate
cloud resources using programming languages, rather than
Domain Specific Language (DSL). Therefore, already at-
tained programming skills are leveraged to increase produc-
tivity. (2) IaS does not require special handling approaches
for state management, established programming language
persistence layers can be used, on the other hand IaC re-
quires varying efforts to address state management. In or-
der to implement IaS, cloud APIs or programming language
SDKs are leveraged represent, deploy and manipulate cloud
resources. For example, we programmatically represent a
cloud bucket (for object storage) with a Bucket object, con-
sisting of the following attributes: bucketName, bucketId,
bucketPolicy and bucketProvider. The bucket object can there-
fore be used to create, modify and delete the bucket at run-
time, this same principle is applicable to every cloud re-
source. A key advantage of IaS is that cloud resources are
persisted in datastores as states [18], thus allowing for easy
retrieval, versioning etc.
3.2.2. Initialization via Cloud Resource Discovery

In a scenario where cloud resources are already deployed
on one or more cloud platforms, a discovery process is em-
ployed to enumerate all cloud resources, this are subsequently
adopted as the expected-state. The discovery process lever-
ages cloud APIs to acquire the full list of the resources al-
ready deployed in the cloud. During the discovery process
(as illustrated in Figure 3) CSBAuditor queries the cloud in-
frastructure for important information of the deployed re-
sources based on the already defined object using IaS paradigms.
This aids in subsequent analysis of the ensures that all re-
sources are securely, i.e. based on the policies established
in Section 3.1.2 above. This is achieved by preventing man-
ual creation of resources, rather an automated system is em-
ployed. For example, the principles of least privilege are
ensured so that access control policies assign privileges to
users based only as sufficient to perform their jobs. Details
or our strategy for unifying access control across CSPs is in
our previous paper [50].
3.2.3. Secure Baseline Enforcement

The last step of the expected-state initialization is the en-
forcement of secure baselines. This ensures that the cloud
resources are secure-by-default, by testing for misconfigura-
tions and other defined security policies before deployment
to the cloud. Security issues found are remediated for both
newly created resources and those already existing in the
cloud, and detected via the resource discovery.
3.3. Change Control Management

Secure ConfigurationController (SCC) is the control point
for cloud infrastructure orchestration and subsequent modi-
fication, it validates cloud resources change requests to en-
force the secure baselines earlier established in Section 3.1.
Due to the rapid changes that occur in the cloud, it is imper-
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Algorithm 1 CheckBucketPublic Algorithm
1: procedure CHKBUCKET-

PUB(bucketName, bucketP ublicRule)
2: Receive request to audit bucket
3: getBktPolicyCloud (bucketName) ⊳ get bucket policy

from the cloud-state
4: getBktPolicyExp (bucketName) ⊳ get bucket policy from

expected-state
5: if getBktP olicyCloud.equals getBktP olicyExpect

then ⊳ reconciler pattern
6: getRiskScore (bucketPublicRule) ⊳ no changes

detected
7: else
8: getRiskScore (bucketPublicRule) ⊳ compute risk

score
9: recoverBktPolicy (bucketName) ⊳ recover the bucket

policy to its original state
10: sendAlert ⊳ send alert to admin
11: end if
12: end procedure

ative to deploy a control mechanism that leverages automa-
tion, hence the need for the SCC. The SCC leverages the
following mechanisms to perform its functions :

• Access control systems are employed to regulate who
is authorized to propose configuration changes. This
helps in ensuring only those with the right privileges
are allowed to make changes.

• Security tests are employed for validating infrastruc-
ture by leveraging IaS to ensure adherence to secu-
rity and compliance policies as suggested by Fitzger-
ald et.al [15]. IaS use programmatic constructs to ma-
nipulate cloud resources at run-time. .

• Security Chaos Engineering (SCE) [53, 55] techniques
are employed to validate that the changes do not intro-
duce vulnerabilities to the cloud infrastructure. This
could be done either in the development or production
environment.

3.4. Continuous Security Monitoring and Auditing
Cloud infrastructure is constantly evolving due to changes

required for the delivery of goods and services. Consequently,
the rapid rate of change increases the complexity of manag-
ing and securing cloud infrastructure. Furthermore, some
changes could have malicious intent, such changes could be
initiated by attackers and therefore if detected early become
crucial IoC. Therefore, continuous monitoring and auditing
strategies are is imperative to detect IoC [10]. We achieve
this by continuously inspecting cloud resource, including their
respective configuration to detect deviations from the secure
baselines. This process also aids in providing security visi-
bility to the state of the cloud infrastructure. We leveraged
the reconciler pattern to implement our continuous security
monitoring and auditing strategy:

Reconciler Pattern: The Reconciler Pattern is a soft-
ware pattern that provides programmingmodels for efficiently

Figure 4: A Comparison of traditional Auditing Processes ver-
sus Continuous Auditing

managing cloud-native systems. The Reconciler pattern is
employed in several cloud-native system e.g. Kubernetes
[17] and Terraform [21]. At the core of the Reconciler Pat-
tern is the notion that every resource consists of two states
at time - to,

• Desired State: Which is also known as the expected-
state, refers to the ideal state in which the resource is
expected to be at to .

• Actual State: This is real world situation of the re-
source, how it is currently seen. In this paper, we re-
fer to this as the cloud-state, since we are dealing with
cloud infrastructure.

The reconciler pattern strives to detect whenever the cloud-
state drifts from the expected-state by employing the Recon-
ciliation Loop, to continuously compare the two states to de-
tect and reconcile detected differences. The recruiter pattern
achieves the reconciliation tasks by using four main func-
tions: getExpected(), getActual(), create() and destroy() .
3.5. Threat Detection

A limitation of the reconciler pattern is the lack of meth-
ods for tracking the reasons for detected changes or failures.
This is a critical requirement for security assurance, the knowl-
edge of what went wrong? is critical for employing detec-
tive and preventive counter-measures. Essentially, config-
uration changes e.g. disablement of logging, might indi-
cate an on-going attack. Hence, investigative capabilities
are imperative to augment the reconciler pattern. In tradi-
tional systems, the logging mechanisms might be analyzed
in real-time to detect malicious activities. However, logs are
not available in real-time in public cloud systems. Log de-
livery takes about 20 minutes on AWS, and over 90 min-
utes on GCP. Therefore it is imperative to evolve techniques
that breach this window of of opportunity frommalicious ac-
tions. We address the afore-mentioned lapses with a novel
adaptation of the reconciler pattern to automatically track the
root causes of configuration drift and secure baseline viola-
tions. Figure 6 illustrated our adaptation, which leverages
state transition analysis.

