
P
os
te
d
on

20
N
ov

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
32
65
18
0.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

An OWASP Top Ten Driven Survey on Web Application

Protection Methods

Ouissem Ben Fredj 1, omar cheikhrouhou 1, Moez Krichen 2, Habib Hamam 1, and
Abdelouahid Derhab 1

1Affiliation not available
2Al-baha University

October 30, 2023

Abstract

Web applications (WAs) are constantly evolving and deployed at broad scale. However, they are exposed to a variety of attacks.

The biggest challenge facing organizations is how to develop a WA that fulfills their requirements with respect to sensitive data

exchange, E-commerce, and secure workflows. This paper identifies the most critical web vulnerabilities according to OWASP

Top Ten, their corresponding attacks, and their countermeasures. The application of these countermeasures will guarantee the

protection of the WAs against the most severe attacks and prevent several unknown exploits.

1



An OWASP Top Ten Driven Survey on Web
Application Protection Methods

Ouissem Ben Fredj1, Omar Cheikhrouhou2, Moez Krichen3,
Habib Hamam4, and Abdelouahid Derhab5

1 University Of Sousse, Tunisia
2 Taif University, KSA & University of Monastir, Tunisia
3 Al-Baha University, KSA & University of Sfax, Tunisia

4 University of Moncton, Canada
5 King Saud University, KSA

ouissem.benfredj@gmail.com, o.cheikhrouhou@tu.edu.sa

Abstract. Web applications (WAs) are constantly evolving and de-
ployed at broad scale. However, they are exposed to a variety of attacks.
The biggest challenge facing organizations is how to develop a WA that
fulfills their requirements with respect to sensitive data exchange, E-
commerce, and secure workflows. This paper identifies the most critical
web vulnerabilities according to OWASP Top Ten, their corresponding
attacks, and their countermeasures. The application of these countermea-
sures will guarantee the protection of the WAs against the most severe
attacks and prevent several unknown exploits.

Keywords: Survey · Security · Web · Attacks · OWASP Top Ten ·
Countermeasures.

1 Introduction

During the latest period, the organizations have been using the web not only
as a tool to advertise their images, product, and services, but also to perform
their daily tasks, including sensitive data and complex workflows. Moreover, due
to the popularity and the spread of sophisticated hand-held devices, several ap-
plications are moving from the regular desktop-based versions to the web-based
ones to target more devices with low cost of portability [32]. On the other hand,
the number attackers is continuously growing, and their attack techniques are
becoming increasingly sophisticated and dangerous, which impose real security
challenges on the organizations to secure their web applications (WAs). Hence,
the security of WAs has become an important research area, and several solutions
have been proposed to protect the WA.

From another point-of-view, the security administrators usually deploy WAFs
(WA Firewalls) to protect the WAs. However, as will be shown later in this
paper, the WAFs often use trivial protection methods instead of the advanced
techniques suggested by the researchers (see Section 4). There is a large gap
between the state of the art web protection methods and those employed by



2 Ouissem Ben Fredj et al

the existing WAFs. This paper tries to narrow down this gap by identifying
the most severe web attacks as well as the appropriate countermeasures against
each attack. The critical attacks are determined based on the most known web
vulnerabilities, which were released by the OWASP project[2]. We have reviewed
the security countermeasures to provide the readers with the smallest set of
protection methods that prevent the broadest range of critical attacks.

The rest of the paper is organized as follows: In section 2, the most critical
vulnerabilities, as released by the OWASP project, are presented. For each vul-
nerability, the corresponding attacks are identified. Section 3 is tailored to the
analysis of the most recent progress in the security countermeasures for each
attack. A focus will be made on the runtime and server-side web protection
methods. Section 4 deals with the use of Firewalls for the WA protection. Sec-
tion 5 is dedicated for the adoption of formal methods for this same purpose.
Section 6 concludes the paper and give future directions.

2 Security Attacks against Web Applications

In this section, we describe the possible attacks that could target a Web Appli-
cation (OWASP [2]).

2.1 Injection

The injection attacks consist in injecting (sending) untrusted information for an
interpreter. This injection is a part of an instruction: command/query. By pro-
viding malicious information, the attacker can mislead the interpreter and cause
unintended commands. The most critical injection attacks are the following:

– SQL Injection: It consists in injecting (inserting) SQL commands into
input forms or queries to get access to a database (DB) or manipulate its
data, for example: modification or deletion of database content.

– Code Injection: This attack consists in injecting code that the application
interprets and runs, which exploits poor processing of untrusted data.

– XPATH Injection: This attack takes place when a WA uses user-input
information for building an XPath query corresponding to XML data.

For more information about SQL injection attacks, the reader can refer to
[32].

2.2 Broken Authentication and Session Management

In case of broken authentication and session management attack, the intruder
tries to exploit the vulnerabilities of the authentication procedure in order to
access the WA or to use the credentials of other authorized users. This attack is
classified into the following categories:

– Brute Force Attack: It consists in trying a combination of characters to
guess the password of a given user.



A Survey on Web Protection Methods 3

– Dictionary Attack: If the attacker has some knowledge on the victim, he
can prepare dictionary (set of valid words). Then, he combines these words
to guess the victim password.

– Credential Enumeration Attack: Under this kind of attack, the intruder
attempts to harvest valid usernames for a password-guessing campaign, by
using verbose error of message telling whether the login is a valid username
or not.

– Session Fixation Attack: In this attack, the hacker fixes the session ID,
which will be used by user before the user logins into the server.

– Cookie Poisoning Attack: It consists in modifying a cookie by an intruder
to obtain unauthorized information about the user for the purpose to perform
for example identity theft.

