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Abstract—Many of the interesting networks in the world are
collaborative networks, where nodes work together to accomplish
larger tasks than any one can complete by themselves. These
networks describe how we build things, how bees survive the
winter, how computers analyzes terabytes of data and how we
and computers can perceive the world. However, designing these
networks is difficult unless the task itself can be described
concretely. For instance structuring a corporation to maximize
profit may result in applying the current management trends then
refining based on returns.

In this work we want to explore the potential for topological
metrics that network designers can apply in designing their
systems. The metrics we chose to evaluate were betweenness
centrality, PageRank centrality, in/out degree distribution and
all pairs max flow. We use these metrics to evaluate networks of
various effectiveness from the realms of artificial neural networks,
naturally occurring networks and randomly generated ones.

We find that low variance in betweeness centrality and low
mode and mean of PageRank are signs of effective networks and
we see that there is a natural tendency for the flow of collaborative
networks to narrow from source to sink instead of the flow
spreading to use excess capacity later in the path. This leads
us to support a common held intuition for feedforward neural
network design, which is to determine the necessary capacity
of the final hidden layer and make the preceding networks
progressively wider. We believe that centrality is an important
quality of effective networks and see this work as evidence that
further work in this direction is a good idea.

I. INTRODUCTION

Collaborative networks appear in a huge variety of places.
They show up in how we manufacture goods, how we get
around, how we develop new knowledge and in naturally
occurring networks ranging from swarm-like organizations.
Much of what we depend on today is a result of collaboration
between many individuals. Very often we can see that the
efficiency or performance of collaborative systems is hindered
by the structure of the network, anecdotally when one works
in a team that has no clear leader or is too large and in the
literature of management practices [1].

A. Collaborative Networks

We take the definition presented in Camarinha-Matos et
al. as our definition of collaborative networks: “A collabo-
rative network (CN) is constituted by a variety of entities
(e.g.,organizations and people) that are largely autonomous,
geographically distributed, and heterogeneous in terms of their:
operating environment, culture, social capital, and goals. Nev-
ertheless these entities collaborate to better achieve common
or compatible goals, and whose interactions are supported by
computer network.” [2] and extend it to remove the limitation

on purely networks backed by computer networks. Notable
examples of collaborative networks include: Organizations,
online collaboration networks such as open source projects, the
ethereum network or the polymath project, natural symbiotic
systems such as those describing the dependencies between
plants and their pollinators and swarm systems. Artificially
constructed examples of these networks include, distributed
systems, and artificial neural nets.

1) Artificial Neural Networks (ANNs): In this work we
evaluate ANNs as they are a collaborative network which
is easy to design and evaluate. ANNs leverage very simple
computations to develop incredibly sophisticated capabilities.

A common simple example of an ANN is the multilayer
perceptron, which is an weighted directed acyclic computa-
tional graph. Each edge is weight corresponds to the impor-
tance of the activation of the node it originates from to the node
it enters. Non-linear functions filter the activation to give the
NN its function approximation capability. An example of a
multilayer perceptron is as follows:

y′ = wT
5 F (w4, b4, F (...)) + b5

where F (w, b, x) = relu(wTx+b) and relu(x) = max{0, x}

The weights of the network are determined through gradi-
ent decent however as we show later the architecture of the
network has an effect on where weights are high and where
they are low. Designing effective neural network architectures
is difficult and often relies on analogies to nature, framing of
problems and intuition. There has been work on using neural
networks to design other neural networks [3] but intentional
design of Neural Nets is still a standing problem.

B. Design of Collaborative Networks

The design of many collaborative systems up has a lot of
literature behind it, from observing successful organizations,
the way natural systems interact and other existing systems,
academia has come up with many theories on effective struc-
tures for collaboration. Often these have be summed up in
common rules of thumb, like the importance of centralized
decision making [4], the size of teams. [5] or adages like
C-Level executives having an open door policy to improve
productivity and moral [6]. Once a system has been created, it
is also common for these networks to slowly refine themselves
based on performance metrics (e.g. output, revenue, survival).
For naturally occurring collaborative networks, these systems
have been refined over generations through natural selection.