State Transition Analysis: State transition analysis is
an analytical model for detecting and representing malicious
events in computer systems [22]. Malicious events are mod-
eled as the transition of states from a secure state (good) So,the already established expected-state to an unknown state, a
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Figure 5: Reconciler Pattern showing its four methods: get-
Expected(), getActual(), reconcile() and delete()

Figure 6: The Reconciler Pattern enhanced with the State
Transition Analysis to real-time threat detection.

Figure 7: State Transition Analysis

state that (1) deviates from the expected-state (2) is not val-
idated at the SCC. As illustrated in Figure 7, an unknown
state can vary from S1 to Sn. Within this range, each subse-
quent state represents a compromised state which might be
due to misconfigurations or malicious action (attackers) e.g.
change of an AWS access policies to escalate privileges, cre-
ation of new resources without the authorization of the SCC.
To achieve this, CSBAuditor leverages the API of CSPs e.g.
GCP to continually acquire the exact state of the cloud re-
sources (cloud-state). Thereafter, the expected-state is rec-
onciled with the cloud-state by comparing and detecting dif-
ferences. CSBAuditor uses its Scheduler to make calls for
these operations every 3 minutes. Figure 8 is alert generated
due to a misconfigured AWS S3 bucket. The alert contains
enough information to provide a security operator insights
about the detected misconfiguration e,g, the name of the af-
fected cloud resource (resourceName on Line 5 of Figure 8).
3.6. Cloud Assets Recovery

When combined with the reconciler pattern above (Sec-
tion 3.4), CSBAuditor is able to investigate the exact changes
between So and any state between S1 and Sn. Furthermore,
expected-states can be recovered by re-deploying the affected
assets, from original definitions contained in the expected-
state. The asset recovery can either occur automatically or

an alert can be sent to a human operator to manually inspect
and make a decision, these form the two operational modes
of CSBAuditor (automatic and admin). In the case where the
human operator decides approves the prefers the version of
the cloud resources in the cloud (cloud-state), a synchroniza-
tion operation is triggered, and the cloud-state is adopted as
the expected-state. In this case, the cloud-state is retrieved
and persisted in the database and the SCC is notified.
3.7. Report and Alert Generation

Alerts are generated at the end of each rule execution.
The alerts contain important information for understanding
the events leading to the security event including description
of the executed rule, security event finding, affected cloud
resource and severity score of the security finding, which is
based on the (CSSS). Hence the alerts provide high value for
incident response and forensic investigation. The generation
of the alert is based on a constructed Alert object, the nec-
essary information directly extracted from the rule and the
algorithm. For example, in Figure 8 an alert about a miscon-
figured AWS S3 object has been constructed. The alerts are
also presented on a dashboard as visualized on Figure 11.
3.8. Cloud Security Scoring System

Risk assessment is a critical aspect of organizational se-
curity since it provides the basis for quantifying security and
also making critical decisions e.g. security impact analysis
[28]. Consequently, the outcome of the continuous audit-
ing and monitoring operations discussed in Section 3.4 are
not expressed in binary categories e.g. secure/insecure or
true/false as done in similar systems. Instead, fine grained
security risk metrics are computed for these detected secu-
rity events. The security metrics are computed for every vio-
lation alert using the CVSS, one of the most popular security
metrics standard. Table 1 contains some of the rules CS-
BAuditor’s Rules Engine (Section 4.4). The details of the
methodology for calculating the CVSS scores is described
below:
3.8.1. CVSS

We extended our previous works on threat modeling and
proactive risk analysis for cloud infrastructure, where we
used the CVSS version 2 to score vulnerabilities in cloud in-
frastructure [57, 56]. The CVSS metrics are expressed using
with base scores, which are numeric representations of risks,
assessed in terms of severity [37, 48]. The base scores are
computed using the Impact (Eqn 2) and Exploitability (Eqn
3) metrics, as expressed in Eqn 1. We have used our ex-
pert knowledge to compute these metrics, comparing them
with similar vulnerabilities and following the guidelines in
the CVSS manuals [37, 48].
3.8.2. Deriving Security Metrics with CVSS

Let us consider how to compute security severity us-
ing the CVSS for three representative cloud attacks: Cloud
Storage Enumeration Attack, Cloud Storage Exploitation At-
tack[57, 56, 9] and Credential Report Abuse.
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BaseScore = round_to_1_decimal(((0.6 ∗ Impact) + (0.4 ∗ Exploitability)λ1.5) ∗ f (Impact)) (1)

Impact = 10.41 ∗ (1 − (1 − ConfImpact) ∗ (1 − IntegImpact) ∗ (1 − AvailImpact)) (2)

Exploitability = 20 ∗ AccessV ector ∗ AccessComplexity ∗ Autℎentication (3)

Table 1
Some of the rules available in the rules engine with
corresponding RuleType, CSSM! (CSSM!) scores and a brief description

RuleId RuleName RuleType CSSM Scores Description

SAR01 check_public_bucket storage_auditor 7.2
checks if the bucket’s ACLs are

set to PRIVATE

SAR02 check_public_objects storage_auditor 6.5
check if the ACLs of objects in a bucket

are set to PRIVATE
SAR03 check_missing_buckets storage_auditor 6.4 checks if there are missing buckets
SAR04 check_unknown_bucket storage_auditor 4.0 checks if there are buckets existing without approval