2.3 Cross-Site Scripting (XSS)

It consists in injecting malicious code/scripts into web responses, which are re-
turned back by the trusted WA, to be executed by the web browser. The fol-
lowing three main kinds of XSS exist according to the way the malicious code is
injected:

– Stored XSS Attack: It takes place when the user input (such as message
forum, database data, comment field, visitor log, etc.) is stored on the WA
server. Then, a victim may get back the stored data from the WA without
making it safe.

– Reflected XSS Attack: It occurs when a client receives data in an HTTP
request and uses the data in an unsafe manner within the immediate re-
sponse.

– DOM Based XSS Attack: In this attack, the whole malicious data flow
from source to sink occurs within the browser. It means that the data source
is in the Document Object Model (DOM), the sink is in DOM as well, and
the data flow does not leave the browser.

A recent survey about the XSS attacks can be found in [23].

2.4 Insecure Direct Object References

A Direct Object Reference takes place whenever a programmer presents refer-
ences to internal implementation objects. It may be a database key, directory, or
file. When there is no access control or other security measures, intruders may
exploit such references to reach unauthorized data. This vulnerability may lead
to the following several attacks:

– Path Traversal Attack: It is a kind of attack, in which insecure direct
object reference to directories and files which are placed outside the web
root folder or in hidden places including system and configuration files.

– Direct Request Attack: (also called forced browsing) It consists in using
brute force procedures to access unlinked contents in the main directory. The
attacker may use google crawler to list hidden pages and files.



4 Ouissem Ben Fredj et al

– Authorization Bypass Through User-Controlled SQL Primary Key
Attack: It occurs when the attacker manipulates a DB table primary key,
which is used in an SQL statement, in order to reach inaccessible records.

2.5 Security Misconfiguration

Security misconfiguration problem occurs when one or more of the components
of the system such as the applications, the frameworks, the application server,
the web server, the DB server, the network router, and the platform are not well
configured. Secure settings have to be defined, implemented, and maintained.
Default settings are very often the cause of such a risk [50]. The attacker could
exploit this flaw to perform several attacks. The severity of the attack depends
on the misconfiguration level and place.

2.6 Sensitive Data Exposure

IT systems always store in a DB users personal data like passwords, home ad-
dresses, phone numbers, credit card details, etc. Once the systems are not prop-
erly secured from forbidden access, there is a strong likelihood of an attacker
exploiting that vulnerability and stealing the information. There are three at-
tacks, which are related to the sensitive data exposure:

– Information Leakage Attack: it occurs when a WA reveals sensitive data,
such as error messages or developer comments. These sensitive data, which
give an attacker useful guidance, can be exploited to attack the system
[5,4,6,58].

– Transmission Attack: When the communication is not encrypted, all data
exchanged between the client and the web server is sent in clear-text which
leaves it exposed to interception, injection and redirection.

– Database Theft: when the sensitive data in the DB is not protected using
strong encryption or access policies, attacker could steal this data. Three
database attacks are possible: Brute-force attack; SQL injection and Privi-
lege escalation.

2.7 Missing Function Level Access Control

Some WAs check access rights to function level before making the feature avail-
able to the user. Nevertheless, once each feature is accessed, applications must
achieve the same access control check for the server. Whenever requests are not
checked, attackers can access the features without proper permission. Examples
of attacks that may exploit this vulnerability are the following:

– Local File Inclusion Attack: The attacker tries to find a page that receives
as input a path to a file to be included in the calling page.

– Remote File Inclusion Attack: it is the same as the Local File Inclusion
Attack but instead of including files located in the same server, the attacker
manipulates the user input to include remote files.



A Survey on Web Protection Methods 5

– Command Injection Attack: it is another attack that accesses the OS
functions with unauthorized manner. The attacker tries to find a piece of
code in the WA that accepts untrusted input to build OS commands without
proper sanitization.

2.8 Cross-Site Request Forgery (CSRF)

According to [7], a WA is vulnerable to CSRF attacks (sometimes referred to
as XSRF or Session Riding) when it does not verify that any request done by a
trusted user has actually been intentionally done by that user only. There is a
big difference between CSRF vulnerabilities and XSS vulnerabilities. The CSRF
attack exploits an authenticated user to make a request on their behalf. Thus, a
web site that uses cookies for authentication may be vulnerable, as well as those
web application that use Basic or Digest authentications, because the browser
automatically sends the cookies and the server will rely on that browser.

2.9 Using Components with Known Vulnerabilities

Software Components, like frameworks, libraries, and other kinds of modules,
often execute with maximum privilege. Whenever a weak component is attacked,
it may lead to serious threat. Depending on the vulnerabilities of the components,
any kind of attack is eventually possible. For example, if a website is using a
library vulnerable to SQL injection, the whole website will be vulnerable to
such an attack. The open source libraries, framework, and content management
systems (CMSs) are the source of many attacks.

2.10 Unvalidated Redirects and Forwards

WAs usually forward and redirect users to other websites and pages, and exploit
input data to identify new potential destinations. Without proper checking and
authentication of the input data, users can be redirected to malware or phishing.
Attackers may also exploit forwards to reach unauthorized zones. For instance,
http parameter can include, or part of, a URL value, which could be exploited by
the WA to redirect the request to the considered URL. An attacker can execute
a phishing scam and capture user information by changing the URL address to
a hostile site. Since the server in the updated connection has the same name as
the original (trusted) site attempts at phishing look more trustworthy.

3 Countermeasures against Attacks

In this section, we present the main proposed solutions to mitigate web attacks
described in the previous section.



