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1 ABSTRACT

The rebound effect is described as the circumstance where
gains through implementation of energy efficient technolo-
gies are potentially offset by increased usage patterns.
Such an effect may have implications on energy policy,
business or building management and consumer behavior.
Consequently, this has been an important subject of
scientific inquiry. Previous research has examined whether
there is an effect and what methodologies best measure it.
We seek to quantify the rebound effect by introducing a
new empirical methodology for observing and analyzing a
particular energy end use, lighting. We do so by leveraging
two areas of research at the NYU Center for Urban Science
and Progress Urban Observatory, particularly identifying
patterns in light usage with broadband imaging and clas-
sifying light bulb types by their spectral signature using
hyperspectral imaging. We bring these work streams to-
gether and integrate urban lightscape data with geospatial
data for the first time to address a research hypothesis as
to whether there is a significant variation in total lights on
duration for efficient versus non-efficient light technology.
While a statistically significant rebound effect was not
found, we were able to establish an empirical constraint on
the amplitude of the rebound effect upon which to base
future scientific inquiry. We were also able to quantify
light usage for several light types as well as establish an
analytical pipeline that shows promise as a new avenue for
empirical research into the rebound effect.

2 INTRODUCTION

New York City is known as the city that never sleeps, which
perhaps is a reason why energy consumption for residents in
the New York State topped 1,115 trillion British Thermal
Units (Btu) in 2015 Administration (2015) – enough to
produce approximately 327 billion kilowatt hours (kWh)
of electricity 201 (2017). Energy consumption is a global
concern, as worldwide consumption is projected to increase
by 48% in 2040 compared to the 2012 levels Singer and
Peterson (2016). It is therefore no surprise that significant
focus is placed on energy efficiency with substantial invest-
ment in both the public and private sectors. In 2016 the
United States alone invested $231 billion in energy efficiency
201 (2017). Such investments may include retail-focused
strategies for efficient lighting technologies, smart sensors

for HVAC, and better insulation materials for roofing,
among others.

It is also no surprise that much attention has been given
to understanding the dynamics of energy efficiency and
consumption, which can be difficult to characterize. In as
early as 1865, Jevon’s Paradox stated “when technological
progress increases the efficiency with which a resource is
used, the rate of consumption of that resource rises because
of increased consumption and demand” Polimeni (2012).
The modern term for this is the “rebound effect.”

Unfortunately, not only are the dynamics of energy
efficiency and consumption complicated, but empirical data
is sparse and existing research can contain potential biases
Sorrell and Dimitropoulos (2007), Sorrell et al. (2009).
Critics of research on the rebound effect claim that it is
widely overstated and can be a distraction from the cause
of conservation Gillingham et al. (2013). Indeed the field of
energy efficiency and economics has advanced greatly since
Jevon first made his claim in 1865. For reasons explored in
more detail later in this paper, it is clear that the definitions
of the rebound effect and the approaches to measure it are
quite varied and in need of more data as well as robust
constraints with which to frame scientific research, such as
hypothesis testing.

Fortunately, just as technological advancements are
made in energy efficiency, so too are advancements in scien-
tific inquiry. Progress with remote sensing instrumentation
and technologies for collecting data, greater computational
resources, and statistical learning methods can be brought
to bear on issues such as the rebound effect. Indeed, the
field of urban informatics, defined as “the study, design,
and practice of urban experiences across different urban
contexts that are created by new opportunities of real-time,
ubiquitous technology and the augmentation that mediates
the physical and digital layers of people networks and urban
infrastructures,” Hinds et al. (2011) shows tremendous
promise for just this sort of inquiry.

We leverage advanced lightscape imaging survey meth-
ods pioneered by the Urban Observatory (UO) at the New
York University Center for Urban Science and Progress
(CUSP) to carry out the first empirical observation of the
rebound in Brooklyn, New York. Specifically, we determine
if significant variance in light use exists between users of
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conventional and energy efficient technology. We developed
and tested the methods in the analytical pipeline required
to carry out this analysis and have collected 29 nights’
worth of raw image data. We contribute to technical
methods of light source identification, classification, and
integration with existing records data as well as constructs
an analytical pipeline that can be used in other aspects of
UO research.

3 LITERATURE REVIEW AND PREVIOUS
RESEARCH

3.1 Rebound effect

A key premise to the rebound effect is the implication that
energy efficiency has a price content, such that “we may
expect the energy price reduction that increased efficiency
entails to exert an upward pressure on the demand for
energy. This pressure will partly offset, and may more
than offset, the energy saving that results from improved
appliance efficiency” Khazzoom (1980).

Berkhout et al. (2000) provides a more thorough
breakdown of the effect:

• technological progress makes equipment more energy
efficient, therefore

• less energy is needed to produce the same amount of
product, using the same amount of equipment; however,
not everything stays the same, therefore

• the equipment has become more energy efficient, which
causes the cost per unit of services of the equipment to fall,
i.e. a price decrease, and

• a price decrease normally leads to an increase in
consumption, therefore

• an increase in energy consumption may occur due to
increased efficiency, which quantifies the rebound effect.

If the net usage of the product, such as lighting, is
large enough then the increase in energy consumption may
actually exceed the energy saved through efficiency com-
pletely, leading to an overall net increase in consumption
compared to non-efficient technology.

The rebound effect can be broadened to include macroe-
conomic as well as microeconomic effects. These might
include market-clearing price and quantity adjustments
and even transformational effects in energy production and
social conventions for energy use Greening et al. (2000). We
remain focused on micro-economic behavior; however, it is
worth noting that even if direct rebound effects are small,
an aggregated impact could be non-trivial.