SAR05 check_bucket_logging_enabled storage_auditor 5.0
checks if the feature for logging all activities

against bucket is enabled

SAR06 check_bucket_permissions storage_auditor 4.0
check that the policies attached to bucket

conform with to the secure baseline

IAR01 check_missing_user iam_auditor 3.0
check if the users accounts approved are

deployed in the cloud
IARO2 check_unknown_user iam_auditor 5.0 check is a user account exists without authorization

IAR03 check_missing_role iam_auditor 7.0
checks if the roles approved are all

available

IAR04 check_unknown_role iam_auditor 6.0
checks if roles available differ from

those approved

Figure 8: An Alert showing the result an executed rule involv-
ing a misconfigured AWS S3 Bucket

• Cloud Storage Enumeration Attack: This attack aims
at detecting misconfigured buckets for a selected tar-
get e.g. a company’s AWS S3 buckets that are publicly
accessible. The attacker leverages previous knowl-
edge about the target acquired via enumeration tech-
niques [14], to construct possible keywords that are
relevant to the target e.g. company name. These key-
words are then fed into the word-list generation tool

such asMentalist 1, to generate a list of possible word
combinations which can be used to construct AWS
S3 bucket names for the company. Thereafter, the
generated word-list is fed to Bucketfinder 2, a cloud
exploitation tool, which conducts the attack. Buck-
etfinder uses the generated word-list to construct and
probe AWS S3 URLs using HTTP GET requests, re-
sponses with code 200 are publicly accessible. Equa-
tions 1 - 3 are the equations used for computing the the
base scores for the CVSS. Due to space limitations,
some details of the equations are omitted e.g. static
values for the AccessVector, AccessComplexity, Au-
thentication, ConfImpact, IntegImpact andAvailImpact.
These values are available at various resources such as
the CVSS Implementation Guide [37]. However, for
theCloud Storage Enumeration Attack described here,
we assign Network for the AttackVector metric since
the attack can be executed over the internet. Sim-
ilarly, the AccessComplexity is assigned Low given
that attackers can execute this attack with tools avail-
able in the wild e.g Metasploit and on several GitHub
repositories. The Authentication metric is set toNone,

1https://github.com/sc0tfree/mentalist
2https://digi.ninja/projects/bucket finder.php
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Figure 9: Sequence Diagram Showing An Automated WorkFlow Where Several
CSBAuditor Rules are Executed e.g. SAR03 & SAR04 (Table 1)

because no authentication is required for the attack.
For the Impact metrics, IntegImpact, ConfImpact and
AvailImpact is set to Partial since there is a possibil-
ity of either acquiring materials encrypted in buck-
ets/objects with properly configured Access Control
List (ACL). Based on these metrics (AV ∶ N∕AC ∶
L∕Au ∶ N∕C ∶ P∕I ∶ P∕A ∶ P ) 3 we derive 7.5, as
the base score. The Cloud Storage Enumeration At-
tack is comparable to brute force password guessing
attacks e.g. CVE-2012-3137 4.

• Cloud Storage Exploitation Attack:TheCloud Storage
Enumeration Attack leverages the previous attack as
a staging step. The actual attacks against misconfig-
ured buckets are conducted during this attack by em-
ploying cloud exploitation tools e.g. Bucketfinder. To
compute the severity scores, we assign Network to the
AttackVector metric, since the buckets are reachable
via the internet. The AccessComplexity is assigned
Low, while the Authentication metric is set to None,
given there is no authentication mechanism protecting
the bucket. The Impact metrics is more severe given
the previous attack informs the attacker of buckets that
are publicly accessible. Thus, the IntegImpact, Con-
fImpact and AvailImpact are set toComplete. We thus
have the basemetrics as (AV:N/AC:L/Au:N/C:C/I:C/A:C),
and arrive at a score of 10.0. The score is reasonable
considering it affords an attacker full access to AWS
S3 bucket.

• Credential Report Abuse:AWS IAMprovides creden-
3this is a vector string representation of all computed metrics for a vul-

nerability
4https://nvd.nist.gov/vuln/detail/CVE-2012-3137

tial reports [5] to support auditing of account users.
The credential report can be generated by users with
at least the GenerateCredentialReport permission.
Due to the subtlety of this permission, it is common
to have it assigned to users who do not require it e.g.
together with other credentials or erroneously. Hence,
an attacker who gains access to valid AWS credentials
could easily request AWS IAM for the credential re-
port of an account, thereby gaining insights into the
details of the users provisioned in that account includ-
ing user_creation_time, password_enabled and
mfa_active. The credential report can be queried di-
rectly using the AWS CLI, SDK or attack tools like
the Rhino Security Pacu Post Exploitation tool [43].
We assign scores to this attack using the CVSS sim-
ilar to the previous attacks, since the attacks is con-
ducted over the internet, Network is assigned to the
AttackVector metric. The AccessComplexity is Low,
while the Authentication metric is set to Partial, due
to the requirement for valid permissions. For the Im-
pact metrics, the ConfImpact is assigned partial, since
the attacker has some amount of visibility to the other
users in the account. However the IntegImpact and
AvailImpact are set toNone, in this case as the attacker
has only read access. Therefore, the computed base
metrics representation is (AV:N/AC:L/Au:S/C:P/I:N/A:N),
with a score of 4.0.

3.9. Example Scenario - Bucket Audit
We present a simplified example of a bucket audit op-

eration (illustrated in Figure 9). The audit operation exe-
cutes two rules (SAR03 and SAR04) against an AWS envi-
ronment. The auto flag set to true in the triggering func-
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Figure 10: High Level Architecture of CSBAuditor

tion - diffBuckets(currentDate, Report, true). The true
flag implies necessary action can be automatically taken to
remediate detected security misconfigurations based on con-
ditions and corresponding actions defined in the rules. An
important aspect of the audit is the report generation, hence
the triggering function takes a Report object as an argument.
Furthermore, as earlier introduced in Section 3.4, the rec-
onciler pattern (Figure 5) is employed as a core aspect of
CSBAuditor. Therefore, the expected-state and cloud-state
are collected, and the reconciliation process is conducted.
This process involves comparing the buckets existing in the
cloud with the representation of the buckets retained in the
expected-state (see comment in sequence diagram - check
for each cloud bucket if it is in the database). Three possible
outcomes emerge from the reconciliation process:

• No change: If the expected-state is the same as the
cloud-state then no action is taken, a report is gener-
ated and the audit ends.