While this means that over time the efficiency of collaborative
systems is improving, there may yet be techniques and struc-
tures unexplored due to the nature of iterative refinement.

C. Topological Metrics to Aid in the Design of Collaborative
Networks

We in this work, examine the potential for creating topo-
logical metrics to aid in the design of collaborative networks
so that instead of relying purely experience, intuition and
refinement based on performance, designers of these networks
have solid design parameters to tune for the results they are
looking for. The features of networks are numerous and present
many different tunable parameters.

We have chosen to examine the role of bottlenecking
and betweenness centrality, to which we compare another
centrality metric - PageRank. In addition we also examine
in/out degree distribution and all pairs max flow on a variety
of networks each exhibiting a different level of effectiveness at
collaborating. Using these metrics we hope to see qualities that
emerge differentiating effective collaborative networks from
the rest. The ability to show that these metrics signify effective
collaboration could lead to a new set of tools to help designers
in the creation of new networks.

II. RELATED WORK

The metrics we have chosen to examine stem from ev-
idence shown in the literature, notable cases include the
evaluation of protein networks and of various artificial neural
nets lead us to believe that bottlenecking signifies effective
collaboration

A. The Role of Bottlenecks in Protein Regulation Networks

Yu et al. [7] show through an analysis of protein regulation
networks in yeast that bottlenecks in the network are correlated
with essential proteins. This was known about protein networks
before Yu et al.’s work however due to analysis approaches it
was not clear if the correlation was due the degree of nodes
in the protein network or the betweenness of nodes. Yu et. al
shows that it is indeed a factor correlated with betweenness in
particular.

B. Development of Specialized Nodes and Sub-Graphs and
Their Importance in Artificial Neural Nets

Radford et al. [8], Zhou et al. [9] and Guimar et al. [10]
show in their respective work that as a result of training, nodes
of artificial neural networks begin to segment the high level
task into smaller sub tasks, resulting in specific nodes and
sub-graphs tuned to recognize specific stimuli Guimar et al.
shows that in a network designed to predict chemical properties
of organic compounds specific nodes will ”[be] assigned a
specific task, either as a main predictor of the output or as
a correction factor”. Zhou et al. shows that in the training
of deep convolution neural nets, that they will ”automatically
discover meaningful object detectors, representative of learned
scene categories”. And Radford et al. 2017 demonstrates this
again with the analysis of recurrent neural nets used for text
generation, that through the training process a specific node

gets assigned the task of sentiment analysis. Furthermore,
Radford et al. shows that simply by fixing the output value of
the network, a positive or negative sentence can be generated
out of the entire network. This implies that specific nodes
are extremely important in the result of a neural networks
evaluation and gives us more confidence in the importance
of bottlenecks in networks

III. METHODS

To evaluate this hypothesis, we measured a set of metrics
on three classes of networks, artificial networks in the form
of ANNs, natural occurring networks and randomly generated
networks.

A. Measured Metrics

1) Betweenness Centrality: Betweenness centrality mea-
sures the number of geodesic paths that flow through a
particular node. This measure is analogous to the the amount
of bottlenecking is caused by the node. This metric is defined
by the following equation:

CB(v) =
∑

s 6=v 6=t∈V

σst(v)

σst

Where σst is the total number of geodesic paths from s
to t and σst(v) is the number of geodesic paths from s to t
which pass through v [11] [12]

2) PageRank Centrality: PageRank centrality measures the
probability of arriving at specific node by traversing edges.
Thus the higher the value of a node, the more “important” it is.
In particular the PageRank centrality of a node is derived from
the PageRank centrality of its neighbors, proportional to their
out-degree. The metric is defined by the following equation:

Cp(v) = α
∑
u∈Bv

Cp(u)

Lu
+

1− α
N

Where Bv is the set of nodes with edges pointing to v,
Lu is the number of outgoing edges from u and N is the
total number of nodes. α is a tuning parameter which controls
the residual probability that a node is randomly connected to
other nodes, to account for nodes which are just sinks (i.e. no
outbound edges). [13]

3) In/Out Degree Distribution: In degree, the measure of
how many directed edges are coming into a node, and out
degree, the measure of how many directed edges are starting
from a node, are used as comparative metrics to quantify the
differences between network structure.

4) All Pairs Max Flow: All pairs max flow was computed
by finding all sinks and sources within a network, and then
computing the flow between the pair of source and sink. To
measure all pairs max flow, we employ two algorithms, the
Edmonds-Karp Algorithm [14] and the Push-Relabel Algo-
rithm [15]. The Edmonds-Karp Algorithm is defined in X-A



and runs in O
(
V E2

)
. The Push-Relabel Algorithm is defined

in X-B and runs in O
(
V 3
)
.

The Edmonds-Karp algorithm is an implementation of the
Ford-Fulkerson method which takes a graph G(V,E) and for
an edge from vertex u to vertex v, there is a defined capacity
for the edge c(u, v) and f(u, v). To find the maximum flow
from a source s to a sink t, the Ford-Fulkerson algorithm
maintains flow conservation, and the value of the flow, defined
as
∑

(s,u)∈E f(s, u) =
∑

(v,t)∈E f(v, t), or the flow leaving
the source, must arrive at the sink. By applying this idea across
all paths from source to sink, we can find the path of maximum
flow. [16]

Push-Relabel max flow has two main operations, a push
operation during which a flow is pushed to a local neighbor-
hood of edges, and a relabel operation, during which edges
are actually modified to maintain maximum flow paths. The
push operation takes an admissible edge (u, v) and moves
min(xf (u), cf (u, v) flow from u to v. The relabel operation
analyzes all pushes from the previous operation and applies the
pushes such that sink conservation is as low as it can be. This
always increases the values of the edges, and finally allows for
a max flow path to be built into the network.

All of our network analysis was conducted with a software
package called Graph Tool [17]

B. Evaluated Networks

1) Artifical Networks: The artificial networks we evaluated
were 5 layer fully connected ANNs. The network was trained
on the task of converting a binary value of length 10 to a
decimal value [18]. For example, 1010101001 to 681. We
chose ANNs as our example of an artifical network over
something like an organizational hierarchy because ANNs
can be designed very precisely, have very clear performance
metrics and are quick to develop.

Three networks of this class were created with a constant
set of nodes: Narrow, Constant, and Wide. Each network has
the same amount of input (10) and output nodes (1). The
differences in the network were the number of nodes in each
hidden layer and as a result the number of edges in each graph.
The Narrow Net (as shown in Figure 1) starts wide in the first
hidden layer with 25 nodes and progressively gets narrower by
five nodes per layer for four layers (10 → 25 → 20 →
15 → 10 → 1).

The Constant Width Net (as shown in Figure 2) starts
wide in the first hidden layer with 18 nodes and stays that
width for four layers (0→ 18→ 18→ 18→ 18→ 1).

Finally, the Widening Width Net (as shown in Fig-
ure 3) starts wide in the first hidden layer with 10 nodes and
gets wider by five nodes for four layers (10 → 10 → 15 →
20 → 25 → 1).

All of our networks were implemented in and trained with
PyTorch [19] with 150 iterations of a dataset of binary and
decimal digits from 1 to 1024.