Empirical studies of the rebound effect generally fall

into two categories: quasi-experimental and economet-
ric Sorrell et al. (2009). Quasi-experimental studies attempt
to directly measure the rebound effect by comparing energy
demand before and after adopted energy efficient technol-
ogy. This is done either by measuring the direct output of
the technology, such as heating or lighting, or the energy
input, such as fuel or electricity. In either case, obtaining
direct measurements is exceedingly difficult. Most studies
surveyed used within-group before-and-after comparisons
instead of including a control group Sorrell et al. (2009),
which makes them prone to bias Frondel and Schmidt
(2005), Meyer (1995). Since households must opt-in to these
studies, there is also a selection bias Hartman (1988). This
is particularly problematic given two key counterfactuals
that must be assessed: what the energy use would have
been had the technology not been put in place, which is
a measure of energy savings; and subsequently, what the
energy use would have been had there not been a change in
behavior, which is the rebound effect.

While engineering methods can help determine the
energy saved through efficient technology, without the
ability to approximate a randomly assigned controlled
study or generate enough data, it is unlikely such studies
could produce a statistically valid result for the rebound
effect. For these reasons, econometric approaches are more
common. They use secondary data sources to estimate the
rebound effect, typically by estimating elasticities. Elastic-
ity is the change in a particular variable, such as energy
demand, following a change in another, such as energy
efficiency, when all other variables are held constant Sorrell
et al. (2009). Several common definitions of the rebound
effect leverage energy efficiency, energy cost, and energy
price elasticity with regard to useful work and demand for
energy Sorrell and Dimitropoulos (2007).

Elasticity by definition requires that all other variables
be held constant, opening these econometric approaches
to bias and confoundedness. For example, while a general
assumption may be that consumers react to a decrease in
price by increasing consumption, it could also be true that
energy-conscious consumers would not increase consump-
tion despite cheaper energy. Alternatively, it is possible
that the perception of saving energy leads consumers using
efficient technology to feel more comfortable using more
energy, independent of cost or even demand for useful work.
While investments in energy efficiency do not necessarily
translate into decreased energy consumption (or vice versa),
it is an indication that this is not a straightforward matter
and favors a more direct empirical inquiry into actual usage
behavior.

3.2 Urban informatics and remote light sensing

Observing light remotely can improve upon previous
methodologies, such as by reducing selection bias and
obtaining a sufficiently large and varied sample size of
both energy efficient lighting technology users (treatment
group) and non-users (control group) to allow for more
robust statistical assumptions, rather than before-and-after
comparisons. Integrating remote observations with the
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existing data can further improve statistical assumptions by
conditioning on these covariates, such as income or building
type.

Remote sensing allows direct independent observation
of precisely when and with what type of technology lights
are used. The benefits of measuring lighting use as it
relates to urban characteristics have been demonstrated,
although some key challenges include lack of data, partic-
ularly with more precise spatial resolution Hale et al. (2013).

A report on energy use in New York City suggested
that improved lighting technologies could greatly reduce
overall energy consumption, estimating that 13% of the en-
ergy use within benchmarked buildings of all types in New
York City was used for lighting. However, that same study
acknowledged that this estimate was based on a survey of
professional auditors’ assessments of lighting use by floor
size and not directly measured data Council et al. (2016).
Identifying a way to measure its use directly could have
a great benefit to better characterizing the impact of in-
vestments in energy efficiency lighting technology. Previous
research by the UO has laid a foundation for such an inquiry.

The UO first provided light curve extraction from
images of a city lightscape Dobler et al. (2015), identifying
unique light sources from broadband images of Manhattan
and analyzing their light curves for major “on” and “off”
transitions with a modified version of Canny’s edge detec-
tion approach Canny (1986). The UO’s subsequent survey
of hyperspectral images of Manhattan used advanced
imaging technology, a single slit spectrograph with 872
spectral channels from 0.4–1.0 μm Dobler et al. (2016). The
resulting spectra were clustered into groups with similar
features in the wavelength domain and correlated with
spectra of known light sources. This method successfully
classified 13 types of lighting used in the observation
field and even proposed new spectral templates of light
classification. These efforts demonstrate how an approach
for quantifying the light use for specific lighting technologies
can be developed by calculating total “on time duration”
for light sources based on their on and off transitions and
comparing these on times across lighting types.

We extend the previous UO studies with respect to
urban lightscape analysis in several ways. First, we add
to the corpus of data with an observation field of view
that has less density and lower building structure than
Manhattan. This more common building typology facili-
tates replication in other urban areas without Manhattan’s
unique profile. Second, we integrate both broadband images
and hyperspectral images, which were previously analyzed
separately, using these independent imaging techniques
to facilitate source identification and classification. Third,
we map these images with a three-dimensional projection
of the built-environment by leveraging photogrammetry
techniques. This allows for integration with public records,
such as building and socioeconomic and demographic
(SED) data. Finally, this research enhances, automates, and
further validates several techniques for image processing,
particularly by:

Figure 1. Figure 1. The hyperspectral camera (on the left) and

the broadband camera (on the right) used to collect observed
data. The cameras are shown here in the approximate orientation

in which they captured data from a field of view south of the
CUSP facilities at 1 Metro Tech Center, Brooklyn.

• improving upon and automating methods for light
source extraction and interpretation of light curves to
isolate on and off transitions and lighting use behavior;

• integrating both broadband images and hyperspectral
images; and

• projecting light sources onto a 3-dimensional LiDAR
model of the cityscape to enable integration with Primary
Land Use Tax Lot Output (PLUTO), which could be
used to differentiate between residential and commercial
buildings

4 DATA COLLECTION

This project is founded upon primary data collection, which
represents an important contribution for the field of urban
informatics as well as provides insight into methods of in-
strumentation and raw image data processing.

4.1 Broadband imaging

We began broadband image collection on the evening of
June 25, 2017 and continued through the evening of July 23,
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Figure 2. Figure 2. Approximate broadband imaging field of
view over Southern Brooklyn A range of residential building types

is visible, including the Gowanus Houses public housing complex

in the center of the view.