• Unknown Buckets: The unknown bucket scenario a
condition where there are buckets in the cloud-state
that do not exist in the expected-state. Here, the func-
tion solveUnknownBucket reconciles the situation us-
ing the reconciler pattern’s (reconcile()) method. Next,
the CleanBucket() function is activated to delete the
unknown buckets including the objects in the bucket,
this is in accordance with the delete method of the
reconciler pattern.

• MissingBucket: The last possibility is a situationwhere
one or more buckets originally deployed to cloud are
no longer found which could be due to intentional or
mistaken deletion. This is detected and reconciled by
rule SAR03, implemented by solveMissingBucket()

function. The rule works by acquiring the appropriate
bucket information from the expected-state, creating
the bucket using and redeploying it in the cloud. These
actions are in accordance with the reconciler pattern’s
reconcile() method.

One point to note is that the execution procedure CS-
BAuditor rules (e.g. those employed for the above bucket
audits) are the same for both AWS and GCP. However some
low level implementation details differ per provider due to
the unique Cloud Service Provider (CSP) APIs and archi-
tecture. More details about CSBAuditor implementation is
provided in Section 4.
3.10. Threat Model

We assume CSPs may have implementation flaws, mis-
configurations and vulnerabilities which are potentially ex-
ploitable by malicious entities to violate security properties
specified by enterprise cloud administrators. Furthermore,
we also assume that cloud users, and cloud operators, are po-
tentially malicious. However, we assume that the CSP may
be trusted for the integrity of the audit data (e.g., access poli-
cies and IAM policies) collected through API calls. Never-
theless, CSBAuditor will detect violations of specified secu-
rity properties e.g. unauthorized bucket policy alterations,
user, policy, role or group creation/detection/modification.

4. Implementation
This Section outlines the implementation details of CS-

BAuditor. All components of CSBAuditor are implemented
in Java programming language. The Java Software Devel-
opment Kit (SDK) for AWS & GCP were leveraged to sup-
port cloud infrastructure integration. The architecture of CS-
BAuditor is shown in Figure 10.
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Figure 11: CSBAuditor Dashboard Showing the expected-state, cloud-state
and summary of alerts according to severity and CSP

4.1. Overview of CSBAuditor Workflow
CSBAuditor enforces established secure baseline, earlier

described in Section 3.1 by leveraging a rule-based system.
The rules are divided into several RuleTypes and are pre-
assigned with CSSS scores. CSBAuditor can detect miscon-
figured cloud resources and automatically fix the issues or
notify a human administrator. Figure 9 is a sequence dia-
gram that shows the execution of several rules to check the
security posture of AWS S3 buckets. In step (1), the diff-
Buckets function triggers an auditing session, the expected-
state is pulled from database and to be used by the solve-
UnknownBucket function (Rule SAR 04 on Table 1) in step
(2). Next, the CleanBucket function deletes unknown buck-
ets found in the cloud-state, while the details of the findings
are added as violation alerts in step 4 (addAlerts(Alert)).
Similarly, step (5) is an audit of the expected-state, that uses
(Rule SAR 03 on Table 1) to detect buckets, not in the cloud.
An update of the expected state is enforced in step (7). This
rules implements the reconciler pattern earlier explained in
Section 3.4. The above procedure is also applied for Google
Cloud Storage (GCS) buckets, with slight implementation
details due to the differences in Java SDK.
4.2. State Manager

The StateManager initializes andmaintains the expected-
state by directly interfacing with the orchestration system of
the cloud infrastructure and the SCC (Section 3.3). The state
manager, therefore, works with the SCC to ensure effective
change control management. Resource creation, modifica-
tion after the initialization of the expected-state, is coordi-
nated with the State Manager. During expected-state initial-
ization, the assets already deployed in the cloud are discov-
ered and added to the expected-state. This process was ex-
plained in Section 3.2
4.3. Inspector

The Inspector implements the drift detection component
of based on the Reconciler pattern (described in Section 3.4).
This is ensured by continuously monitoring and auditing the

cloud infrastructure by retrieving the cloud-state and com-
paring it with the expected-state. Furthermore, the Inspector
implements the state transition analysis earlier described in
Section 3.4, to perform more fine-grained audit focused on
detecting the exact reason for cloud resource and configura-
tion drifts. Line 5 of Algorithm 1) illustrates this step. De-
tails of the rules are in Section 4.4. In auto-mode, anomalies
are automatically corrected (Line 9 of Algorithm 1), while
alerts are persisted in the database. In manual mode, alerts
are sent to the cloud infrastructure administrator for further
action. The Inspector also generates and persists alerts of
every scan, as described in Section 3.7.
4.4. Rules Engine

The Rules Engine contains rules that specify details of
audit checks. There are two categories of rules: compliance
rules, and enterprise security rules. The compliance rules
are derived from several cloud security best practice defini-
tions such as the CIS benchmarks for AWS [25] and GCP
[26] respectively. For example, in Algorithm 1, the bucket-
PublicRule ensures compliance of buckets by inspecting all
buckets in the cloud infrastructure to detect wrong config-
urations (public instead of private ACLs). The enterprise
security rules are custom rules that are specific to an enter-
prise, including security policies for enterprise governance.
These rules specify how to validate enterprise-specific se-
curity requirements e.g. how specific teams have access to
specific cloud resources to implement the principle-of least-
privilege. The rules are implemented specific to each CSP.
A typical example is the rule to check for public buckets. the
rule functions by inspecting the ACL attached to each re-
spective bucket. Listing 1 shows the ACL of a GCP bucket
that is public. In this case CSBAuditor reads the members
array, where the allUsers membership means the bucket is
public. However the implementation differs between AWS
and GCP. Similarly, rules different within the services that
constitute each CSP. The rules for IAM differ from those
for S3. Ultimately, each rule is unique. Furthermore, there
are various RuleTypes: storage_auditor and iam_auditor for
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cloud storage and IAM respectively.