Figure 1. A. Narrowing neural network architecture B. Graph visualization
of the narrowning neural network

Figure 2. A. Constant width neural network architecture B. Graph visual-
ization of the constant width neural network

Figure 3. A. Widening neural network architecture B. Graph visualization
of the widening neural network

As a cursory performance evaluation to inform the discus-
sion below we also implemented MLPs with the same type of
layer scaling for the MNIST task [20]. The architectures we
used were:

• Narrowing Network: (784 → 800 → 600 → 400 →
200→ 10) Accuracy: 85% on MNIST

• Constant Width Network: (784 → 500 → 500 →



500→ 500→ 10) Accuracy: 58% on MNIST

• Widening Network: (784 → 200 → 400 → 600 →
800→ 10) Accuracy: 61% on MNIST

This leads us to consider the narrowing network as the
better collaborating network of the three.

2) Naturally Occurring Networks: The two naturally oc-
curring networks were used were an airport connection net-
work, where directed edges show connections between air-
ports [21], and the weights of the edges represent the amount
of traffic between the nodes. The second network is an ecology
network [21], where nodes are species in an environment,
edges represent dependence of one species on another, and the
weight is the amount of dependence of one species on another.
We see the airport network as a more collaborative network
as flights must share common resources (gates, runways,
airspace) and work together to get people where they are
going, as opposed to the ecology network which describes the
interactions between animals (i.e. which animals each which
others)

Figure 4. Visualization of the two natural networks evaluated in this study.
A. is the Airport connection network. B. is the ecological network.

3) Random Networks : Random networks were built using
a Poisson random distribution that determined both the degree
of each node, and the weight of each is defined as the inverse
of the Euclidean distance between two nodes in a Delaunay
triangulation layout. We use this network to represent an
optimized collaborative network.

Figure 5. An example of a random network analyized in the study

IV. RESULTS

A. Betweenness Centrality and Bottlenecking

Figure 6. Vertex and Edge Betweenness for the networks analyzed in this
work. From the top left: Narrowing NN, Constant Width NN, Widening NN,
Airport Network, Ecology Network and Random Network

As can be seen from Figure 7, most nodes in the tested
networks have a very low betweenness score, indicating that
there are only a few nodes through which many paths pass.
This means that there is a definite bottlenecking phenomenon
that is occurring in the tested networks, indicating a few nodes
control most of the flow through the network, i.e. that that a
few nodes can control the flow of information.

We also see that the betweeness edge distribution for the
two networks we see as the best collaboration networks have
smaller variance, signifying that most flow is unconstained but
there are a few nodes that see slightly more flow.



Figure 7. Edge and Betweenness distributions for the six evaluated networks.
From the top left: Narrow NN, Constant Width NN, Widening NN, Airport
network, Ecology network and random network

B. PageRank

We see when evaluating the PageRank centrality distribu-
tion (Figure 9) that our two good collaborative networks have
a mean and mode much lower than the other networks. This
further reinforces the idea put forward by the betweenness
centrality that there are a few important nodes but these nodes
do not dominate all flow in the network, but may nudge the
result significantly. In addition, visual inspection (Figure 8)
showed that similar bottlenecking structures existed within all
the analyzed networks, showing that flow through the networks
had similar dynamics.

Figure 8. Visualization of the PageRank of nodes in the graphs analyzed.
From the top left: Narrowing NN, Constant Width NN, Widening NN, Airport
Network, Ecology Network and Random Network

Figure 9. PageRank distribution for the nodes in the networks we analyzed.
From the top left: Narrowing NN, Constant Width NN, Widening NN, Airport
Network, Ecology Network and Random Network

Figure 10. In and out degree distributions for the networks analyzed in this
study. From the top left: Narrowing NN, Constant Width NN, Widening NN,
Airport Network, Ecology Network and Random Network

C. In/Out Degree Distributions

The In/Out Degree distributions for the analyzed networks
varied quite a bit, but this was beneficial as it showed that
even though the structure of the networks differed, the other
metrics remained constant between the networks. This shows
that our flow analysis, betweenness analysis, and PageRank
analysis can be verified between networks of various structures
as well.