2017 for a total of 29 consecutive nights of data. For each
night during the observation period, the broadband camera
scanned the view shown in Figure 2 every 10 seconds from 9
pm to about 6 am, for a total of approximately 3,200 images
per night. The raw images stored in the CUSP data facil-
ity are in 3-color (RGB) format with dimensions of 3072 x
4096 pixels. Each image is a composite of 20 exposures of
approximately 34 milliseconds (ms) each for total exposure
of approximately 680 ms per image. Each image scan is ap-
proximately 12 Megabytes (Mb). If 3,200 scans are collected
in a given night at 12 Mbs per scan, about 38.4 Gigabytes
(Gb) of data are produced that night alone. Approximately
1.1 Terabytes (Tb) of data have been collected from broad-
band image scans in the 29 night collection period.

Aside from the challenges of collecting, processing and
manipulating such large datasets, the nighttime images have
a low signal to noise (S/N) ratio that makes analysis and
classification of particular sources difficult. Furthermore,
the classification must rely upon unsupervised techniques
as labeling data through human-annotated “ground truth”
methods is not practical. This not only makes light source
identification, classification, and on/off transition mea-
surements challenging, but renders traditional methods of
algorithm evaluation inadequate.

The broadband images in this research were used
primarily to identify specific light sources within the image
plane, which were registered with a shared frame of refer-
ence for the hyperspectral images and the three-dimensional
LiDAR model, and to measure the duration of lighting use,
particularly the total on time duration of a given source,
which constitutes the dependent variable of the research
hypothesis.

4.2 Hyperspectral imaging

Hyperspectral imaging (HSI) is a remote sensing technique
through which we collect high resolution spectral data that
can be used for various detection purposes. Several scientific
studies Elvidge et al. (2010), Dobler et al. (2016) relating
to urban context in the past used HSI for lighting type de-
tection. The aforementioned Dobler et al. (2016) describes
a novel approach adapted from astronomical techniques
to detect lighting types in an urban landscape using a
hyperspectral sensor. Dobler et al. (2016) also described
the nuances associated with the post-processing of the

Figure 3. Figure 3. Relative Intensities of a light source across

848 wavelength channels between 400-1000nm

Figure 4. Figure 4. 2D representation of a hyperspectral scan

with light sources

hyperspectral scans to extract the clean spectral informa-
tion of various sources in the field and subsequently the
identification of lighting types. Adopting a similar pipeline,
this project uses the hyperspectral scans to match the
usage information of sources obtained through broadband
imaging with the corresponding lighting type, to measure
the rebound characteristics across the lighting types.

The UO has a VNIR (Visible Near Infra Red) Hyper-
spectral Imager with a spectral range of 395-1008 nm. It
is a vertical slit aperture instrument that collects a narrow
beam of light that gets split by a prism into 848 hyperspec-
tral channels with a spectral resolution of less than 1 nm
(Figure 3). It uses a horizontal pan mechanism to sweep
through the field of view and in our case takes ˜160 sec-
onds to capture one complete scan of our subject field. The
digital output from the camera is a raw file with 848 (num-
ber of spectral channels) x 1600 (pixel rows) x 3194 (pixel
columns) dimensions. Each hyperspectral scan is about ˜8.2
GB. The camera captured a set of 15 observations on the
night of May 26, 2017, producing ˜123 GB of data in one
night. These scans were used to identify the spectra of var-
ious light sources within the scene (Figure 4).

4.3 LiDAR point cloud data

In addition to collecting broadband and hyperspectral data,
we used existing external data sources to identify physical
locations of each identified light source. Specifically, a Li-
DAR (Light Detection and Ranging) scan collected by the
private mapping company Sanborn for the City University
of New Yorkserved as the data source to map the topog-
raphy of the observed scene to image pixels. The LiDAR
dataset is from 2010 and thus may not include buildings
that were built in recent years. However, establishing an an-
alytical pipeline using the LiDAR data ensures that the work
can be easily replicated once the next dataset becomes avail-
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Figure 5. Figure 4. Rasterized LiDAR point cloud data of
Brooklyn (left) and a zoomed-in view of Brooklyn and Manhattan

bridges (right)

able (expected in fall 2017). The LiDAR data is segmented
into tiles that cover all five boroughs of NYC at a roughly
1 foot spatial resolution. We selected the tiles containing
the Brooklyn view and rasterized them into a spatial grid, a
matrix of cells organized into rows and columns, where each
cell contains elevation information (Figure 4).

5 METHODOLOGY

We propose a testable research hypothesis that there are
observable differences in the lighting use of users of energy
efficient technologies compared to users of non-efficient
technology. The null hypothesis states that there is no
significant difference in total light use—measured as the on
time duration of light—between the users of energy efficient
lighting and users of non-energy efficient lighting. Rejecting
the null hypothesis would indicate a possible effect.

5.1 Source extraction

Prior to identifying light sources, we removed daylight
images from the dataset by taking the average luminosity
of an entire image and omitting any images with average
light intensity greater than 0.5 (arbitrary) light units above
the mean of the entire night, which resulted in omitting
approximately 1,000 images, or 167 minutes of data from
each night for the final analysis. The resulted in 2,600
images per night over a time period approximately from
9:16 pm in the evening to 4:30 am the following morning.

Previous UO research relied on a manual method for
extracting light sources Dobler et al. (2015). To expand
upon this, we used the time dependence of individual
pixels to determine which pixels can be associated to the
same source. The intuition is that a light turning on or
off would cause higher correlation in contiguous pixels, so
highly correlated neighboring pixels were grouped together
as a light source. While factors such as camera drift may
increase correlation over time, a sufficient threshold would
filter these pixels out. Additionally, integration with pixel
spectra data will further filter out data not likely to be a
unique light source. As such, not only would this technique

Figure 6. Figure 5. Temporal correlation of pixels (Left) A dat-

acube represents time series of light intensity values for a pixel

p at location (x, y) throughout the images in time (t); (center)
correlation coefficients of neighboring pixel time series’ are cal-

culated; (right) highly correlated pixels are grouped and labeled

as a unique light source and their location is preserved in a 2D
boolean mask.

automate the light extraction process, but reduces prepro-
cessing needed to clean noise.