6 Ouissem Ben Fredj et al

3.1 Countermeasures against Injection Attacks

Many solutions have been adopted to address the SQL Injection, as it presents
the most widely spread attack [32]. The authors of [60] proposed a framework
based on information theory for detecting SQLI attacks . The proposed frame-
work statically estimates query’s entropy based on the distribution of token
probability of a query. First, the system computes the entropy of every query
included in the program source code before the deployment of the application.
Then, during the execution of the application, the system computes again the
entropy of each invoked SQL query to detect if there is any change in the mea-
sured entropy. In [51], the authors proposed a WAF based on Artificial Neural
Network (ANN) to avoid SQLIAs. The system consists of a pair of steps: Train-
ing step and Working step. During the training step, a collection of normal and
malicious data is fed to the system to train the ANN. During the working step,
the obtained ANN is integrated into the WA firewall to detect the WA attacks.
The authors of [48] proposed a semantic comparison based scheme. The seman-
tic comparison is made between the two syntax trees of a query during training
and run-time. If the two trees are similar, then the query is evaluated as be-
nign query, else it is evaluated as malicious one. Authors in [30] have proposed
WASP, a tool for avoiding SQLIAs using the notion of positive tainting and on
syntax-aware evaluation. The idea of positive tainting is to identify and track
trusted data, instead of tainting untrusted data in traditional (negative) tainting
approach. The advantages of the positive tainting over the negative one is that
it generates false positives instead of false negatives, in case of incompleteness.

3.2 Countermeasures against Broken Authentication and Session
Management

For session hijacking, the traditional countermeasure technique consists in bind-
ing the client IP address. More precisely, in this technique, the web server binds
a user’s session to a fixed IP address, and then discard any request coming from
a distinct IP address. This technique requires that each client possess a differ-
ent and unchanging public IP address. However, a network generally uses NAT
protocol to share the same IP address to multiple clients and, therefore, make
this technique ineffective [25]. Another technique to mitigate session hijacking is
based on tracking user browser fingerprint. A browser fingerprint consists of nu-
merous characteristics of the user browser. Any modification of the user browser
fingerprint might represent an attacker stealing a session [52]. SessionLock [9]
adds an integrity checks to every client request based on a secret shared with the
server. If a session identifier is stolen, a valid request cannot be computed since
the value of the secret is unknown. One limit of SessionLock is its vulnerability
to script-based attacks. To mitigate session hijacking attacks and inspired by
the concept of Kerberos service tickets, the authors in [24] proposed to replace
the static session identifier with disposable tokens per request. Macaroons [33]
targets cloud services and restricts access to cookie. Macaroons uses chains of
nested Hash-based Message Authentication Codes (HMACs), constructed from
a shared secret and a chain of messages.



A Survey on Web Protection Methods 7

3.3 Countermeasures against XSS attacks

A first defense line against XSS, at the server-side, is to adopt a user-input valida-
tion to enforce the security. Validation can use either blacklisting or whitelisting
techniques. Moreover, once user-input is found to be malicious, it can either
be sanitised or rejected [3]. However, the secure input handling method cannot
achieve full protection, especially for complex website. A second defense line,
which is becoming more and more implemented in web-servers, is based on Con-
tent Security Policy, which generally defines trusted origins that the browser is
allowed to download resources (can be a script, a style-sheet, an image, etc.)
from them. Therefore, although an intruder is able to inject vulnerable content
into the website, the CSP method may block its execution. Authors in [63] pro-
posed a secure WA proxy for detecting and blocking Cross Site Scripting (XSS)
attacks. The proposed framework contains a reverse proxy intercepting the re-
turned HTML messages first, then using an altered web browser to locate vul-
nerable scripts. The authors in [59] proposed to use Kullback-Leibler Divergence
(KLD) measure to provide a proxy-level detection methodology for the XSS at-
tacks. The idea is based on the intuition that legitimate WAs JavaScript code
should remain comparable or very similar to a rendered web page’s JavaScript
code. For this purpose, the authors proceed to the tokenization of the consid-
ered script code into unique elements and calculate the probabilities of their
occurrences in order to construct two sets P (legitimate JS code available in the
application page) and Q (observed JS code available in the response page). Then,
KLD computes the distance separating these two proposed probability distribu-
tions. An XSS attack is detected in case of a significant divergence between the
two sets.

3.4 Countermeasures against Insecure Direct Object References
and Missing Function Level Access Control

To secure the access to the resources and the utilization of internal functions of
a WA, most of security systems have used access control mechanisms. For in-
stance in Role-Based Access Control (RBAC)[27], programmers control objects
by permissions, assign permissions to roles and assign roles to users. Permission
authorizes a user for a role in a given session. The Separation of Duty Constraints
prevent a user from acquiring two or more conflicting roles. For example, Cisco
ACE WA Firewall uses RBAC to define the administration roles of the WAF
itself. In [53], the authors describe an implementation of RBAC with role hi-
erarchies on the Web by secure cookies. The user’s role information is injected
in a set of secure cookies and transmitted to the corresponding Web servers.
In order to verify the cookies, they use PGP (Pretty Good Privacy) to define
cookie-verification procedures. In [12], the authors proposed an access control
method for open web service applications. Their work is based on the eXtensible
Access Control Markup Language (XACML) which belongs to the class of access
control languages.



8 Ouissem Ben Fredj et al

3.5 Countermeasures against Sensitive Data Exposure

As presented in section 1, the following three categories of sensitive data Expo-
sure flaw exist:

– Information Leakage: As for this flaw, only the developer can improve
security by paying attention to what he leaves in the code and to handle in
a secure way the errors that can occur.

– Transmission Attacks: this kind of attacks is mainly avoided by a strong
encryption mechanism and we do not know a well known approaches used
in WAFs.

– Database Thefts: to deal with this attack, cryptography is a key solution
together with a good security policy to access database. In [26], the authors
proposed a dynamic database security policies as a solution for this kind of
attack.

As conclusion, there are no known approaches that can be used by WAFs to
overcome sensitive data exposure flaw.