D. All Pairs Max Flows

After all flows were computed, the maximum of these
max flows was graphed for analysis. A curious result was
gained from this analysis, as we found that networks naturally
tended to narrow as they went from source to sink instead of



spreading to utilize the extra capacity given to the network.
This means that information flow is condensed from a wide
array of nodes, into just a few nodes, usually ones that can be
identified through PageRank and Betweenness.

Figure 11. All pairs max flow for the networks analyzed in this study.
From the top left: Narrowing NN, Constant Width NN, Widening NN, Airport
Network, Ecology Network and Random Network

V. DISCUSSION

From these results, we can infer a few ideas. Centrality is
a important sign that separates more effective networks from
less effective ones. We see in both Betweenness and PageRank
a tendency for most nodes to have a low centrality, and a
few nodes to have a slightly higher centrality as opposed to
the other networks where the mean PageRank centrality and
the variance in the betweenness centrality is larger. The exact
nature of centrality and its role in effective networks is an area
for future study and it would be good to see if there is a way
to separate the correlation between PageRank and betweenness
centrality before we can purpose a particular course of action
for network designers. This leads us back to evidence found
in the literature about the role of bottlenecks. We saw that
effective networks do not bottleneck a large amount flow
through a few nodes, however they do select a few nodes to be
more “important” than the rest. While this is not what we were
expecting, it still is consistent with what is shown in Radford
et al. [8] and Guimar et al. [10] where there is assignment
“main predictors and correction factors.”

In addition to this, we saw through the maximum flow
path of the networks, that a network narrows, as it goes from
source to sink naturally. This was a surprising but welcomed
result as it serves to confirm some of the intuition applied to
neural network design. We see that instead of leveraging the
capacity provided later in the networks, the networks continue
to condense. This gives designer a metric to work with, which
is to make the hidden layer before the output layer has enough
capacity to encode the representation of the input data and
make the earlier hidden layers wider so that the network may
condense to a larger and more precise encoding. The narrowing

of the network also explains the larger varience in betweeness
centrality and the larger mean and mode of PageRank.

Combined, these results show that perhaps there are qual-
ities about the topology of effective networks that distinguish
them from less effective counter parts and a promising platform
for future work.

VI. LIMITATIONS OF THIS WORK

There are clear limitations of this work mostly caused by
the lack of computational power available. We were not able
to test a network representing the null hypothesis (a random
DAG [22]) for this experiment (our runtime kept crashing when
trying to run analysis on it). We would also like to have run
the full suite of metrics on a full sized neural network (e.g.
the MNIST network we describe in Section III-B1) instead
of a toy one and on large scale natural analogs like the mouse
visual cortex connectome. In order to do so we would most
likely need to implement a more powerful analysis suite using
something like a compute cluster or GPU computing. We also
only examined 4 classes of networks, to make a larger claim
about the nature of collaborative networks we would need to
analyze many more.

VII. CONCLUSION

In this work we set out to find a set of topological metrics
that could help inform network designers on ways to construct
their collaborative networks. We identified betweenness cen-
trality, and PageRank centrality as two measures worth looking
at. In addition we also mapped the distribution of the in and out
degrees of the networks we analyzed and we also determined
the all pairs max flow of the networks.

In doing so we saw that centrality is a metric which dif-
ferentiates effective networks from less effective ones, where
networks with low variance for betweenness centrality, and
low mean and mode for PageRank do better. This leads us
to believe that centrality is important in the effectiveness of
these networks and that highly bottlenecked networks are not
as effective as networks which are slightly less bottlenecked.
We saw evidence to support the findings of Radford et al.
and Guimar et al. that there are nodes that do much of the
work and others that serve to nudge the result slightly. We
also saw that these networks have a tendency to narrow flow
as they move further from the source, explaining why the
varience and mode and mean for betweennes centrality and
PageRank centrality respectively are higher in less performant
networks. Because of this flow result some of the intuition
commonly applied to network design, that being of start wide
and narrow/condense decision making is supported. Therefore
we recommend with designing at least feed-forward networks
to start by determining the necessary capacity for the output
layer then making each preceding layer progressively wider.
We think that this work may signal that there is potential to
add formalism to collaborative network design.