To identify sources, we loaded images as a data cube
of light intensity values for each pixel over all images in
time at 1 minute increments. Each pixel time series was
standardized by subtracting the mean from each intensity
value and dividing by the standard deviation. The stan-
dardization was done for each night over 7 nights, June 25,
2017 through July 1, 2017, to produce an aggregated data
cube of 3,031 images (7 nights, 433 min a night) x 3072
pixel rows x 4096 pixel columns. Future work should also
apply a Gaussian filter over these time series to smooth
patterns in the light curves.

The aggregated time-series vector of each pixel was
multiplied and averaged by the pixel to the right, < pij ·
pij+1 >, and below, < pij ·pi+1j >, in order to identify cor-
relation of light intensity in time. Highly correlated pixels
were considered components of the same light source. We
calculated the mean light intensity across pixels in the light
source, which we then used to extract the light curve of the
given light source. Figure 5 visualizes the steps to create the
boolean mask that identifies light sources.

Each group of contiguous pixels in this boolean mask
were given unique labels that would be used to index in-
dividual light sources. With a threshold of 0.60 correlation
over observations from June 25 to July 1, this method
identified 6,870 possible light sources.

This technique performed well and indicates a promis-
ing new approach for future research, though we recommend
further improvements such as including parallelization of
the correlation algorithm to more efficiently handle the
large memory footprint of multiple weeks worth of broad-
band imaging. Most important would be the introduction
of a method for ground-truthing, such as randomizing
pixels to identify a minimum noise threshold, or employing
human-annotated labels.

5.2 Light curve extraction and on/off transition
detection

The source extraction process preserved pixel location for
light sources in the original raw broadband images so that
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Figure 7. Figure 6. A single source light curve for a single night
This light curve features a prominent “off” transition before mid-

night. Not all light curves will have such clean transitions.

Figure 8. Figure 7. Key steps to detect on and off transitions

The original light curve (top) is smoothed with a Gaussian opera-

tor, upon which the derivative is taken (2nd from top), from which
extrema are found in positive directions to indicate “on” (3rd

from the top), and negative directions to indicate “off” (bottom).

Not pictured are the intermediary steps to amplify the transition
and increase the signal / noise ratio.

the light curves could be extracted over all 29 nights of the
observation period.

On and off transitions were detected following the
adopted Canny edge detection method Canny (1986) that
was used in earlier UO work Dobler et al. (2015). Noise was
suppressed by convolving each light curve with a Gaussian
filter and taking the first derivative of the result. The ex-
trema of these derivatives indicate on and off transitions.
Following Dobler et al. (2015), we conducted robustness
tests to ensure a clear signal. First, the mean and variance
of the signal were tightened by removing values outside 2σ,
re-calculating the mean and variance to “clip” the distribu-
tion; this was iterated ten times. This adjusted distribution
was used to identify values outside 10σ which indicated pos-
sible transitions. Second, the mean values for the 5 minute
period before and after each edge was calculated and corre-
lated with the change in light intensity, with a high corre-
lation indicating that the transition exceed the surrounding
noise. We used only the on and off transitions that passed
these robustness tests in the final analysis. It is worth not-
ing that of the 196 light sources classified, only 7 failed to
produce adequate enough on and off transitions to calculate
on time duration.

We seek to understand light usage behavior, particular
the lights on duration. A quick examination of a particu-
lar set of light sources, the Gowanus Houses, a New York
City Housing Authority (NYCHA) complex, revealed possi-
ble patterns in residential light usage over the course of the
29 night observation period. The Gowanus Houses were vi-
sually identified in the broadband image and sources within

Figure 9. Figure 8. Light curves from June 27, 2017 The left
plot shows light curve intensities (normalized) as sorted by the

last off transition of the night. The right plot shows only light

sources classified by type (n = 196) on the same night, where
some steep drop-offs are visible indicating several sources turned

off in around the same time.

Figure 10. Figure 9. Nightly on and off transitions per 30 min-
utes for Gowanus Houses The plots above show the patterns

of on transitions for nights of the week (top row) and off tran-

sitions (bottom row). The difference in on distributions and off
distributions is apparent on typical weekdays. Distinct weekday

vs weekend activity is visible as is anomalous activity leading up
to and during the Independence Day holiday on Tuesday, July 4.

that area were selected (n = 166).

5.3 Lights on duration

Our dependent variable is the total lights on duration. This
was calculated for each unique light extracted from the
broadband mask using the time index of the on and off
transitions. For a given light source, for each night n ∈ N
(N = 29), for each on or off tag per night t ∈ T , (T =
the total on and off tags of a particular night), the total
duration for the source is:

=
∑N

n

∑T
t nt − nt−1, if nt = off and nt−1 = on

Some light curves may have multiple consecutive on
transitions or multiple consecutive off transitions, so a log-
ical framework was incorporated to preserve the previous
state such that the above formula aggregated the total on
duration across such on and off transitions, as illustrated in
Figure 10. The assumption for this work being that inter-
mediate on and off transitions represented changes in light
intensity, but not a complete on and off transition. Such an
example may be a shade drawn, etc. Such edge cases can
be complicated, and warrant further improvements to the
duration method.

5.4 Image registration of broadband and
hyperspectral sources

Image registration is a process of overlaying two or more
images of the same scene taken at different times, from
different viewpoints, and/or by different sensors. The aim
is to integrate information from multiple observations of
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Figure 11. Figure 10. Single light curve with multiple consecu-

tive on and off transitions Challenging cases appear when a light
source has an off transition followed by another off transition.

Such transitions were assumed to be variations of the same light

source and the algorithm was designed to aggregated all inter-
mediary transitions as a total on time, as indicated by the red

arrows.