1 {

2 "bindings":[

3 {

4 "members":[

5 "allAuthenticatedUsers",

6 "allUsers",

7 "alice.test@gmail.com"

8 ],

9 "role":"roles/storage.admin"

10 }

11 ],

12 "etag":"CAM="

13 }

Listing 1: A Mis-configured Bucket ACL on Google Cloud
Platfprm

4.5. Fixer
The Fixer has the responsibility of resolving misconfig-

ured assets to their expected-states. It receives a recover-
state request from the Inspector, together with the informa-
tion of the asset to be recovered e.g. Asset-Name, Asset-Id
and Asset-Tag. Based on this information, the Fixer retrieves
the expected-state of the asset and redeploys it. Essentially,
the fixer implements the reconcile() and delete()methods of
the reconciler pattern. The delete() method deletes the cloud
resources that differ from the expected-state. The Inspector
watches the cloud, detects the drift, get the name of the re-
source and hands it over to the fixer. The fixer then deletes
the resource and employs the reconcile methods to redeploy
the resource based on the expected-state.
4.6. Risk Analyzer

The algorithms for deriving the CSSS are implemented
by the Risk Analyzer. In order to support risk analysis, the
Risk Analyzer implements algorithms for deriving security
metrics from the alerts generated by the Inspector. These
security metrics are based on CVSS [48] and details of our
methodology was provided in Section 3.8. The appropri-
ate scores are already pre-computed and assigned for every
rule, an example of these is in Table 1. The CVSS equations
(equations 1 - 3) are employed for computing the base scores
in order to make the scoring compatible with CVSS as pro-
posed in Common Configuration Scoring System (CCSS)
scoring guidelines [47]. One advantage of employing the
CVSS is for reasons of generating probabilistic attack graphs
for threat modeling. Such models are useful when assessing
the risk of cloud infrastructure, across several services e.g.
VMs, IAM and S3 [56]. The Risk Analyzer retrieves ad-
ditional vulnerability information from public vulnerability
databases such as the HPI-VDB 5.
4.7. Multi-Cloud Connector

Themulti-cloud connector leverages the APIs of the sup-
ported CSPs for transmitting and receiving requests and re-

5https://www.hpi-vdb.de/vulndb/

sponses, therefore CSBAuditor employs an agent-less strat-
egy. However, appropriate access permissions are required
for the respective providers, READ permissions are sufficient
for retrieving the cloud-state, whileWRITE permissions are
required for automatically applying fixes to the cloud infras-
tructure (reconciliation process). Alternatively, alerts can be
sent to a human agent to manually trigger fixes. An impor-
tant aspect of the multi-cloud connector is the support for
extensibility. Since the objects representing cloud resources
are cloud agnostic, the major effort required for adding more
CSP is to add the respective cloud connector interface.

5. Evaluation
Experimental evaluations for CSBAuditor were conducted

using a multi-cloud test-bed comprising cloud resources de-
ployed on AWS and GCP. The multi-cloud environment
was structured like an enterprise cloud environment based
on guidelines provided in the AWS well architected frame-
work [42]. Furthermore, the security tests are drawn from
recommended guidelines available in the CSA cloud pen-
etration testing playbook [11]. These guidelines advocate
for cloud resources to be are organized into three categories:
IAM, cloud services and cloud applications. However, we
narrow our focus to IAM and cloud storage both are core
cloud services.
5.1. Experiment Setup

The aim of these experiments are to evaluate the perfor-
mance of CSBAuditor based on response times and latency
in both steady and transient states. These measurements are
useful for determining performance overhead. The test en-
vironment comprises 3 components:
5.1.1. Multi-Cloud Enterprise Environment

The multi-cloud enterprise environment consists of 50
user accounts, provisioned on AWS and GCP infrastructure
i.e. 25 per cloud. Each user account is properly configured
based on privilege separation and principle of least privilege.
5.1.2. CSBAuditor

CSBAuditor is deployed locally i.e. on a Windows 10
PC with the following configuration: Intel (R) Core (TM)
i5-5200U CPU, 2.20GHz processor, 8GB RAM and 1 TB
HDD. CSBAuditor executes all the tests from this environ-
ment, however, the application can be easily deployed on
cloud platforms.
5.1.3. Fault Injection Testing

In order to produce the workloads, for the transient state,
faults are generated to produce realistic, malicious events.
Hence, we leverage chaos engineering-style approach as pro-
posed in [45]. We have employed a tool developed in previ-
ous work: CloudStrike [53? ], which injects various levels
of faults to the test cloud environments (AWS and GCP).
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Figure 12: AWS S3 Response Time Distribution of Traces -Steady State

/

Figure 13: AWS S3 Response Time Distribution of Traces - Transient State

Figure 14: AWS S3 Response Time Distribution
of Traces -Steady State

Figure 15: AWS Response Time Distribution
of Traces - Transient State

5.2. Performance Evaluation - AWS Environment
Steady-State The first experiments was to evaluate the

performance time of CSBAuditor against the AWS environ-
ment. This analysis is critical since CSBAuditor employs an
agent-less approach, by leveraging the cloud provider APIs.
Distributed tracing [41] provides a detailed overview of re-
quests and responses, which is useful for understanding ap-
plication performance issues e.g. bottlenecks. Therefore, we
deployed AWS XRAY [4], an AWS service that offers this
feature. AWS XRay affords deep observability of interac-
tions between third party tools and AWS services, as well as
the interaction between AWS services. Hence AWS service
is very beneficial for evaluating the performance of down-
stream calls that trickle down into the AWS services we are
interested in analyzing: AWS S3 and AWS IAM. CSBAudi-
tor, especially as the AWS Java SDK is used for implemen-
tation. Two experiments were conducted in the steady-state
of the AWS environment. In this state, no workload was de-
ployed against the test environment. CSBAuditor was exe-
cuted to detect if there were changes to the state of the cloud
assets. CSBAuditor ran continuously for 2 hours, using a
scheduled cron job that sleeps for every 2 minutes, in be-
tween runs. AWS XRAY was configured to record all inter-
actions between CSBAuditor and the AWS services. There-
after, the results of the measurements are extracted and ana-
lyzed based on response times and latency measurements.