VIII. FUTURE WORK

We think there is a lot of potential for future work in this
direction. First of all evaluating more networks specifically
ANNs where every network is ensured that it has at least the



capacity of a performant network at each hidden layer, but in
general more collaborative networks is important to confirm
the result. It would be nice to see if there are cases where
the betweeness and PageRank centrality metrics disagree to
determine what actually matters in the network, the flow or the
number and “quality” of connections. We would also like to
evaluate more complicated and more varied networks like the
nature of skip connections in layered systems or investigating
ideas like churn in collaborative networks (i.e. dropout, job
change etc.). There are organizational hierarchy datasets out
there like those assembled by the US Government, however
a suitable performance metric should be determined for these
networks before analyzing them. The main variable we altered
in our artificial networks, the width of hidden layers had a large
impact on the number of edges in the network, so analyzing
constant edge networks would be interesting. There are other
metrics to measure like cohesion indices [23] and the fractal
scaling found in self organizing networks [24] and it would
be interesting to compare the qualitative findings of this study
with the measure of algebraic topological capacity shown in
Guss et al. [25] We would also be interested in looking at
developing or applying a notion of role centrality to analyzing
these networks. There also interesting applications of this
work, including identifying nodes susceptible to adversarial
attacks and designing mitigation factors, intelligent dropout
for the training of neural networks in addition to applying the
lessons learned to collaborative network design.

IX. ACKNOWLEDGEMENTS

We would like to acknowledge Professor Lav Varshney
for teaching the course on Network Science and for the
advice given in conducting this work. We would also like to
acknowledge the other students of ECE498LV whose helpful
suggestions helped us refine this work’s direction.

X. APPENDIX A

A. Edmonds-Karp Algorithm for Max Flow

@default

1 a l g o r i t h m EdmondsKarp (G, s , t ) −> ( F )
2 / / i n p u t :
3 / / G (G[ v ] s h o u l d be t h e l i s t o f

edges coming o u t o f v e r t e x v .
4 / / Each edge s h o u l d have a

c a p a c i t y , f low , s o u r c e and s i n k as
p a r a m e t e r s ,

5 / / a s w e l l a s a p o i n t e r t o
t h e r e v e r s e edge . )

6 / / s ( Source v e r t e x )
7 / / t ( S ink v e r t e x )
8 / / o u t p u t :
9 / / F ( Value o f maximum flow )

10

11 F := 0 ( I n i t i a l i z e f low t o z e r o )
12 do
13 / / Run a b f s t o f i n d t h e s h o r t e s t

s−t p a t h .
14 / / We use ’ p red ’ t o s t o r e t h e edge

t a k e n t o g e t t o each v e r t e x ,

15 / / so we can r e c o v e r t h e p a t h
a f t e r w a r d s )

16 q := queue ( )
17 q . push ( s )
18 p red := a r r a y ( g raph . l e n g t h )
19 w h i l e n o t empty ( q )
20 c u r := q . p o l l ( )
21 f o r Edge e i n g raph [ c u r ]
22 i f p r ed [ e . t ] = n u l l and e

. t [ ? ] s and e . cap > e . f low
23 p red [ e . t ] := e
24 q . push ( e . t )
25

26 i f n o t ( p r ed [ t ] = n u l l )
27 / / We found an augment ing p a t h

.
28 / / See how much f low we can

send
29 df := [ ? ]
30 f o r ( e := p red [ t ] ; e [ ? ] n u l l ;

e := p red [ e . s ] )
31 df := min ( df , e . cap − e .