3.6 Countermeasures against CSRF

The are some countermeasures at the server-side to mitigate CSRF attacks
[26,36,11]. OWASP developed a project called CSRFGuard [1]. It is a library,
which implements a variant of the Synchronizer Token Pattern to minimize the
risk of CSRF attacks. The authors of [34] defined a server-side proxy named
NoForge, which could be plugged into the considered system to discover and
avoid CSRF attacks and it is transparent to users and applications. This proxy
primarily detects and protects PHP applications against CSRF attacks. Zeller
et al. in [64] enumerated the characteristics of server-side precautions to protect
users. They also developed a plug-in at the server side for preventing users from
the attacks.

3.7 Countermeasures against Unvalidated Redirects and Forwards

The authors in [57] categorized the phishing countermeasures into four cat-
egories: blacklist-based, heuristic-based, visual similarity-based, and machine
learning based. The blacklist-based techniques build a repository of discovered
phishing URLs, which should be updated regularly. The most representative
works under this category are the Google Safe Browsing API [8], PhishNet [54],
which predicts the phishing URLs based on the known phishing URLs, and Au-
tomated Individual White-List (AIWL) [20] that keeps a list of trusted Login
User Interfaces (LUI). However, this list suffers from the problem of untrusted
LUI prediction. Generally, the blacklists offer good True-Positive (TP) rates but
suffer from False-Positive (FP) rates. SPHERES [28] is a WAF implemented in
the WA server based on behaviour, and prevents the phishing attack by defining
a profile for each parameter provided by the web client.



A Survey on Web Protection Methods 9

3.8 Discussion

The most severe, critical and widespread flaw as classified by the OWASP top
ten is the injection flaw [2]. The main attack under this flaw is SQL injection.
Several solutions were proposed to mitigate this attack and they can be classified
mainly as grammar-based, entropy-based, machine learning-based and tainting-
based. Grammar-based methods are efficient but require to write a grammar
model for each possible query, which is error prone. Moreover, these methods can
not discover stored procedure type attacks and database management systems
(DBMS) specific subqueries. In addition, the time complexity of these methods
is high, and hence it is impossible to discover the attack in real-time [47]. The
entropy methods are based on probabilistic models and so far are unstable. Taint-
based approaches are time consuming as they need to monitor every variable in
the web site. Machine learning techniques are not well adapted to this context as
they need a long training phase and the results can include several false negatives
and positives [47].

The second severe flaw is related to authentication and session management.
As for authentication, the value of the authenticated cookie must be updated
each time the level of authorization of the user takes a new value to combat
potential session vulnerabilities [16]. The web developer should enhance the au-
thentication method using picture-based or time-signature-based authentication
scheme. The common protection of session attacks prevents JavaScript access
to session cookies. Another promising idea is based on defining a collection of
security policies. For the XSS attack, many defense solutions are adopted, and
existing industrial approaches mostly rely on user input sanitizing [55]. Some
approaches use probability distribution of tokens in a web page [59]. Other ap-
proaches are based on page code modification either by creation of shadow page
[14], or by inserting a script ID [63], or using boundaries injection, [29].

The fourth and the seventh flaws lead to similar attacks. The fourth category
encompasses attacks that lead to a misuse of the objects that exist in the web
structure, and the seventh category encompasses the attacks that misuse the
functions provided by the web application. Both categories could be secured by
controlling and managing the roles, the objects and the permissions to handle
both of them. Regarding the fifth flaw, the web administrator should fine-tune
the configuration entries of the web application during the deployment and use
of the application. Thus, the default values usually known by the attacker will
be minimized and the security of the component will be maximized. A static
scan of the server configuration could help in this stage.

Regarding the sixth flaw, the web server must use secured connection when
sensitive data are exchanged with the client (Emails, banking transaction, etc.).
The system administrator must choose the right database access policies and
a strong cryptography of sensitive data stored in database. The web developer
must pay attention to what he leaves in the code source and must handle the
system errors perfectly. A good and very well known way to overcome the CSRF
attacks, i.e., the eight flaw, is using captcha. We need to apply strong models to
avoid bypassing it. Many others works are proposed to handle this attack. They



10 Ouissem Ben Fredj et al

add some code at the web server [64] and enhance also the client side by some
routines.

Regarding the ninth flaw, the web developer should handle with care the
external components used in the website especially the open source libraries and
frameworks. The developer can minimize the risks produced by these components
by rewriting their interface for example. However, it will be difficult to use a sub-
sequential version of the component . The tenth category in the top ten may lead
to the phishing attach, which could be mitigated by blocking fake URLs using
existing black lists [8,54] or white lists [20].

4 Protection methods for WA Firewalls

WA firewalls (WAFs) are the primary front-end protection mechanism for web-
based applications which are continuously under attack. We can find two cate-
gories of WAF: open source and commercial.

4.1 Open Source WAF

Examples of open source solutions that can be used to deploy a firewall to protect
web applications are the following:

– AQTRONIX WebKnight : It is an open source WA Firewall (WAF) for
Internet Information Services (IIS). AQTRONIX WebKnight is an ISAPI
filter that tries to secure the target web server by blocking certain requests.
To do so, a scanning and processing of all requests is performed according to
filter rules, which do not come from a dataset of attack signatures requiring
regular updates.

– ModSecurity: It is a toolkit for real-time WA access control, logging and
monitoring. This toolkit supports a pair of deployment options: reverse
and embedded proxy deployment. This method enables protecting the WA
against a wide range of attacks. It also offers the monitoring of HTTP traffic,
its logging as well as the real-time analysis of it.

4.2 Commercial WAF

Examples of commercial solutions that can be used to deploy a firewall to protect
web applications are the following:

– dotDefender: it is a WA Firewall installed on Apache or Microsoft IIS
Server. This WAF claims preventing the following attacks: XSS, SQLIAs,
Credit Card Disclosure, DoS, etc.