Transient State Essentially, it is imperative to evaluate
the performance of CSBAuditor using a target in transient
state. In order to translate the earlier introduced test envi-
ronment into a transient state, we employ security fault in-
jection techniques. By injecting security faults into the test
environment, several cloud assets are changed from secure
states to compromised states, similar to what a malicious
attacker would do. These is achieved by causing random
actions including creation, deletion and modification of re-

sources in the cloud test-bed. The fault injection is imple-
mented with CloudStrike, a tool we designed based on the
principles of chaos engineering [53, 55]. CloudStrike em-
ploys three chaos modes: LOW,MEDIUM and HIGH, cor-
responding to random alterations in magnitudes of 30 %, 60
% and 90 % respectively, for these experiments, we used the
MEDIUM chaos mode. We assume that CloudStrike has the
correct privileges to perform all the required actions by pro-
viding appropriate access to the cloud test-bed. Based on
this, CloudStrikemakesAPI calls to retrieve the deployed re-
sources and executes the security fault injection algorithms.
In the following subsections, the results of the experiments
for both the steady and transient states are described.
5.2.1. Response Time

The Response times is the time taken by CSBAuditor
to conduct audit checks, detect and remediate misconfigura-
tions. In the steady-state, the only the checks are conducted,
with neither misconfiguration detection nor fixing. The re-
sponse time, therefore, is the total time from the execution
of the first check to the last check against the cloud test-bed.
This procedure is executed continuously for 2 hours, then
the measurements from AWS XRAY collected. Figure 12,
which is based on 1000 traces captured, illustrates the re-
sponse time for the steady-state. The overall response time
is 350ms, about 90% of the requests were completed in 0.21
seconds, while the worst performance of about 5secs was ob-
served for about 2% of the requests. In comparison, to the
transient-state at the 50th percentile (Figure 13 ), requests
are completed in 0.88 secs, though it takes a longer time, it
is still performant. The mean response time was 14.63s, and
more detailed illustrations of performance for selected rules
is shown in Figures 11 and 12. The traces of the several
API calls for the iam_auditor ruletypes. The rule executes
3 API calls: ListGroupsForUser, ListAttachedUserPolicies

KA Torkura et al.: Preprint submitted to Elsevier Page 12 of 18



Continuous Auditing in Multi-Cloud

Figure 16: AWS IAM Latency -Steady State Figure 17: AWS S3 Latency Steady State - Transient State

Figure 18: The Attack Detection Rate of 100% based on 10
Different Attacks Instrumented against CSBAuditor

and GetPolicy, the total time taken is 29.93s. 13 shows the
response time distribution for the transient state
5.2.2. Latency

We used the Latency Distribution histogram to illustrate
the performance of the API calls against the AWS IAM ser-
vice. Based on the same number of traces above (1000). The
histogram in Figure 13 shows that 90 % of the requests are
completed in about 12 seconds.
5.2.3. Intrusion Detection Rate

The Intrusion Detection Rate (IDR) is used as a secu-
rity metric for measuring the performance of CSBAuditor.
The motivation for selecting the IDR is because the security
category of CSBAuditor (CSPM) serves several purposes
including detecting intrusions. In this case, intrusions are
slightly different network layer intrusions, which are nor-
mally the detected by IDS and firewalls. Here intrusions
are evidence of unauthorized changes to cloud resources and
their configurations e.g. cloud buckets and policies respec-
tively. This is especially relevant since traditional IDS are
not suitable for deployment for cloud storage and IAM. Hence
we IDR is a suitable metric evaluating the security perfor-
mance of CSPM systems like CSBAuditor. IDR is the ratio
of total number of true positives to the total number of in-
trusions [? ], expressed in Eqn (4). To compute the IDR,
the number of faults injected in the attack phase were noted.
Afterwards, this was compared with the Alerts generated per

IDR =
T otalNumberofT rueP ositives
T otalNumberofIntrusions

(4)

experiment to determine if there were either false positives
or false negatives. Initially, some false positives where de-
tected due to an error in the retrieval of the cloud-state. The
number of access control policies in the cloud were not com-
prehensively computed by the retrieval algorithm (getActu-
alState). The reason was that the AWS API enforces pag-
ination for IAM access control policies such that only the
first 100 policies are retrieved for a getPolicies() request. To
overcome this limitations, a pagination strategy provided by
the AWS SDKwas implemented to loop through all the poli-
cies in batches of 100, where 100 is the maximum number
of retrievable policies.
5.3. Evaluation with CloudGoat - Running

Example Scenario
To further evaluate CSBAuditor, we employed Cloud-

Goat [44], a vulnerable-by-design framework provided by
RhinoSecurityLabs. CloudGoat is recommended for cloud
security testing by the CSA since it provides realistic sce-
narios based on contemporary cloud attacks. We used the
cloud_breach_s3 scenario, which replicates the cyber-attacks
against Capital One’s AWS infrastructure that lead to a huge
data breach [36].
5.3.1. CloudGoat Deployment

The cloud_breach_s3 scenarion involves the following
cloud resources deployed using Terraform IaC templates: 1x
EC2 VM, 1x Nginx reverse proxy, 2x security groups, 1x S3
bucket, and 1x Role.
5.3.2. Attack Conduct

After the deployment, we manually conduct the attack
using the provided cheat-sheet and instructions. The attack
sequence, illustrated in Figure 1 is as follows:

• Step 1: The initial entry point is a misconfigured re-
verse proxy, which we and leveraged to gain access the
EC2 VM, where the reverse proxy server is hosted.

• Step 2: Next, a SSRF attack is launched against the
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metadata server (ip address is 169.254.169.254) using
the command in Listing 2. The command requests for
the Role assigned to the EC2 instance. Following the
response, the command in Listing 3 is issued with the
name of the Role appended ( cg-banking-WAF-Role-
cgidtvskgb6fy9).