f low )
32 ( And u p d a t e edges by t h a t

amount )
33 f o r ( e := p red [ t ] ; e [ ? ] n u l l ;

e := p red [ e . s ] )
34 e . f low := e . f low + df
35 e . r e v . f low := e . r e v . f low −

df
36 f low := f low + df
37

38 w h i l e p red [ t ] i s n o t n u l l / / ( i . e . ,
u n t i l no augment ing p a t h was found )

39 r e t u r n f low

Listing 1. Edmonds-Karp Algorithm



B. Push-Relabel Algorithm for Max Flow Implementation

@default

1 d e f r e l a b e l t o f r o n t (C , sou rce , s i n k ) :
2 n = l e n (C) # C i s t h e c a p a c i t y m a t r i x
3 F = [ [ 0 ] * n f o r i n x ra ng e ( n ) ]
4 # r e s i d u a l c a p a c i t y from u t o v i s C[

u ] [ v ] − F [ u ] [ v ]
5

6 h e i g h t = [ 0 ] * n # h e i g h t o f node
7 e x c e s s = [ 0 ] * n # f low i n t o node

minus f low from node
8 s een = [ 0 ] * n # n e i g h b o u r s seen

s i n c e l a s t r e l a b e l
9 # node ” queue ”

10 n o d e l i s t = [ i f o r i i n x r an ge ( n ) i f i
!= s o u r c e and i != s i n k ]

11

12 d e f push ( u , v ) :
13 send = min ( e x c e s s [ u ] , C[ u ] [ v ] − F

[ u ] [ v ] )
14 F [ u ] [ v ] += send
15 F [ v ] [ u ] −= send
16 e x c e s s [ u ] −= send
17 e x c e s s [ v ] += send
18

19 d e f r e l a b e l ( u ) :
20 # f i n d s m a l l e s t new h e i g h t making

a push p o s s i b l e ,
21 # i f such a push i s p o s s i b l e a t

a l l
22 m i n h e i g h t = [ ? ]
23 f o r v i n x ra n ge ( n ) :
24 i f C[ u ] [ v ] − F [ u ] [ v ] > 0 :
25 m i n h e i g h t = min (

min he igh t , h e i g h t [ v ] )
26 h e i g h t [ u ] = m i n h e i g h t +

1
27

28 d e f d i s c h a r g e ( u ) :
29 w h i l e e x c e s s [ u ] > 0 :
30 i f s een [ u ] < n : # check n e x t

n e i g h b o u r
31 v = seen [ u ]
32 i f C[ u ] [ v ] − F [ u ] [ v ] > 0

and h e i g h t [ u ] > h e i g h t [ v ] :
33 push ( u , v )
34 e l s e :
35 s een [ u ] += 1
36 e l s e : # we have checked a l l

n e i g h b o u r s . must r e l a b e l
37 r e l a b e l ( u )
38 s een [ u ] = 0
39

40 h e i g h t [ s o u r c e ] = n # l o n g e s t p a t h
from s o u r c e t o s i n k i s l e s s t h a n n
long

41 e x c e s s [ s o u r c e ] = [ ? ] # send as much
f low as p o s s i b l e t o n e i g h b o u r s o f
s o u r c e

42 f o r v i n x ra ng e ( n ) :
43 push ( sou rce , v )

44

45 p = 0
46 w h i l e p < l e n ( n o d e l i s t ) :
47 u = n o d e l i s t [ p ]
48 o l d h e i g h t = h e i g h t [ u ]
49 d i s c h a r g e ( u )
50 i f h e i g h t [ u ] > o l d h e i g h t :
51 n o d e l i s t . i n s e r t ( 0 , n o d e l i s t .

pop ( p ) ) # move t o f r o n t o f l i s t
52 p = 0 # s t a r t from f r o n t o f

l i s t
53 e l s e :
54 p += 1
55

56 r e t u r n sum ( F [ s o u r c e ] )
Listing 2. Python Push-Relabel Implementation
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