Figure 12. Figure 11. The figure shows the input image trans-

parently overlaid on the reference image. The displayed image is

taken from Loomis, John. (2009)

the same system. For this project, the imaging devices were
deployed in interior locations. Thus, because the cameras
were perfectly stationary (e.g., there were no vibrations
due to the wind as there were in Dobler 2015) registration
between images from the same camera was not required.
We verified that such offsets were <1 pixel from the start
time to end of our broadband and hyperspectral observa-
tions. However, registration between the broadband and
hyperspectral images was necessary to associate individual
sources.

In order to identify corresponding sources in both
hyperspectral and broadband imaging, for each labeled
pixel in the broadband source mask, the corresponding hy-
perspectral pixel was found by co-registering the broadband
and hyperspectral images. Since the broadband images have
a higher spatial resolution (3072 x 4096 pixels) than hy-
perspectral images (1600 x 3194 pixels), the pixel centroid
locations were rescaled prior to registration. The scaling
factor was calculated by comparing the distances between
seven scattered sources in broadband and hyperspectral
images.

The process of image registration typically includes two
images: the first, called the reference image, is considered the
reference to which the other images, called input images, are
compared (Figure 11). The objective of image registration
is to bring the input image into alignment with the refer-
ence image by applying a spatial transformation to the in-
put image. A spatial transformation maps locations in the
reference image to new locations in the input image. Deter-
mining the spatial transformation parameters, mainly row
offset, column offset and vector rotation to bring the input
image into alignment is the key to the image registration
process (Figure 12).

Image registration is a sequential process and it begins
with extracting sources from the input image and calculat-
ing quad of sources (4 sub-groups of sources) from the ex-
tracted sources by comparing the distances between sources

Figure 13. Figure 12. The figure shows rotation and offset ma-

trix used to calculate row offset, column offset, and vector rota-

tion.

Figure 14. Figure 13. The figure shows graphical iIlustration of

the image registration process

in the catalog and the ones identified in the input image.
Subsequently, relative angular separations of sources found
in the quad were tested with the constellation of sources in
the catalog and row offsets, column offset and the vector
rotation was calculated using rotation matrix from linear
algebra (Figure 12). We used the resulting parameters to
spatially transform the input image in order to bring it into
alignment with the reference image (Figure 13).

The diagram below represents the graphical illustration
of the process.

As noted, the hyperspectral camera sweeps through the
field of view and the frame rate of the camera and pan
rate of the pan/tilt mechanism are not constant across one
complete scan, so the pixels in the scans are not square or
uniformly shaped. In order to compensate for this, another
scaling factor was calculated and aspect ratio of the hyper-
spectral pixels was corrected accordingly. Subsequently, the
column pixel locations of sources in broadband were divided
by this scaling factor in order to scale them down to the
pixel configuration of the hyperspectral image (Figure 14).
After applying these scaling factors, the broadband mask
was registered onto the hyperspectral mask by calculating
the row offset, column offset, and the vector rotation.

Due to the low spatial resolution of the hyperspectral
images relative to the broadband images, image registration
distorted and shrank the light source groups, so we removed
all sources smaller than 20 pixels from the broadband
source list. This resulted in 1,265 sources in the final mask
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Figure 15. Figure 14. The figure shows the conversion of broad-

band mask (3072 x 4096 pixels, 6870 sources) to hyperspectral

mask (1600 x 3194 pixels, 1265 sources)

Figure 16. Figure 15. The registered broadband mask super-

positioned on the hyperspectral mask. The corresponding sources

in both hyperspectral and broadband imaging for each labeled
pixel were identified. The red color indicates sources not present

in broadband but in hyperspectral, whereas the blue color indi-

cates sources present in broadband but not hyperspectral. Purple
indicates sources that were present and aligned in both.

with which to classify lighting types from the hyperspectral
images.

5.5 Source type identification

Source type identification was accomplished using the
hyperspectral scans, in a 4 stage process as described below.
The final lighting types obtained from this process were
eventually used for rebound analysis.

Stage 1 - Stacking hyperspectral scans: The hy-
perspectral scans typically consist of detector noise that ob-
scures the spectral information contained in it leading to
low signal to noise ratio (Figure 16). In order to reduce the
effect of noise and enhance the signal to noise ratio, multi-
ple hyperspectral scans are stacked together to compute the
mean spectral intensity for each pixel in each channel. Since
the detector noise is random, this process of computing the
mean intensity of multiple scans suppresses the noise. We
collected 15 hyperspectral scans on May 26th, 2017 between
10-11PM, which were stacked together for further analysis.

Stage 2 - Dark current suppression : Dark current
is another type of instrument-based noise that was observed,
which needed to be cleaned to obtain the true spectra from
the light sources. Unlike the detector noise which is evenly
distributed in all spectral channels, dark current is unevenly
distributed across the spectral dimension as illustrated in
the Figure 18 below. In order to compensate for this, we
adopted the 3-sigma clipping technique mentioned in Dobler
et al. (2016). 3-sigma clipping is a process by which the me-
dian of each row/column of the scan across each spectral
channel is computed by masking the pixels with intensities

Figure 17. Figure 16. Spectrum of a pixel from raw hyperspec-

tral scan having low signal to noise ratio

Figure 18. Figure 17. Spectrum of a pixel from stacked hyper-

spectral scans with improved signal to noise ratio

greater than 3 sigma with in channel multiple times (n=10)
and subtracting that median intensity value from the respec-
tive row/column of each channel. This process ensures that
the unevenly distributed noise gets suppressed and there by
true source spectra are obtained.

Stage 3 - Extract mean spectrum for each
source based on registered source mask: In order to
extract the characteristic spectra for each of the lighting
source in the broadband pipeline, we compute the mean
spectrum for each source across pixels comprising the light
source.