1 curl -s http ://54.163.196.206/ latest/

2 meta -data/iam/security -credentials/

3 -H 'Host :169.254.169.254 '

Listing 2: Initial SSRF Request to get Role Assigned to the
EC2

1 curl -s http ://54.163.196.206/ latest/

2 meta -data/iam/security -credentials/

3 cg-banking -WAF -Role -cgidtvskgb6fy9

4 -H 'Host :169.254.169.254 '

Listing 3: Second SSRF Request with the Name of the Role
Appended

• Step 3: The metadata server forwards requests in List-
ing 3 to the AWS IAM, and receives the a Access Key
ID, Secret Access Secret and Session Token of the IAM
Role attached do the EC2 instance (Figure 19).
Based on these privileged credentials, we successfully
executed arbitrary commands from our local system
against theAWS environment using the locally installed
AWSCLI. The Role is scoped with full access to AWS
S3 resources. In this case, the policy grants read, write,
delete, and list access to the AWS S3 service. Conse-
quently, the access to S3 buckets is acquired, enabling
ex-filtration of sensitive documents e.g. customers’
email addresses, social security numbers and credit
card information. The documents can be easily down-
loaded to the local machine using the AWS CLI using
the command in Listing 4.

1 aws s3 sync s3://<bucket -name >

./<local -folder -name >

Listing 4: S3sync command for Exfiltrating Documents out
of the AWS Environment

• Step 5: This information is ex-filtrated out of the cloud
account, unhindered. Though the AWS Cloudtrail is
enabled, there is no active monitoring and assessment
of the events captured by Cloudtrail. Hence the at-
tacker’s activities through recorded are not detected.

5.3.3. CSBAuditor Counter-measures
CSBAuditor is launched against the cloud account to de-

tect andmitigate security issues. First, the initialization phase
(Section 3.2) during which all the cloud assets are enumer-
ated and an inventory of the cloud resources is established.
The next step is to evaluate the discovered resources for se-
curity issues. During this stage, CSBAuditor uses its rules

Figure 19: Access Key ID and Access Key Secret for EC2 Role

Figure 20: AWS S3 Bucket Policy with Least Privilege Con-
figuration

engine to check that the cloud resources comply with the
cloud security best practices and the enterprise security pol-
icy.

• Fix AWS S3 Level Permissions - Here CSBAuditor
runs several rules against the buckets using the Bucke-
tAuditor category of rules: (1)public_bucket to detect
if the bucket is publicly available, the bucket passes
since it is correct configured with the PRIVATE ACLs.
(2) bucket_logging to detect if the all API calls and
activities against the bucket are logged. The bucket
passes this audit check since the logging feature is en-
abled. BucketPolicy_check - this is to check if bucket
level permissions are configured. This ensures only
fine-grained permissions that are assigned to a specific
user or role are configured. The bucket fails this check
since there is no policy attached, meaning the permis-
sions are granted at the IAM level via Role. There-
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(a) Over-privileged EC2 Role Policy (b) Least Privileged EC2 Role Policy
Figure 21: Comparing Role Policies (a) Insecure and (b) Secure

Figure 22: Failure attempt of attacker to List S3 Buckets

fore, the bucket level policy in Figure 21a is configured
and attached to the bucket. The policy has to impor-
tant permission categories, the Allow (Line 11) and
the Deny (Line 24). Due to the Deny permission, the
S3:sync 6 command used for ex-filtrating documents
is no longer possible as shown in Figure 22.

• Fix IAMLevel Permissions - Next CSBAuditor launches
the UserAuditor rules, which audits the users, roles
and policies created in the AWS IAM service. Each
of these resources is audited against secure baselines
and enterprise policies e.g. ensuring the principle of
least privilege is enforced. The statements expressed
in the policies are checked, to identify privileges with
wide permissions. For example in Figure 21a,we ob-
serve that the Action statement on line 6, states "s3:*",
where the wildcard means every action is permitted
for the s3 service. Similarly, Line 7 has a wildcard
value for the resource signifying all buckets and ob-
jects can be reached. Consequently, these misconfig-
urations are remediated in the policy on Figure 21b.
Note only two actions are allowedGetObject & PutO-
bject, against a specific resource: Line 25 in Figure 20.
Due to this policy, the list buckets command aws s3 ls
fails, as shown in Figure 22.

5.4. Discussion
5.4.1. Continuous Auditing

In the above evaluation, we used the Capital One data
breach as a practical use-case to evaluate the efficiency of
CSBAuditor. CloudGoat deployed the replicated environ-
ment of the attack scenarios, and CSBAuditor was deployed
afterwards to detect the misconfigurations and mitigate the

6https://docs.aws.amazon.com/cli/latest/reference/s3/sync.html

security misconfigurations that lead to the data breach. This
was a reactive approach since the attack was orchestrated be-
fore the mitigation phase, however, in reality, CSBAuditor
would be already deployed before the commencement of the
attack, thereforemost the attackwould fail given that the pre-
conditions for the attack would be detected and resolved be-
forehand. However, mitigating these preconditions is a short
term effort since the attacker would attempt to find other en-
try points possibly based on the acquisition of other precon-
ditions e.g. AWS and GCP access Keys. Hence, it would
be desirable to follow the above measures with Incident Re-
sponse (IR), where the event logs are retrieved and analyzed,
Such an analysis will provide insights into the attacks paths
employed by the user e.g. IP addresses used, API keys. The
output of the information could be used proactively e.g. by
adding the IP address to a blacklist. We have demonstrated
some of these techniques in a Cloud IR system: SlingShot
[54]. CSBAuditor alerts are forwarded to SlingShot for IR.
These alerts are thereafter correlated with GCP Stackdriver
logs [19] and AWS CloudTrail [3] to provide more contex-
tual details, for accurate incident response.
5.4.2. Limitation of Reversibility