– Imperva SecureSphere: [31] it may be used as a reverse proxy or as a
transparent bridge, and when deployed out-of-band, it operates passively as
a sniffer, detection and alteration without protection against attacks.

– Barracuda: [13] it is designed to protect WA and Web sites from applica-
tion vulnerabilities to instigate data theft, application-layer DoS attacks, or
defacement of the Web site of an organization. Th WAF offers protection
against attacks like XSS, Brute Force and SQL Injection.



A Survey on Web Protection Methods 11

5 Model-Based Testing and Formal Methods for Web
Service Security

In this section, we give an overview on WA verification, i.e., model-based testing
and formal methods, and present their applications for web applications. WA
verification can be classified under the following two methods:

– Model Based Testing (MBT): It is a methodology [39,37,38] where the
behavior of the System Under Test (SUT) is encoded by means of an abstract
model. This methodology permits to automatically produce abstract test
scenarios from the considered model. Regarding testing security aspects,
the authors of [41] proposed an MBT methodology for validating security
aspects of IoTs in Smart Cities. The proposed methodology takes advantage
of the adoption of the standard testing language TTCN- 3 [44] and a cloud-
oriented architecture [45]. Similarly, the authors of [42,43] proposed an MBT
methodology in order to validate security properties of IoTs. In [40], a set of
optimization techniques was adopted in order to diminish the complexity of
MBT procedures.

– Formal Methods (FM): When establishing computer systems (CS), the
complete detection and correction of design errors remain remarkably hard
in the context of manual simple verification techniques and functional testing
activities. Consequently, in the early 1980s, scientists [21,56,18] started to
make CS verification methodologies more rigorous, specially by making them
more automatic. In fact, with the emergence of new mathematical languages
for the specification and description of dynamic systems, the first formal
verification methodologies have appeared.

Model-based testing methods for WA security can be classified as follows:

– Modelling HTTP Requests: In [19], an approach named Chained Attack
is proposed. The proposed approach considers HTTP requests as a starting
point, produces models, and extracts scenarios of attacks from these models
using model-checking procedures.

– Formalizing Vulnerabilities into Test Purposes: The authors of al [46]
proposed an MBT security validation methodology, which allows to formalize
vulnerability test patterns in form of test purposes. The authors defined
the behavior of the considered web applications and purposes of tests, and
adopted model-checking procedures in order to produce testing scenarios.

– Consideration of an Attacker Model: The authors of [15] adopted an
MBT methodology, in which the formal models of attacker are considered
to validate web applications and functionalities.

– Technique Inspired by Mutation Testing: In [17], the authors presented
an MBT approach for validating security properties of WA. The proposed
approach is closely inspired by mutation testing techniques.

– Use of UMLsec Tool: In [35], the authors proposed an MBT testing ap-
proach for the automatic production of security test-scenarios. The approach
takes advantage of the UMLsec tool. It aims at testing the security properties
of the Common Electronic Purse Specifications.



12 Ouissem Ben Fredj et al

– Use of Alloy Analyser: In [10], a methodology using the Alloy Analyzer
for inspecting several web applications and mechanisms was proposed. The
authors adopted threat models such as an intruder taking control over a
website or a whole part of the network.

– Mobster Tool: In [49], the authors introduced the MobSTer tool, which is
a Model-based Security Testing Framework that may help security analysts
in testing security aspects of WA. This framework combines model-checking
procedures with the knowledge obtained from penetration testing guidelines
and checklists.

Formal methods for WA security can be classified as follows:

– Security by Construction: Some works in the literature [61] aim at defin-
ing new formal languages and abstraction techniques in order to make the
Web safer. For this purpose, these works attempt to identify the main limita-
tions in the current conception techniques of the Web and suggest a paradigm
evolution to ameliorate it. This set of suggestions is adequate for dealing with
the principle source of security problems. However, they mostly need a deep
change to current WA and technologies.

– Modelling, Verification and Enforcement: Some other research works
adopt an other strategy which consists in considering appropriate algorithms
and models for dealing with the FV of the security properties of modern Web
technologies. These research works attempt to exploit available standards
and frameworks as best as they can. This approach may be in many cases
sub-optimal and not very effective. However, the main advantage is that this
procedure does not impact a lot the existing Web technologies. For example
with respect to scripting languages, different solutions [62] based on the
adoption of rigorous semantics for the considered language were adopted.

– An industrial Application: In [22], the authors applied FV techniques for
the security of Amazon Web Services (AWS). Two main goals were consid-
ered with this respect. The first one consists in raising the level of security
of the provided products and the second one helping customers securing
themselves against possible attacks.

6 Conclusions and Future Work

This paper presents an up to date survey about web applications vulnerabilities,
attacks and server-side countermeasures. The main vulnerabilities and attacks,
which targets current WAs according to the OWASP top 10 classification, have
been described. After that we surveyed the countermeasures solutions proposed
in the last decades to protect WAs against these attacks. The literature includes
hundreds of works about server-side web protection methods, and many of them
propose enhanced protection models. The existing WAFs include only simple
protection rules, which does not take into account the advances in the field.
There is a big gap between the research products and the WAF methods. The
developers of WAFs try to propose a global protection tools that mitigate a wide



A Survey on Web Protection Methods 13

range of attacks using simple methods that fail to deal with the complexity of
new attacks. As a future work, we plan to design and develop a WA firewall that
is lightweight and adaptable to current WAs needs.