Stage 4 - Correlate source spectra to lab spec-
tra: The final clean source spectra obtained from the pre-
vious three stages was correlated with lab spectra of known
lighting types. National Oceanic and Atmospheric Adminis-
tration (NOAA) Elvidge et al. (2007), Elvidge et al. (2010)
has published a catalog of high resolution lab spectra be-
tween the 100-2500nm spectral range for 43 lighting types
falling into 9 lighting categories i.e high pressure sodium,
LED, fluorescent, low pressure sodium, oil, metal halide,
halogen, incandescent and pressurized gas respectively. From
this set of spectral templates we identified 17 sufficiently dis-
tinct lighting types. We then correlated our source spectra
with these 17 distinct NOAA spectral templates. Each of

Figure 19. Figure 18. Mean spectrum of complete hyperspectral

scan indicating dark current in lower wavelength channels
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Figure 20. Figure 19. Mean spectrum of complete hyperspectral

scan after cleaning using 3 sigma clipping

Figure 21. Figure 20. Source types detected for different lighting

sources and the corresponding lab spectra

the sources was labeled with the type of the lab spectra
template with which they correlated the highest. It should
be noted that Dobler et al. (2016) also identified other new
lighting types through clustering techniques that were not
categorized within the NOAA catalog. Through this process,
we were able to correlate and match 196 sources at a cor-
relation threshold of 0.35. Figure 20 illustrates a few source
spectra and the corresponding lab spectra they were found
to be correlating with. Subsequently, the bar chart in Figure
21 illustrates the counts of different lighting types identified
among the 196 sources at 0.35 threshold.

5.6 Point cloud data and image integration

A key to estimating the rebound effect is understanding the
interaction between energy efficient lighting technologies
and socioeconomic and demographic (SED) characteristics
of the underlying population that uses these technologies.
Previous, survey-based studies have concluded that, in
addition to physical characteristics of buildings, certain
household characteristics affect energy consumption Jones
et al. (2015). In particular, household income, age com-

Figure 22. Figure 21. Count of source types detected vs the

lighting types

position, and educational level have a significant effect on
energy consumption. Therefore, one can expect the size of
the rebound effect to vary for different SED groups and
building types.

To further explore this relationship, it is necessary to
map observed light sources and their corresponding lighting
types to exact geographic locations in the physical space.
This would enable the extraction of zoning types as well as
SED characteristics of the underlying populations that use
the lighting technologies and exhibit on and off patterns
we observe in the scene. The process of obtaining SED
characteristics of the observed cityscape is a multi-step
process involving external datasets and such techniques as
rasterization, photogrammetry, and spatial joins.

Photogrammetry is the science of obtaining reliable
information about the properties of surfaces and objects
without physical contact with the objects Schenk (2005)
or, put simpler, is the science of obtaining measurements
from photographs. The relationship between coordinates
in an image plane (in two dimensions) and coordinates
in an object space (in three dimensions) can be modelled
using mathematical models, namely collinearity equations.
In this work, we used collinearity equations to model
transformation from each pixel coordinates in the UO
broadband image to the x, y, and z coordinates in the
physical space.

The projection algorithm takes as inputs the image
pixel coordinates as well as seven parameters of the camera:
x, y, and z location coordinates, yaw, pitch, roll, and
focus. In order to obtain the seven camera parameters,
we implement a camera optimization algorithm. This
algorithm takes as inputs image pixel coordinates of several
unique points of reference, called “fiducial” points, as well
as their corresponding coordinates in the LiDAR dataset,
and outputs the seven degrees of freedom of the camera
(Figure 22). To identify optimal camera parameters, we
chose eight fiducial points, which are well-spaced in the
image, including buildings close as well as far away from
the camera. We then identified the corresponding x, y, z
coordinates of these points in the LiDAR dataset (Figure
23). Both sets of fiducial points are represented as red dots
in Figures 22 and 23.

We chose the initial parameters of the camera by an
informed guess (approximate camera location on the 19th
floor of 1 Metro Tech Center pointing south). These values
are then used in the collinearity equations along with the
coordinates of the eight LiDAR fiducial points to evaluate
if the projected values are matching the pixel positions of
the fiducial points in the image. The mean squared error
between the fiducial points in the image and the projected
LiDAR coordinates for each point is minimized by adjusting
the seven camera parameters using gradient descent. This
process is then iterated several times (with different initial
guesses) in order to obtain a minimum value for the error
term. The parameters corresponding to the function with
the minimum error value are chosen as camera parameters
for the photogrammetry. To visualize the goodness of fit of
the chosen parameters, we plotted projected fiducial points
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Figure 23. Figure 22. Eight fiducial points identified in the

image (red dots) and projected LiDAR coordinates (yellow dots)
used to optimize camera parameters

Figure 24. Figure 23. Eight fiducial points in the LiDAR dataset
(in red). 1 Metro Tech Center (in green) is included for perspec-
tive.

on the image as yellow dots (Figure 22).

Once we optimized the camera parameters, we passed
them along with the image dimensions into the collinearity
equations, which converted the two-dimensional pixel coor-
dinates into three-dimensional coordinates for a given dis-
tance from the camera. This is done using a transformation
matrix containing the seven degrees of freedom of the cam-
era and the collinearity equations. The photogrammetry al-

Figure 25. Figure 24. Distance between projected points and the
camera. The color coding goes from red to blue in a continuous

cycle. Notable that buildings that were built after 2010 are not

included in the projection (e.g. the closest building in the bottom
right corner of the image).

gorithm projects x, y and z coordinates at one foot distance
from the camera and checks whether at a given location,
there exists a point in the LiDAR dataset that has higher
elevation than the projected one. Of those points in space,
the algorithm then stores the points closest to the camera.
The algorithm returns three n-dimensional arrays as out-
puts: x and y coordinates of projected points as well as the
distance in feet between projected points and the camera
(Figure 24). The projected x and y coordinates (latitude
and longitude) then allow us to map every pixel to a corre-
sponding BBL using MapPLUTO shapefile for Brooklyn.