A limitation of our methodologies: reconciler pattern
and state transition analysis is inability to reverse changes
against some cloud resources. These resources include
databases, object storage. Essentially, advanced efforts are
required to achieve these since the actual content cannot rep-
resented in the expected-state using either IaC or IaS. Such
advancedmethods include redundancymethods such as back-
ups and versioning of databases and object storage to facili-
tate restoration. At the core of our reversibility is the fact that
an expected-state is created for every cloud resource. How-
ever, the expected-state is limited to configuration and meta-
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data of cloud resources. Therefore, more stricter control for
these resources is required e.g. stronger access control, en-
cryption of contents in cloud buckets. These strategies can
be enforced by the enterprise security polices introduced in
Section 3.1.2.
5.4.3. Evaluation Challenges

CSPM is a relatively new category of security tools and
there are very few implementation. Most CSPM are com-
mercial and proprietary therefore it is quite difficult to com-
pare these tools with CSBAuditor for evaluation reasons.
Similarly, traditional security tools like firewalls and IDS are
much easier to evaluate since their are public data sets avail-
able for conducting experiments. This is not the case also for
CSPM. These two major factors pose challenges for deeper
evaluation.

6. Related Work
This article is related to cloud security research in the

context of security audit monitoring, SecCM and threat de-
tection. In [60], ConfEx is proposed an framework for dis-
covering and extracting text-based configurations in multi-
tenant cloud platforms for configuration analysis and valida-
tion. ConfEx detects configuration defects in software ap-
plications e.g. apache http. Unlike ConfEx, we focus on
the cloud infrastructure layer e.g. the interface between ap-
plications and Infrastructure-as-a-Service (IaaS) clouds. In
[9], a framework for detecting security misconfigurations in
AWS S3 such as misconfigured bucket ACLs is presented.
The framework is tested against a wide range of AWS S3 in-
frastructure in several AWS regions. This is similar to our
approach, with the difference that we fix detected issues and
also integrate our framework into the lifecycle of cloud in-
frastructure to support automated and continuous cloud se-
curity management.

In [20], several cloud auditing strategies are studied, the
authors recommend the use of automated risk analysis tools
to improve cloud security. Similarly, Doelitzscher et. al [13]
presented an architecture for automating public clouds audits
and argued for the creation of a cloud audit policy language.
However, the authors focus on auditing cloud VMs hence
most of their techniques are not applicable to cloud storage
and IAM. Mulazzani et’al [38] investigated the abuse of
cloud storage by malicious users e.g storing malicious docu-
ments in cloud storagewhile preparing for attacks. Our focus
is on the techniques for detecting, analyzing and managing
risks against several cloud infrastructure. Rubsamen et.al
[46] presented an agent-based auditing system that works
by deploying agents in the cloud VMS. These agents collect
and forward audit trails to designated endpoints for analy-
sis. Ryan et.al [30] proposed TrustCloud, a framework for
ensuring accountability and auditability in cloud computing
via technical and policy-based approaches. Though some
CSP already provide the audit trails and log information pre-
sented by the authors, efficient approaches for monitoring,
retrieving the information as emphasized in the Cloud Ac-
countability Life ycle (CALC) [31] are still lacking.

The concept of RiskAssessment-as-a-Service (RaaS)was
explored in [29] as techniques that ensure continuous risk
assessments such that risk scores of cloud tenants can be
produced. This remains an open challenge, security metrics
provided by CSPs are either qualitative or proprietary hence
not easily integratable into open, well known and widely
adopted systems. Therefore, in this article, we proposed
CSSS, which is compatible with the CVSS. Almorsy et.al
[2] argued for standardization of cloud risk assessment and
compliance regulations, and mapping of security metrics to
enable cloud security automation. The authors thereafter
propose a collaborative risk model. The Cloud Security Au-
tomation Framework was proposed in [59] as a customer-
centric approach for automating cloud security based on cus-
tomer security requirements. This work is similar to our as
it tackles user-centric security, however, it does not address
the contemporary challenge of misconfigurations in cloud
storage and IAM, but focuses on cloud compute.

Themajor difference between ourwork and relatedworks
is that we focus specifically on SecCM in order to tackle the
current user-centric security challenges in the cloud as high-
lighted in [12] - [23] while providing risk assessments using
appropriate security metrics. To the best of our knowledge,
our work is the first addressing these contemporary cloud
security challenges.

7. Conclusion
This article has presented CSBAuditor, a CSPM system

designed to address the contemporary cloud security chal-
lenges includingmisconfiguration vulnerabilities, change con-
trol management and configuration drift issues that eventu-
ally lead to cyber-attacks and data breaches. CSBAuditor
continuously monitors cloud infrastructure, to detect and re-
mediate misconfigured resources, and malicious activities
and unauthorized changes. This is achieved by leveraging
two concepts: state transition analysis and reconciler pat-
tern. The reconciler pattern enables tracking of cloud re-
sources using expected-state and cloud-state, while the state
transition analysis allows for discrete auditing of the differ-
ence between each version of the cloud-state to detect mali-
cious events. Furthermore, a custom security reporting for-
mat is formulated to represent the detected vulnerabilities
which are scored using a proposed cloud security metrics
system - CSSS. Consequently, CSBAuditor overcomes the
contemporary security issues caused bymisconfigured cloud
resources and other cloud-specific attacks. CSBAuditor has
been evaluated using various strategies including security
chaos engineering fault injection strategies onAWS andGCP,
with realistic attacks including those based on the Capital
One data breach.

8. Future Work
CSBAuditor’s rules engine contains rules for detecting

misconfigurations and malicious activities in cloud storage
and cloud IAM for AWS and GCP. In the future, it will
be useful to implement rules for other services e.g. cloud
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network, databases, Lambda serverless functions. Similarly,
the performancemight be improved by improving the caching
andmulti-threading, basic techniques of thesewere employed
in this work. Furthermore, a closer analysis of the integrated
CSBAuditor alerts and Security Information and EventsMan-
agement (SIEM) alerts could increase the quality of inci-
dent response. As observed in the discussions section, there
are limitations with our reversibility strategy that employs
IaS. In order to provider better guidance for practitioners,
such limitations must systematically handled, we intend to
provider strategies to mitigate these in a future work.
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