References

1. Category:OWASP CSRFGuard project - OWASP. https://www.owasp.org/

index.php/Category:OWASP_CSRFGuard_Project, accessed: 2020-07-30
2. Category:OWASP top ten project - OWASP. https://www.owasp.org/index.

php/Category:OWASP_Top_Ten_Project, accessed: 2020-07-30
3. Excess XSS: A comprehensive tutorial on cross-site scripting. http://excess-xss.

com/, accessed: 2020-07-30
4. Information leakage - OWASP. https://www.owasp.org/index.php/

Information_Leakage, accessed: 2020-07-30
5. InfoSecPro.com - computer, network, application and physical security consultants.

http://www.infosecpro.com/applicationsecurity/a52.htm, accessed: 2020-07-
30

6. The web application security consortium / information leakage. http://projects.
webappsec.org/w/page/13246936/Information%20Leakage, accessed: 2020-07-30

7. Website. https://lthieu.wordpress.com/2012/11/22/

cross-site-request-forgery-a-small-demo, accessed: 2020-07-30
8. Website. https://developers.google.com/safe-browsing/, accessed: 2020-07-

30
9. Adida, B.: Sessionlock: Securing web sessions against eavesdropping. In: Proceed-

ings of the 17th International Conference on World Wide Web. pp. 517–524. WWW
’08, ACM, New York, NY, USA (2008)

10. Akhawe, D., Barth, A., Lam, P.E., Mitchell, J., Song, D.: Towards a formal foun-
dation of web security. In: 2010 23rd IEEE Computer Security Foundations Sym-
posium. pp. 290–304 (July 2010). https://doi.org/10.1109/CSF.2010.27

11. Anwar, D., Anwar, Riyazuddin: Transparent data encryption- solution for security
of database contents. International Journal of Advanced Computer Science and
Applications 2(3) (2011)

12. Ardagna, C.A., di Vimercati, S.D.C., Paraboschi, S., Pedrini, E., Samarati, P.,
Verdicchio, M.: Expressive and deployable access control in open web service ap-
plications. IEEE Trans. Serv. Comput. 4(2), 96–109 (Apr 2011)

13. Barracuda: Barracuda waf. White paper (2019)
14. Bisht, P., Prithvi, B., Venkatakrishnan, V.N.: XSS-GUARD: Precise dynamic pre-

vention of Cross-Site scripting attacks. In: Lecture Notes in Computer Science, pp.
23–43 (2008)

15. Blome, A., Ochoa, M., Li, K., Peroli, M., Dashti, M.T.: Vera: A flexible model-
based vulnerability testing tool. In: 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation. pp. 471–478 (March 2013).
https://doi.org/10.1109/ICST.2013.65

16. Braun, B., Pauli, K., Posegga, J., Johns, M.: Logsec: adaptive protection for the
wild wild web. In: Proceedings of the 30th Annual ACM Symposium on Applied
Computing. pp. 2149–2156. ACM (2015)

17. Büchler, M.: Semi-Automatic Security Testing of Web Applications with Fault
Models and Properties. Ph.D. thesis, Technical University Munich (2015), http:
//nbn-resolving.de/urn:nbn:de:bvb:91-diss-20151218-1273062-1-3

https://www.owasp.org/index.php/Category:OWASP_CSRFGuard_Project
https://www.owasp.org/index.php/Category:OWASP_CSRFGuard_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://excess-xss.com/
http://excess-xss.com/
https://www.owasp.org/index.php/Information_Leakage
https://www.owasp.org/index.php/Information_Leakage
http://www.infosecpro.com/applicationsecurity/a52.htm
http://projects.webappsec.org/w/page/13246936/Information%20Leakage
http://projects.webappsec.org/w/page/13246936/Information%20Leakage
https://lthieu.wordpress.com/2012/11/22/cross-site-request-forgery-a-small-demo
https://lthieu.wordpress.com/2012/11/22/cross-site-request-forgery-a-small-demo
https://developers.google.com/safe-browsing/
https://doi.org/10.1109/CSF.2010.27
https://doi.org/10.1109/ICST.2013.65
http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20151218-1273062-1-3
http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20151218-1273062-1-3


14 Ouissem Ben Fredj et al

18. Bugliesi, M., Calzavara, S., Focardi, R.: Formal methods for web security.
Journal of Logical and Algebraic Methods in Programming 87, 110 – 126
(2017). https://doi.org/https://doi.org/10.1016/j.jlamp.2016.08.006, http://www.
sciencedirect.com/science/article/pii/S2352220816301055

19. Calvi, A., Viganò, L.: An automated approach for testing the security of web
applications against chained attacks. In: Proceedings of the 31st Annual ACM
Symposium on Applied Computing. pp. 2095–2102. SAC ’16, ACM, New York, NY,
USA (2016). https://doi.org/10.1145/2851613.2851803, http://doi.acm.org/10.
1145/2851613.2851803

20. Cao, Y., Ye, C., Weili, H., Yueran, L.: Anti-phishing based on automated indi-
vidual white-list. In: Proceedings of the 4th ACM workshop on Digital identity
management - DIM ’08 (2008)

21. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Logic of Programs, Workshop. pp. 52–71.
Springer-Verlag, Berlin, Heidelberg (1982), http://dl.acm.org/citation.cfm?

id=648063.747438

22. Cook, B.: Formal reasoning about the security of amazon web services. In: Com-
puter Aided Verification - 30th International Conference, CAV 2018, Held as Part
of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Pro-
ceedings, Part I. pp. 38–47 (2018). https://doi.org/10.1007/978-3-319-96145-3 3,
https://doi.org/10.1007/978-3-319-96145-3_3

23. Cui, Y., Cui, J., Hu, J.: A survey on xss attack detection and prevention in web
applications. In: Proceedings of the 2020 12th International Conference on Machine
Learning and Computing. pp. 443–449 (2020)

24. Dacosta, I., Chakradeo, S., Ahamad, M., Traynor, P.: One-time cookies: Preventing
session hijacking attacks with stateless authentication tokens. ACM Trans. Internet
Technol. 12(1), 1:1–1:24 (Jul 2012)