6 RESULTS AND IMPLICATIONS

6.1 Results

Taken together, the separate work steams produced a
dataset of light sources classified by the lighting technol-
ogy type and assigned features of on/off transitions, total
on duration, and geospatial location coordinates that can
be further integrated with SED data. The original source
extraction identified 6,870 sources, further reduced to 1,265
after eliminating very small sources, of which 196 were clas-
sified with known light bulb types–189 with clean enough on
and off transitions with which to calculate total duration of
on time. Summary statistics for these sources are as follows:

Source Type Number Classified Number with clean “on time” duration Mean “on time”
per source
all 29 nights (hrs)

Mean “on time”
per source
per night (min)

LED 96 91 3.51 7.26 min / night
Fluorescent 51 50 3.61 7.48 min / night
High Pressure Sodium 22 21 4.17 8.62 min / night
Metal Halide 20 20 4.15 8.58 min / night
Low Pressure Sodium 6 6 3.83 7.92 min / night
Quartz Halogen 1 1 1.15 2.38 min / night
All Types 196 189 3.67 7.60 min / night

While only several light sources in the Gowanus Houses
region were classified by light type, there were 165 sources
with clean on time duration and summary statistics as fol-
lows:

Total Sources
(not just those classified)

Number with clean
“on time” duration

Mean “on time”
per source
all 29 nights (hrs)

Mean “on time”
per source
per night (min)

Gowanus Houses 166 165 4.05 8.38 min / night

The sample size across all source types was deemed in-
sufficient to do a multi-class analysis of variance, but a his-
togram reveals that all types show similar distributions of
on time duration.

6.1.1 Statistical analysis

The 188 classified light sources with clean durations (omit-
ting the quartz halogen source) were divided into a test
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Figure 26. Figure 25. Histogram of total duration per source

for each light bulb type (bin size=100) Duration was normalized

across all sources for each night to produce independent observa-
tions. While the sample size was small overall (n=196), we can

observe that the 5 types follow similar distributions. Quartz halo-
gen was omitted with just 1 classified source.

group of “efficient” light types and a comparison group of
“non-efficient” light types. These assignments were based
on a basic comparison of light output in lumens per watt, a
metric for light efficiency known as efficacy He et al. (1997),
Thimijan and Heins (1983). An arbitrary threshold was set
that bulbs with 40 lumens / watt efficacy or more were
efficient Koekemoer (2014). Metal halide and high pressure
sodium lamps may have relatively high source efficiency
at the filament, but losses from trapped light, covers and
lenses, inefficient ballasts and high operating temperatures
mean these lamps typically operate at around 40 lumens
/ watt Light (2017). As such, LED and fluorescent lights
were deemed efficient for the test group (n=141) and the
remaining types deemed non-efficient for the comparison
group (n=47). The on time duration values were scaled
across sources for each given night and then aggregated
across all 29 nights to produce independent observation
samples of total on time duration per source.

The null hypothesis states that: there is no significant
difference between total light use — to be measured as the
duration that a given light is “on” — for residents who
use energy efficient lighting compared to those who do not.
Since the sample sizes vary (141 and 47) and no probability
distribution was specified, an Anderson-Darling k-sample
test Anderson and Darling (1952), Scholz and Stephens
(1987), was conducted to determine if the two samples were
drawn from a single population. The test failed to reject the
null that the two distributions were significantly different
(test statistic of 0.7164, with p>0.05).

It is noted that a larger sample size is necessary to ro-
bustly test the null hypothesis. A larger sample size would
open up the opportunity to use other nonparametric tests,
such as the Kolmogorov-Smirnov, and facilitate parameter
estimation to support other tests. A histogram reveals a sim-
ilar distribution for these two groups as seen in Figure 27.

6.2 Implications

One of the goals of this work is to contribute a body
of empirical observations in an attempt to address some
well-known challenges with measuring the rebound effect.
Quasi-experimental approaches are vulnerable to selection
bias, which can exacerbate conditions of fairness Sorrell
et al. (2009). Subjects that are approached and consent to
participate in surveys or monitoring likely do not represent

Figure 27. Figure 26. Histogram of total duration per source

for the efficient and non-efficient lighting groups (bin size = 100)

The two groups demonstrated similar distributions of total on
time duration across all 29 observed nights.

a random sample of the population and can contribute to an
“interpretation-after-the-fact” problem O’Neil (2013) that
equates the results of a surveyed population with a larger
population and can misguide conclusions. Econometric
approaches that use price elasticity of demand, which were
discussed earlier, make certain assumptions about human
behavior which may not be a true representation of the real
world.

The empirical approach to observing lighting use
seeks to reduce the selection bias or econometric methods
by directly observing behavior remotely. While this pro-
vides several advantages, caution should be taken not to
underestimate the level of bias in this approach, either,
particularly if data used in later studies. Even data that
are objectively and remotely collected may contain biases if
observations fail “to represent different groups in accurate
proportions.” Barocas and Selbst (2016)

This work seeks to map observed light sources to partic-
ular geographic locations and integrate this new data with
existing records, such as SED information aggregated at the
census tract level. Along with addressing privacy concerns
referenced later in this paper, aggregating light sources to
census tracts has several advantages. For example, it allows
for the conditioning of covariates, such as building type
and socioeconomic and demographic data, that can more
fairly and accurately define groups represented in the data.
For example, one popular statistical model, the potential
outcome model created by Neyman and further developed
by Rubin Rubin (2005), provides a framework with which
to make assumptions of unconfoundedness. This includes
methods to condition the treatment and control groups
with covariates in order to determine a propensity score
that can more accurately weight these covariates and isolate
a treatment effect. For example, conditioning the observed
lighting behavior for a specific census tract by weighting the
proportion of income levels in the tract could address some
of these issues. Future work should leverage the techniques
developed here to assign covariates to observed light sources
for such a purpose.