25. De Ryck, P., Desmet, L., Piessens, F., Johns, M.: Primer on client-side web security.
Springer (2014)

26. Doshi, J., Trivedi, B.: Sensitive data exposure prevention using dynamic database
security policy. Int. J. Comput. Appl. Technol. 106(15) (2014)

27. Ferraiolo, D., Cugini, J., Kuhn, D.R.: Role-based access control (RBAC): Features
and motivations. Proceedings of 11th annual (1995)

28. Fredj, O.B.: Spheres: an efficient server-side web application protection system.
International Journal of Information and Computer Security 11(1), 33–60 (2019)

29. Gupta, S., Gupta, B.B.: XSS-SAFE: A Server-Side approach to detect and mitigate
Cross-Site scripting (XSS) attacks in JavaScript code. Arab. J. Sci. Eng. pp. 1–24
(30 Oct 2015)

30. Halfond, W., Orso, A., Manolios, P.: WASP: Protecting web applications using
positive tainting and Syntax-Aware evaluation. IEEE Trans. Software Eng. 34(1),
65–81 (Jan 2008)

31. Imperva: Waf gateway. White paper pp. 1–2 (2019)
32. Jemal, I., Cheikhrouhou, O., Hamam, H., Mahfoudhi, A.: Sql injection attack de-

tection and prevention techniques using machine learning. International Journal of
Applied Engineering Research 15(6), 569–580 (2020)

33. Johns, M., Martin, J., Bastian, B., Michael, S., Joachim, P.: Reliable protection
against session fixation attacks. In: Proceedings of the 2011 ACM Symposium on
Applied Computing - SAC ’11 (2011)

34. Jovanovic, N., Kirda, E., Kruegel, C.: Preventing cross site request forgery attacks.
In: Securecomm and Workshops, 2006. pp. 1–10. ieeexplore.ieee.org (Aug 2006)

https://doi.org/https://doi.org/10.1016/j.jlamp.2016.08.006
http://www.sciencedirect.com/science/article/pii/S2352220816301055
http://www.sciencedirect.com/science/article/pii/S2352220816301055
https://doi.org/10.1145/2851613.2851803
http://doi.acm.org/10.1145/2851613.2851803
http://doi.acm.org/10.1145/2851613.2851803
http://dl.acm.org/citation.cfm?id=648063.747438
http://dl.acm.org/citation.cfm?id=648063.747438
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-319-96145-3_3


A Survey on Web Protection Methods 15

35. Jürjens, J.: Model-based security testing using umlsec. Elec-
tron. Notes Theor. Comput. Sci. 220(1), 93–104 (Dec 2008).
https://doi.org/10.1016/j.entcs.2008.11.008, http://dx.doi.org/10.1016/j.

entcs.2008.11.008

36. Kiernan, J., Jerry, K., Rakesh, A., Haas, P.J.: Watermarking relational data: frame-
work, algorithms and analysis. The VLDB Journal The International Journal on
Very Large Data Bases 12(2), 157–169 (2003)

37. Krichen, M.: Model-based testing for real-time systems. Ph.D. thesis, PhD thesis,
PhD thesis, Universit Joseph Fourier (December 2007) (2007)

38. Krichen, M.: A formal framework for conformance testing of distributed real-time
systems. In: International Conference On Principles Of Distributed Systems. pp.
139–142. Springer (2010)

39. Krichen, M.: Contributions to Model-Based Testing of Dynamic and Distributed
Real-Time Systems. Ph.D. thesis, École Nationale d’Ingénieurs de Sfax (Tunisie)
(2018)

40. Krichen, M.: Improving formal verification and testing techniques for internet of
things and smart cities. Mobile Networks and Applications pp. 1–12 (2019)

41. Krichen, M., Alroobaea, R.: A new model-based framework for testing security of
iot systems in smart cities using attack trees and price timed automata. In: 14th In-
ternational Conference on Evaluation of Novel Approaches to Software Engineering
- ENASE 2019 (2019)

42. Krichen, M., Cheikhrouhou, O., Lahami, M., Alroobaea, R., Maâlej, A.J.: Towards
a model-based testing framework for the security of internet of things for smart city
applications. In: International Conference on Smart Cities, Infrastructure, Tech-
nologies and Applications. pp. 360–365. Springer, Cham (2017)

43. Krichen, M., Lahami, M., Cheikhrouhou, O., Alroobaea, R., Maâlej, A.J.: Security
testing of internet of things for smart city applications: A formal approach. In:
Smart Infrastructure and Applications, pp. 629–653. Springer, Cham (2020)

44. Lahami, M., Fakhfakh, F., Krichen, M., Jmaiel, M.: Towards a ttcn-3 test system
for runtime testing of adaptable and distributed systems. In: IFIP International
Conference on Testing Software and Systems. pp. 71–86. Springer (2012)

45. Lahami, M., Krichen, M., Alroobaea, R.: Tepaas: test execution platform as-a-
service applied in the context of e-health. International Journal of Autonomous
and Adaptive Communications Systems 12(3), 264–283 (2019)

46. Lebeau, F., Legeard, B., Peureux, F., Vernotte, A.: Model-based vulnerability test-
ing for web applications. In: 2013 IEEE Sixth International Conference on Soft-
ware Testing, Verification and Validation Workshops. pp. 445–452 (March 2013).
https://doi.org/10.1109/ICSTW.2013.58

47. Lee, I., Jeong, S., Yeo, S., Moon, J.: A novel method for {SQL} in-
jection attack detection based on removing {SQL} query attribute val-
ues. Mathematical and Computer Modelling 55(1–2), 58 – 68 (2012).
https://doi.org/http://dx.doi.org/10.1016/j.mcm.2011.01.050, http://www.

sciencedirect.com/science/article/pii/S0895717711000689, advanced The-
ory and Practice for Cryptography and Future Security