7 LIMITATIONS

Similar limitations as discussed in previous UO research
apply to this project, among them that “curtains, interior
reflections and mixed lighting type use can complicate the
interpretation” Dobler et al. (2016). In addition, certain
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limitations that are particular to this capstone project
should be kept in mind when interpreting results. These
include:

• Only North facing sources are captured. The field-
of-view (FOV) of the images taken from a vantage-point
in Downtown Brooklyn facing South exposes mostly the
North-facing light sources of buildings. If there are any
correlated aspects of facing North or downtown, those
biases would be present in the data.

• Far-field census tracts might be under-represented.
Another aspect of the data collection methodology is the
possibility of under representation of the census tracts
that are present in the far-field and over representation of
census tracts in the near field, since more observable and
distinct data sources may be visible. However, as noted
earlier, it’s also possible that the perspective of far-field
light sources is more dense and causes them to be over-
represented. Integrating sources with the built environment
and aggregating to the census tract level should normalize
this somewhat.

• Shorter night duration in summer. The northern
hemisphere experiences summer solstice in June, yielding
longer daylight hours. This project’s observations take
place in and near June, so changes in lighting use due to
longer days will clearly influence this data. Hence, the same
analysis could lead to very different results in terms of
rebound characteristics when performed in a different time
of the year. Clearly describing the data collection methods
and dates and normalizing for varying nighttime hours will
address this.

• Missing single-pixel light sources. The light sources
were identified and extracted using an adjacent pixel
correlation algorithm, so light sources smaller than the
resolution of one pixel within the image would not get
captured. While the broadband images have high resolution,
this may become non-trivial with respect to the far-field
sources, introducing another bias based on distance from
the camera.

7.1 Ethics and privacy concerns

One of the broader objectives of the UO capstone project is
to contribute to a better understanding of the relationship
between humans and technology. The project aims to
investigate whether the use of energy efficient lighting
produces a behavioral response which offsets the beneficial
effects of using that technology by collecting and processing
of thousands of images of the urban landscape in order to
identify light sources.

Since the camera view covers a large swath of the city,
the project cannot specify a well-defined group of partic-
ipants or obtain consent from all persons whose windows
could potentially be captured in a UO image; however,
it is important to note that no Personally Identifiable
Information (PII) is obtained and the light exterior to

buildings is in the public domain, which does not require
consent C.F.R. (2009).

After careful consideration, we concluded that iden-
tities cannot be readily ascertained from the information
collected by the UO. Furthermore, individual identities
cannot be ascertained after combining observational data
with publicly available socioeconomic and demographic
data because U.S. Census data are already de-identified
and aggregated to a census tract level.

To better protect the privacy and restrict the data from
public access, the raw data are restricted (permission-based)
within the CUSP data facility.

8 CONCLUSION AND FUTURE RESEARCH

This work put forth a novel approach to quantifying the
rebound effect and contributed in three general ways: with
urban image detection, urban informatics more broadly,
and with respect to research into the rebound effect.

8.1 Urban image detection

Perhaps the most important contribution is establishment
of an empirical constraint on the amplitude of the rebound
effect upon which to base future scientific inquiry. Addi-
tionally, we developed an analytical pipeline for observing
and analyzing light use. The effectiveness of previous
techniques Dobler et al. (2015), Dobler et al. (2016) was
further validated and enhanced, and critically, the two
previously separate work streams, broadband light curve
extraction and hyperspectral lighting type classification,
were brought together for the first time and integrated with
the 3-D LiDAR data projection to produce a completely
novel methodology for analyzing light use.

The work was technically challenging, particularly
when seeking such a heightened level of precision (exact
light use for individual light sources) while dealing with
a low signal / noise ratio; however, the benefit was a
demonstrative success in quantifying light usage for specific
light types. Additional work to improve the methods used as
well as collect more data will surely increase the robustness
of statistical analyses. Furthermore, the ability to integrate
light sources with SED data vis-a-vis the 3-D projection
technique opens an entirely new avenue of inquiry.

8.2 Rebound effect

The rebound effect exemplifies some of the most challenging
aspects of applied science in that it seeks practical insights
that can potentially influence policy, business, and human
behavior, yet must maintain the integrity of scientific
pursuit. This is particularly evident when considering the
issues of bias examined earlier. Bringing a new empirical
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method to bear on the complex engineering, social, eco-
nomic dynamics of rebound effect is an important aspect of
this work. For example, characterizing sample populations
for SED attributes, such as income level, is crucial in de-
veloping robust statistical assumptions and avoiding issues
of bias our confoundedness, yet most research utilizing
such geo-specific data on behavior must rely upon sources
like the American Community Survey that produces data
aggregated at the census tract level and usually only every
five years. Compared to this, gaining insight into a specific
light source as observed in arbitrarily precise time units is
a significant step forward.

This work also uses a methodology that should be
easily replicated and generalized for other geographical
locations and, certainly most tangibly, contributed a body
of raw observed data that can be measured in Terabytes and
will hopefully encourage wider adoption of these techniques
by researchers investigating the rebound effect.

8.3
Urban informatics

The pipeline described also reinforces the interdisciplinary
nature and creativity of the field of urban informatics. Pre-
vious UO research leveraged astronomical techniques in a
novel way Dobler et al. (2015), Dobler et al. (2016) as well as
edge detection techniques used for computer vision Canny
(1986), which were key components in our methodology. We
also introduced photogrammetry as a tool in the pipeline
useful for 3-D projection. This research also demonstrated
how urban informatics can apply empirical methods to ever
broadening lines of inquiry, such as socio-economic issues.
It speaks to the power of urban instrumentation as a means
to better understand latent characteristics of the urban
ecosystem, perhaps furthering the claim that urban science
holds a unique place in the scientific realm Bettencourt and
West (2010).
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