48. Mamadhan, S., Manesh, T., Paul, V.: SQLStor: Blockage of stored procedure SQL
injection attack using dynamic query structure validation. In: Intelligent Systems
Design and Applications (ISDA), 2012 12th International Conference on. pp. 240–
245 (2012)

49. Meo, F.D., Viganò, L.: A formal approach to exploiting multi-stage attacks based
on file-system vulnerabilities of web applications. In: Engineering Secure Software

https://doi.org/10.1016/j.entcs.2008.11.008
http://dx.doi.org/10.1016/j.entcs.2008.11.008
http://dx.doi.org/10.1016/j.entcs.2008.11.008
https://doi.org/10.1109/ICSTW.2013.58
https://doi.org/http://dx.doi.org/10.1016/j.mcm.2011.01.050
http://www.sciencedirect.com/science/article/pii/S0895717711000689
http://www.sciencedirect.com/science/article/pii/S0895717711000689


16 Ouissem Ben Fredj et al

and Systems - 9th International Symposium, ESSoS 2017, Bonn, Germany, July
3-5, 2017, Proceedings. pp. 196–212 (2017). https://doi.org/10.1007/978-3-319-
62105-0 13, https://doi.org/10.1007/978-3-319-62105-0_13

50. Mnif, A., Cheikhrouhou, O., Jemaa, M.B.: An id-based user authentication scheme
for wireless sensor networks using ecc. In: ICM 2011 Proceeding. pp. 1–9. IEEE
(2011)

51. Moosa, A.: Artificial neural network based web application firewall for SQL injec-
tion. Proc. World Acad. of Sci. Eng. Technol. 64, 12–21 (2010)

52. Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C., Piessens, F., Vigna, G.:
Cookieless monster: Exploring the ecosystem of Web-Based device fingerprinting.
In: Security and Privacy (SP), 2013 IEEE Symposium on. pp. 541–555. ieeex-
plore.ieee.org (May 2013)

53. Park, J.S., Sandhu, R., Ghanta, S.: RBAC on the web by secure cookies. In: Re-
search Advances in Database and Information Systems Security, pp. 49–62. IFIP
— The International Federation for Information Processing, Springer US (2000)

54. Prakash, P., Kumar, M., Kompella, R.R., Gupta, M.: PhishNet: Predictive black-
listing to detect phishing attacks. In: INFOCOM, 2010 Proceedings IEEE. pp. 1–5.
ieeexplore.ieee.org (Mar 2010)

55. Prokhorenko, V., Choo, K.K.R., Ashman, H.: Web application protection tech-
niques: A taxonomy. Journal of Network and Computer Applications 60, 95
– 112 (2016). https://doi.org/http://dx.doi.org/10.1016/j.jnca.2015.11.017, http:
//www.sciencedirect.com/science/article/pii/S1084804515002908

56. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in
cesar. In: Proceedings of the 5th Colloquium on International Symposium on
Programming. pp. 337–351. Springer-Verlag, London, UK, UK (1982), http:

//dl.acm.org/citation.cfm?id=647325.721668

57. Scott, D., Sharp, R.: Specifying and enforcing application-level web security poli-
cies. IEEE Trans. Knowl. Data Eng. 15(4), 771–783 (2003)

58. Shabtai, A., Elovici, Y., Rokach, L.: A Survey of Data Leakage Detection and
Prevention Solutions. Springer Science & Business Media (15 Mar 2012)

59. Shahriar, H., Hossain, S., Sarah, N., Wei-Chuen, C., Edward, M.: Design and de-
velopment of Anti-XSS proxy. In: 8th International Conference for Internet Tech-
nology and Secured Transactions (ICITST-2013) (2013)

60. Shahriar, H., Zulkernine, M.: Information-theoretic detection of SQL injection at-
tacks. In: High-Assurance Systems Engineering (HASE), 2012 IEEE 14th Interna-
tional Symposium on. pp. 40–47 (2012)

61. Swamy, N., Fournet, C., Rastogi, A., Bhargavan, K., Chen, J., Strub, P.Y.,
Bierman, G.: Gradual typing embedded securely in javascript. In: Proceed-
ings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. pp. 425–437. POPL ’14, ACM, New York, NY, USA
(2014). https://doi.org/10.1145/2535838.2535889, http://doi.acm.org/10.1145/
2535838.2535889

62. Taly, A., Erlingsson, U., Mitchell, J.C., Miller, M.S., Nagra, J.: Automated anal-
ysis of security-critical javascript apis. In: 2011 IEEE Symposium on Security and
Privacy. pp. 363–378 (May 2011). https://doi.org/10.1109/SP.2011.39

63. Wurzinger, P., Platzer, C., Ludl, C., Kirda, E., Kruegel, C.: SWAP: Mitigating
XSS attacks using a reverse proxy. In: Software Engineering for Secure Systems,
2009. SESS ’09. ICSE Workshop on. pp. 33–39. IEEE (2009)

64. Zeller, W., Felten, E.W.: Cross-site request forgeries: Exploitation and prevention.
NY Times pp. 1–13 (2008)

https://doi.org/10.1007/978-3-319-62105-0_13
https://doi.org/10.1007/978-3-319-62105-0_13
https://doi.org/10.1007/978-3-319-62105-0_13
https://doi.org/http://dx.doi.org/10.1016/j.jnca.2015.11.017
http://www.sciencedirect.com/science/article/pii/S1084804515002908
http://www.sciencedirect.com/science/article/pii/S1084804515002908
http://dl.acm.org/citation.cfm?id=647325.721668
http://dl.acm.org/citation.cfm?id=647325.721668
https://doi.org/10.1145/2535838.2535889
http://doi.acm.org/10.1145/2535838.2535889
http://doi.acm.org/10.1145/2535838.2535889
https://doi.org/10.1109/SP.2011.39

	An OWASP Top Ten Driven Survey on Web Application Protection Methods

